JPS6321284A - Liquid phase epitaxy - Google Patents

Liquid phase epitaxy

Info

Publication number
JPS6321284A
JPS6321284A JP16580286A JP16580286A JPS6321284A JP S6321284 A JPS6321284 A JP S6321284A JP 16580286 A JP16580286 A JP 16580286A JP 16580286 A JP16580286 A JP 16580286A JP S6321284 A JPS6321284 A JP S6321284A
Authority
JP
Japan
Prior art keywords
growth
soln
slider
reservoir
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16580286A
Other languages
Japanese (ja)
Inventor
Noriyuki Hirayama
平山 則行
Masaaki Oshima
大島 正晃
Toru Tsuruta
徹 鶴田
Nobuyasu Hase
長谷 亘康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16580286A priority Critical patent/JPS6321284A/en
Publication of JPS6321284A publication Critical patent/JPS6321284A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain a homogeneous growth layer in a short time by providing a sliding soln. reservoir on a slider housing a substrate, charging a growth soln. consisting of a solvent and solute in the soln. reservoir, and reciprocating the slider to dissolve the solute in a short time. CONSTITUTION:A sliding lid 4 and plural sliding soln. reservoirs 5 for storing growth solns. 6 are provided on the slider 1 housing the substrate 2 of InP, etc. A solvent (e.g., In) and a solute (e.g., InAs and GaAs) for preparing the growth soln. 6 are charged in each soln. reservoir 5, the reservoir is heated to a temp. above the saturation temp. of the solute, the soln. reservoir 5 is reciprocated through a supporting rod 9 to uniformly dissolve the solute in the solvent, and the uniform growth soln. 6 is prepared. The growth soln. 6 is then cooled and supercooled, the slider 1 is slid through a supporting rod 7, the substrate 2 is successively positioned under each soln. reservoir 5, and epitaxial growth is carried out.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はオプトエレクトロニクス分野における半導体レ
ーザや受光素子等、光デバイスの作成に用いられる液相
エピタキシャル成長法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a liquid phase epitaxial growth method used in the production of optical devices such as semiconductor lasers and light receiving elements in the field of optoelectronics.

従来の技術 2ヘー/ 最近オプトエレクトロニクス分野の進展はめざ丑しく、
光フアイバ通信システムの実用化が進む中で半導体レー
ザ等の光デバイスが甘す甘す重要となってきた。光デバ
イス作成における結晶成長方法としては従来から最も一
般的な技術として液相エピタキシャル成長があり、分子
線エピタキシー (MBE) や有機金属気相成長(M
OVPE)等の新しい成長技術が実用化にたどりつこう
としているが、今も液相エピタキシャル成長は主流を占
めている。この液相エピタキシャル成長は従来例えば、
「光通信・・ンドブノク 柳井久義編集朝倉書店発行 
P143〜145」に記載されている構成が知られてい
る。
Conventional technology 2: Recently, the field of optoelectronics has made remarkable progress.
As the practical use of optical fiber communication systems progresses, optical devices such as semiconductor lasers have become increasingly important. Liquid phase epitaxial growth has traditionally been the most common crystal growth method for creating optical devices, and molecular beam epitaxy (MBE) and metal-organic vapor phase epitaxy (M
Although new growth technologies such as OVPE (OVPE) are on the verge of being put into practical use, liquid phase epitaxial growth still occupies the mainstream. Conventionally, this liquid phase epitaxial growth is
"Hikari Tsushin...Ndobunoku" Edited by Hisayoshi Yanai Published by Asakura Shoten
P143-145'' is known.

以下第3図を参照して従来の液相エピタキシャル成長方
法について説明する0第3図において31はスライダー
、32は基板、33は溶液溜、34は成長溶液、35は
スライダー支持棒、36は溶液溜支持棒である。このよ
うな構成においては、まず溶液溜33に配置された各成
長溶液34を溶質の飽和温度以上の温度に昇温し均一に
溶解する3ベーノ まで一定に保つ。続いて温度を徐々に降下させて成長溶
液を過冷却の状態にし、スライダー支持棒35によって
スライダー31を基板32が成長溶液の下にくるように
スライドさせる。成長は基板32を各成長溶液34の下
に所定の温度で所定の時間位置させることにより行なわ
れる。成長溶液を均一に溶解する時間は温度にもよるが
成長層の組成や膜厚等を均一に得るために通常は1時間
程度である。
The conventional liquid phase epitaxial growth method will be explained below with reference to FIG. It is a support rod. In such a configuration, first, each growth solution 34 placed in the solution reservoir 33 is heated to a temperature equal to or higher than the saturation temperature of the solute, and maintained at a constant temperature up to 3 vanes at which the solute is uniformly dissolved. Subsequently, the temperature is gradually lowered to bring the growth solution into a supercooled state, and the slider 31 is slid by the slider support rod 35 so that the substrate 32 is below the growth solution. Growth is performed by placing the substrate 32 under each growth solution 34 at a predetermined temperature for a predetermined time. Although the time required to uniformly dissolve the growth solution depends on the temperature, it is usually about one hour in order to obtain a uniform composition, film thickness, etc. of the growth layer.

発明が解決しようとする問題点 以上のような構成からなる液相エピタキシャル成長では
成長溶液を均一に溶解する際、溶質の飽和温度以上の温
度にて一定時間保つことにより行々っているが、これは
液相エピタキシャル成長の一連の工程において成長時間
(通常5〜15分程度程度比較して時間的に占める割合
が太きい。これは昇温中成長溶液自身の対流によって均
一に溶解するまで待たなければいけないためである。本
発明は一連の工程において正味の成長時間に比較して時
間的に大きな割合を占める成長溶液の溶解時間を、成長
層の組成や膜厚等の均一性を劣化させることなく短縮す
ることを可能にしだ液相エピタキシャル成長方法を提供
することを目的とする。
Problems to be Solved by the Invention In liquid phase epitaxial growth, which has the above-mentioned configuration, the growth solution is uniformly dissolved by keeping it at a temperature above the saturation temperature of the solute for a certain period of time. occupies a large proportion of the growth time (usually about 5 to 15 minutes) in the series of steps of liquid phase epitaxial growth. This is because the dissolution time of the growth solution, which accounts for a large proportion of the time compared to the net growth time in a series of steps, can be reduced without deteriorating the uniformity of the composition and film thickness of the growth layer. It is an object of the present invention to provide a liquid phase epitaxial growth method that allows for shortening the process.

問題点を解決するための手段 本発明は基板を収納するスライダーと該スライダー上で
相対的にスライド可能な成長溶液を収納する溶液溜とを
備えたボートを用いる液相エピタキシャル成長において
、成長溶液を溶解する際、前記成長溶液を収納した溶液
溜をスライダー上で一定時間往復スライドさせることに
よって成長溶液の対流を増加せしめることにより前記目
的を達成するものである。
Means for Solving the Problems The present invention provides a method for dissolving a growth solution in liquid phase epitaxial growth using a boat equipped with a slider for storing a substrate and a solution reservoir for storing a growth solution that can be slid relative to the slider. At this time, the above object is achieved by increasing the convection of the growth solution by sliding the solution reservoir containing the growth solution back and forth on a slider for a certain period of time.

作用 本発明は前記構成により、成長溶液の対流を増加せしめ
ることから成長溶液を短時間で均一に溶解するようにし
たものである。
Effects of the present invention With the above structure, the convection of the growth solution is increased, so that the growth solution can be uniformly dissolved in a short time.

実施例 第1図は本発明の一実施例におけるInP /InGa
AsP 系液相エピタキシャル成長において用いるボー
トの概略断面図である。1はスライダー、5ベージ 2はInP基板、3はInPカバー、4はふた、5は溶
液溜、6は成長溶液、7はスライダー支持棒、8はふた
支持棒、9は溶液溜支持棒である。スライダー1とふた
4及び溶液溜5とは相対的にスライド可能となっており
、それぞれスライダー支持棒7、ふた支持棒8、溶液溜
支持棒9により固定あるいはスライドを可能としている
。InP /InGaAsP系の成長ではP原子の蒸気
圧が高いため昇温中P原子が抜けやすいのでこれを防ぐ
ためにInP基板2上に基板表面をおおうようにInP
のカバー3を置いてInP基板2の表面を保護している
。ふた4は基板2及びInPカバー3の落下環を防止す
るためのものである。溶液溜5にはInを溶媒としたI
nP成長溶液(In + InP )やInGaAsP
成長溶液(In + InP + InAs+ GaA
s)6が収納されている。このような構成においてまず
各成長溶液6を溶解するために昇温する。溶質の飽和温
度以上の温度になったら、従来はそこで一定温度に保ち
、均一に溶解するのを待つが、ここでスライダー1とふ
た4を固定しておき、溶液6ベーノ 溜5を溶液溜支持棒9を介して図中矢印に示すように一
定時間往復スライドさせる。これにより各成長溶液6は
従来より短時間で均一に溶解する。
Embodiment FIG. 1 shows InP/InGa in an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view of a boat used in AsP-based liquid phase epitaxial growth. 1 is a slider, 5 pages 2 is an InP substrate, 3 is an InP cover, 4 is a lid, 5 is a solution reservoir, 6 is a growth solution, 7 is a slider support rod, 8 is a lid support rod, 9 is a solution reservoir support rod . The slider 1, the lid 4, and the solution reservoir 5 can be slid relative to each other, and can be fixed or slid by a slider support rod 7, a lid support rod 8, and a solution reservoir support rod 9, respectively. In the growth of the InP/InGaAsP system, the vapor pressure of P atoms is high, so P atoms easily escape during temperature rise.
A cover 3 is placed to protect the surface of the InP substrate 2. The lid 4 is for preventing the substrate 2 and the InP cover 3 from falling. The solution reservoir 5 contains I using In as a solvent.
nP growth solution (In + InP) or InGaAsP
Growth solution (In + InP + InAs + GaA
s) 6 is stored. In such a configuration, the temperature is first raised to dissolve each growth solution 6. Once the temperature reaches the saturation temperature of the solute or higher, conventionally the temperature is kept at a constant temperature and waits for it to dissolve uniformly, but at this point the slider 1 and lid 4 are fixed and the solution 6 and the beno reservoir 5 are supported by the solution reservoir. It is slid back and forth for a certain period of time as shown by the arrow in the figure via the rod 9. As a result, each growth solution 6 is uniformly dissolved in a shorter time than conventionally.

続いて温度を降下させ各成長溶液6を過冷却にして所定
温度になったら今度はふた4、溶液溜6を固定しておき
、スライダー1をスライダー支持棒7を介してスライド
させInP基板2を各成長溶液の下に順次位置させ成長
を行なう。成長溶液6の飽和温度が660℃の場合に、
溶解温度670℃では膜厚のばらつきが10係以内の成
長層を得るには従来60分以上の溶解時間が必要であっ
たが、本実施例では20分程度で10係以内の成長層が
得られた。
Next, the temperature is lowered and each growth solution 6 is supercooled, and when it reaches a predetermined temperature, the lid 4 and solution reservoir 6 are fixed, and the slider 1 is slid through the slider support rod 7 to remove the InP substrate 2. Growth is performed by sequentially positioning under each growth solution. When the saturation temperature of the growth solution 6 is 660°C,
At a melting temperature of 670°C, it conventionally required a melting time of 60 minutes or more to obtain a grown layer with a variation in film thickness within 10 parts, but in this example, a grown layer with a variation in film thickness of 10 parts or less could be obtained in about 20 minutes. It was done.

第2図は本実施例にもとづく方法でInPを成長させた
場合の膜厚のばらつきが10%以内になる溶解温度Ts
と溶解時間t8の関係を示したものである。成長溶液の
飽和温度は(Ts  20)℃、成長温度は(TsL2
5)℃ である。第2図かられかるように従来に比べ本
発明による方法によれば溶解時間が20〜40分短縮で
きる。
Figure 2 shows the melting temperature Ts at which the film thickness variation is within 10% when InP is grown using the method based on this example.
This figure shows the relationship between the dissolution time t8 and the dissolution time t8. The saturation temperature of the growth solution is (Ts 20) °C, and the growth temperature is (TsL2)
5) ℃. As can be seen from FIG. 2, the method according to the present invention can shorten the dissolution time by 20 to 40 minutes compared to the conventional method.

7ページ なお、InGaAsP  4元混晶の成長においても組
成の大きな変化をみずに同程度の短縮が可能であった。
Page 7 Note that the same degree of shortening was also possible in the growth of InGaAsP quaternary mixed crystal without major changes in composition.

発明の効果 以上のように本発明は成長溶液溶解の際に溶液溜を往復
スライドさせて成長溶液の対流を増加せしめることによ
り従来より短時間で均一に溶解させることができるため
、成長層の組成や膜厚の均一性を劣化させずに溶解時間
、したがって一連の成長工程時間を短縮できる。
Effects of the Invention As described above, the present invention increases the convection of the growth solution by sliding the solution reservoir back and forth when dissolving the growth solution, thereby making it possible to uniformly dissolve the growth solution in a shorter time than before, thereby improving the composition of the growth layer. It is possible to shorten the dissolution time and therefore the time of a series of growth steps without deteriorating the film thickness uniformity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例において用いるボートの概略
断面図、第2図はInP成長層の膜厚のばらつきが10
%以内となる成長溶液の溶解温度と溶解時間の関係図、
第3図は従来の液相エピタキシャル成長で用いられるボ
ートの概略断面図である。 1.31・・・・・・スライダー、2.32・・・・・
・基板、5.35・・・・・・溶液溜、6,34・・・
・・・成長溶液。
FIG. 1 is a schematic cross-sectional view of a boat used in an embodiment of the present invention, and FIG. 2 shows a variation in the thickness of the InP growth layer of 10
Relationship diagram between the dissolution temperature and dissolution time of the growth solution within %,
FIG. 3 is a schematic cross-sectional view of a boat used in conventional liquid phase epitaxial growth. 1.31...Slider, 2.32...
・Substrate, 5.35...Solution reservoir, 6,34...
...growth solution.

Claims (1)

【特許請求の範囲】[Claims] 基板を収納するスライダーと、前記スライダー上にあっ
て前記スライダーに対して相対的にスライド可能な前記
基板を保護するふたと、前記スライダー上に前記ふたと
は別に前記スライダーに対して相対的にスライド可能な
成長溶液を収納する溶液溜とを備えたボートを用い、成
長溶液を溶質の飽和温度以上の温度に保って溶解させる
際、前記成長溶液を収納した溶液溜を前記スライダー上
で往復スライドさせて成長溶液の均一化を行なうことを
特徴とする液相エピタキシャル成長法。
a slider for storing a substrate, a lid for protecting the substrate that is on the slider and is slidable relative to the slider, and a lid that is placed on the slider and slidable relative to the slider separately from the lid. When dissolving the growth solution by keeping it at a temperature equal to or higher than the saturation temperature of the solute using a boat equipped with a solution reservoir containing a possible growth solution, the solution reservoir containing the growth solution is slid back and forth on the slider. A liquid phase epitaxial growth method characterized by uniformizing the growth solution using
JP16580286A 1986-07-15 1986-07-15 Liquid phase epitaxy Pending JPS6321284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16580286A JPS6321284A (en) 1986-07-15 1986-07-15 Liquid phase epitaxy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16580286A JPS6321284A (en) 1986-07-15 1986-07-15 Liquid phase epitaxy

Publications (1)

Publication Number Publication Date
JPS6321284A true JPS6321284A (en) 1988-01-28

Family

ID=15819270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16580286A Pending JPS6321284A (en) 1986-07-15 1986-07-15 Liquid phase epitaxy

Country Status (1)

Country Link
JP (1) JPS6321284A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7864151B1 (en) 1986-07-07 2011-01-04 Semiconductor Energy Laboratory Co., Ltd. Portable electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7864151B1 (en) 1986-07-07 2011-01-04 Semiconductor Energy Laboratory Co., Ltd. Portable electronic device

Similar Documents

Publication Publication Date Title
JPS6321284A (en) Liquid phase epitaxy
US4073675A (en) Waveguiding epitaxial LiNbO3 films
EP0002080A1 (en) Method for the epitaxial deposition of several layers and devices, in particular a semiconductor laser device made by this method
JPH0566353B2 (en)
SU555761A1 (en) Method of producing p-n-junctions
JPS63304619A (en) Liquid growth method
JPS61231789A (en) Semiconductor laser device
JPS60145608A (en) Liquid phase epitaxial growth method
JPS63307199A (en) Liquid-phase epitaxial growth
JPS6315413A (en) Manufacture of melt for liquid growth
Iseler et al. Horizontal gradient-freeze growth of InP crystals under controlled pressure
JPS6314488A (en) Manufacture of semiconductor element
JPS58213416A (en) Liquid phase epitaxially growing method
JPS6064440A (en) Liquid phase epitaxial growth method
JPS622528A (en) Manufacture device for liquid-phase epitaxial growth solution
JPS61202411A (en) Liquid-phase epitaxial growth method
JPH06144989A (en) Liquid phase epitaxy growing method
Ballman et al. Waveguiding epitaxial LiNbO 3 films
JPH01126296A (en) Liquid phase epitaxy method
JPH01211916A (en) Liquid-phase epitaxial growth method
JPH0566352B2 (en)
HARRIS et al. Development of chalcopyrite crystals for nonlinear optical applications(Chalcopyrite crystal growth from CdGeP 2)[Interim Technical Report, 1 Aug.- 31 Oct. 1971]
Ballman et al. The Growth of LiNbO3 Thin Films by Liquid Phase Epitaxy
JPH02175697A (en) Production of non-linear optical crystal thin film
GB1332942A (en) Methods of growing multilayer semiconductor crystals