JPH06144989A - Liquid phase epitaxy growing method - Google Patents

Liquid phase epitaxy growing method

Info

Publication number
JPH06144989A
JPH06144989A JP32739092A JP32739092A JPH06144989A JP H06144989 A JPH06144989 A JP H06144989A JP 32739092 A JP32739092 A JP 32739092A JP 32739092 A JP32739092 A JP 32739092A JP H06144989 A JPH06144989 A JP H06144989A
Authority
JP
Japan
Prior art keywords
raw material
growth
solute
mixed crystal
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32739092A
Other languages
Japanese (ja)
Inventor
Takashi Sakurada
隆 櫻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP32739092A priority Critical patent/JPH06144989A/en
Publication of JPH06144989A publication Critical patent/JPH06144989A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the hindrance of growth reproducibility as there is the loss of raw materials at the time of transferring the raw materials from a glass container to a melt reservoir when a solute, dopant raw material, mixed crystal raw materials, etc., are weighed by using a glass container. CONSTITUTION:The solute, the dopant raw material and the mixed crystal raw materials 2 are put into a container-shaped solid solvent metal 1 and are weighted. These materials are supplied as they are into the melt reservoir 3 and are subjected to growth. Since a glass container, etc., are not used for weighing the solute, the dopant raw material and the mixed crystal raw materials 2, the sure transfer of the entire raw material to the melt reservoir is possible and the growth is executed with high reproducibility.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体結晶の液相エピ
タキシャル成長方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid phase epitaxial growth method for semiconductor crystals.

【0002】[0002]

【従来の技術】半導体結晶の成長方法に関する従来の技
術としては、液相エピタキシャル成長方法(LPE)の
一種で、多層成長に有効なスライドボート法がある。こ
れは、図3に示すように、基板4を保持する基体5と、
原料融液6を貯溜する複数の融液溜3を互いにスライド
させ、原料融液6を基板4に接触させて成長を行うもの
である(「電子材料シリーズ ガリウムヒ素」丸善p56
参照)。
2. Description of the Related Art As a conventional technique for growing a semiconductor crystal, there is a slide boat method which is one of liquid phase epitaxial growth methods (LPE) and is effective for multi-layer growth. As shown in FIG. 3, this is a base 5 holding a substrate 4,
A plurality of melt reservoirs 3 for accumulating the raw material melt 6 are slid on each other, and the raw material melt 6 is brought into contact with the substrate 4 for growth (“Electronic material series gallium arsenide” Maruzen p56.
reference).

【0003】ところで、上記のスライドボート法は、成
長する層の数と同数の融液溜に溶媒金属、溶質である半
導体原料、ドーパント、混晶原料2を所定量投入し、成
長を行っている。このとき、溶質の量は層の厚みに、ド
ーパント量はキャリア濃度に、又混晶原料は混晶比に大
きく影響する。従って、成長層の厚み、キャリア濃度、
混晶比を再現よく成長させるには、溶質、ドーパント、
混晶原料を高精度に秤量することが要求される。
By the way, in the above-mentioned slide boat method, a predetermined amount of solvent metal, semiconductor raw material which is a solute, dopant and mixed crystal raw material 2 are put into the same number of melt reservoirs as the number of growing layers to carry out growth. . At this time, the amount of solute has a great influence on the layer thickness, the amount of dopant has a great influence on the carrier concentration, and the mixed crystal raw material has a great influence on the mixed crystal ratio. Therefore, the growth layer thickness, carrier concentration,
In order to grow the mixed crystal ratio with good reproduction, solute, dopant,
It is required to weigh mixed crystal raw materials with high accuracy.

【0004】[0004]

【発明が解決しようとする課題】これらの秤量は、従
来、図4に示すように、それぞれ別のガラス容器7など
を用いて秤量し、これを溶媒金属1の入った融液溜3に
投入していた。しかし、このような方法では、正確に秤
量を行っても、投入時に原料の一部がガラス容器内に付
着して残存したりするため、正確さが損なわれることが
あった。
Conventionally, as shown in FIG. 4, these weighings are performed by using separate glass containers 7 and the like, and the weighings are put into the melt reservoir 3 containing the solvent metal 1. Was. However, in such a method, the accuracy may be impaired because a part of the raw material adheres and remains in the glass container at the time of charging even if the weighing is accurately performed.

【0005】本発明は、このような技術的背景のもとに
なされたもので、その目的は、溶質、ドーパント、混晶
原料を高精度に秤量し、これらを漏れなく成長に利用す
ることで、成長条件の再現性が高い液相エピタキシャル
成長方法を提供することにある。
The present invention has been made under such a technical background, and an object thereof is to accurately weigh solutes, dopants, and mixed crystal raw materials and utilize them for growth without leakage. Another object of the present invention is to provide a liquid phase epitaxial growth method with high reproducibility of growth conditions.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に、本発明方法は、容器状の固形溶媒に、溶質、ドーパ
ント原料及び混晶原料から選択された少なくとも1種を
入れて秤量し、これらをそのまま融液溜に投入して成長
を行うことを特徴とする。
In order to achieve this object, the method of the present invention is a container-shaped solid solvent, at least one selected from a solute, a dopant raw material and a mixed crystal raw material, weighed, It is characterized in that they are directly added to the melt reservoir for growth.

【0007】[0007]

【作用】このように、溶質、ドーパント原料及び混晶原
料の秤量を行う際、固形溶媒を容器状に形成し、ここに
前記原料を投入して秤量を行い、これらを固形溶媒ごと
融液溜へ投入すれば、従来、ガラス容器内から融液溜へ
の投入時に伴った原料ロスをなくすことができる。従っ
て、原料全てを確実に成長に供することができ、高い成
長再現性を実現することができる。
When the solute, the dopant raw material, and the mixed crystal raw material are weighed in this manner, the solid solvent is formed into a container, and the raw material is put into the container and weighed. In addition, it is possible to eliminate the raw material loss that is conventionally associated with the time of charging from the inside of the glass container to the melt reservoir. Therefore, all the raw materials can be reliably supplied for growth, and high growth reproducibility can be realized.

【0008】[0008]

【実施例】以下、本発明の一実施例について説明する。
図1は本発明方法の概略を示す説明図で、先ず、成長に
用いる固形溶媒金属1を容器状に形成する。ここで、固
形溶媒1は図2に示すように、溶質、ドーパント原料及
び混晶原料2が投入できる凹部1aがあればよく、その外
形はどのようなものでもよい。そして、外面を削るなど
して所定重量に調整しておく。
EXAMPLES An example of the present invention will be described below.
FIG. 1 is an explanatory view showing the outline of the method of the present invention. First, the solid solvent metal 1 used for growth is formed in a container shape. Here, as shown in FIG. 2, the solid solvent 1 may have a concave portion 1a into which the solute, the dopant raw material, and the mixed crystal raw material 2 can be introduced, and the outer shape thereof may be any shape. Then, the outer surface is shaved and adjusted to a predetermined weight.

【0009】次に、この固形溶媒を秤量容器とし、溶
質、ドーパント原料、混晶原料2を前記凹部1aに投入し
て秤量を行う。溶質、ドーパント原料、混晶原料の秤量
を行った後、固形溶媒ごと成長装置の融液溜に投入す
る。
Next, the solid solvent is used as a weighing container, and the solute, the dopant raw material, and the mixed crystal raw material 2 are put into the recess 1a and weighed. After weighing the solute, the dopant raw material, and the mixed crystal raw material, the solid solvent and the solid solvent are put into the melt reservoir of the growth apparatus.

【0010】成長装置は、前記図3において説明したよ
うに、成長する層の数に等しい融液溜3と、基板4を保
持する基体5とからなるスライドボートである。成長
は、所定の温度に昇温して原料を溶融し、一定温度にま
で降温したところで融液溜と基体を相対的にスライドさ
せて基板4と原料融液6を接触させ、さらに所定の速度
で降温して基板上にエピタキシャル層を成長させる。そ
して、このような操作を各融液溜ごとに行うことで、基
板上に多層のエピタキシャル層を形成する。
As described with reference to FIG. 3, the growth apparatus is a slide boat composed of a melt reservoir 3 having the same number of growing layers and a substrate 5 holding a substrate 4. For growth, the raw material is melted by raising the temperature to a predetermined temperature, and when the temperature is lowered to a certain temperature, the melt reservoir and the substrate are relatively slid to bring the substrate 4 and the raw material melt 6 into contact with each other, and further at a predetermined speed The temperature is lowered to grow an epitaxial layer on the substrate. Then, by performing such an operation for each melt reservoir, a multilayer epitaxial layer is formed on the substrate.

【0011】上記本発明方法及び従来のガラス容器を用
いた秤量を行って、実際にAlGaAs層を成長させ、
得られたエピタキシャル層について、厚み、キャリア濃
度、Al組成を比較してみた。試験条件は、以下の通り
で、各成長を10回ずつ行い、その平均値と偏差を求め
た。その結果を表1に示す。 (実施例)溶媒として容器状金属Ga20.00gを3
個用い、それぞれに溶質である多結晶GaAs、混晶原
料であるAl、ドーパントであるZnを投入、秤量し
て、そのまま融液溜に投入し成長を行った。 (比較例)ガラス容器を用いて溶質、混晶原料、ドーパ
ントの秤量を行い、実施例と同量の溶媒と共にこれらを
それぞれ融液溜に投入して成長を行った。
The AlGaAs layer is actually grown by performing weighing using the above-mentioned method of the present invention and the conventional glass container,
The obtained epitaxial layers were compared in thickness, carrier concentration and Al composition. The test conditions were as follows, and each growth was performed 10 times, and the average value and the deviation were obtained. The results are shown in Table 1. (Example) As a solvent, 30.00 g of container-shaped metal Ga was used.
Polycrystalline GaAs as a solute, Al as a mixed crystal raw material, and Zn as a dopant were added to each and weighed, and then put into the melt reservoir as they were for growth. (Comparative Example) A solute, a mixed crystal raw material, and a dopant were weighed using a glass container, and these were put into a melt reservoir together with the same amount of the solvent as in the Examples to grow.

【0012】[0012]

【表1】 [Table 1]

【0013】同表に示すように、いずれも実施例の偏差
が小さく、比較例に比べて再現性に優れていることが確
認された。
As shown in the table, it was confirmed that the deviations of the examples were small and the reproducibility was superior to the comparative examples.

【0014】[0014]

【発明の効果】以上説明したように、本発明方法によれ
ば、溶質、混晶原料、ドーパントの秤量容器を溶媒と
し、これをそのまま融液溜に投入することで、従来のよ
うにガラス容器から融液溜に投入する際のロスをなくす
ことができる。従って、再現性の高い成長を行うことが
でき、LED用、レーザ用受光素子材料であるGaA
s、AlGaAs、InP、InGaAs、InGaA
sP等の各層の成長に利用すれば効果的である。
As described above, according to the method of the present invention, a solute, a mixed crystal raw material, and a weighing container for a dopant are used as a solvent, and the solvent is put into the melt reservoir as it is. Therefore, it is possible to eliminate the loss at the time of charging into the melt reservoir. Therefore, it is possible to carry out growth with high reproducibility, and GaA, which is a light receiving element material for LEDs and lasers, is used.
s, AlGaAs, InP, InGaAs, InGaA
It is effective if it is used for growth of each layer such as sP.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を示す説明図である。FIG. 1 is an explanatory diagram showing a method of the present invention.

【図2】本発明半導体材料成長用固形溶媒を示すもの
で、(A)は側面図、(B)は平面図である。
2A and 2B show a solid solvent for growing a semiconductor material of the present invention, wherein FIG. 2A is a side view and FIG. 2B is a plan view.

【図3】エピタキシャル成長に用いるスライドボートを
示すもので、(A)は平面図、(B)は正面図、(C)
は側面図である。
FIG. 3 shows a slide boat used for epitaxial growth, (A) is a plan view, (B) is a front view, and (C).
Is a side view.

【図4】従来のエピタキシャル成長における原料の秤量
方法を示す説明図である。
FIG. 4 is an explanatory diagram showing a conventional method for weighing raw materials in epitaxial growth.

【符号の説明】[Explanation of symbols]

1 溶媒金属 1a 凹部 2 溶質、ドーパント原料、混晶原料 3 融液溜 4 基板 5 基体 6 原料融液 7 ガラス容器 1 Solvent Metal 1a Recess 2 Solute, Dopant Raw Material, Mixed Crystal Raw Material 3 Melt Pool 4 Substrate 5 Substrate 6 Raw Material Melt 7 Glass Container

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 容器状の固形溶媒に、溶質、ドーパント
原料及び混晶原料から選択された少なくとも1種を入れ
て秤量し、これらをそのまま融液溜に投入して成長を行
うことを特徴とする液相エピタキシャル成長方法。
1. A container-shaped solid solvent is charged with at least one selected from a solute, a dopant raw material and a mixed crystal raw material, weighed, and these are directly added to a melt reservoir for growth. Liquid phase epitaxial growth method.
【請求項2】 形状が容器状であることを特徴とする半
導体材料成長用固形溶媒。
2. A solid solvent for growing a semiconductor material, which is shaped like a container.
【請求項3】 容器状の固形溶媒に、溶質、ドーパント
原料及び混晶原料から選択された少なくとも1種を入れ
て秤量することを特徴とする半導体材料成長用原料の秤
量方法。
3. A method for weighing a raw material for semiconductor material growth, which comprises placing at least one selected from a solute, a dopant raw material, and a mixed crystal raw material in a container-shaped solid solvent, and weighing the raw material.
JP32739092A 1992-11-11 1992-11-11 Liquid phase epitaxy growing method Pending JPH06144989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32739092A JPH06144989A (en) 1992-11-11 1992-11-11 Liquid phase epitaxy growing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32739092A JPH06144989A (en) 1992-11-11 1992-11-11 Liquid phase epitaxy growing method

Publications (1)

Publication Number Publication Date
JPH06144989A true JPH06144989A (en) 1994-05-24

Family

ID=18198621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32739092A Pending JPH06144989A (en) 1992-11-11 1992-11-11 Liquid phase epitaxy growing method

Country Status (1)

Country Link
JP (1) JPH06144989A (en)

Similar Documents

Publication Publication Date Title
EP0356037A3 (en) Method of making an electro-optical device with inverted transparent substrate
US4088514A (en) Method for epitaxial growth of thin semiconductor layer from solution
Fewster et al. The effect of silicon doping on the lattice parameter of gallium arsenide grown by liquid-phase epitaxy, vapour-phase epitaxy and gradient-freeze techniques
JPH06144989A (en) Liquid phase epitaxy growing method
CA1116312A (en) Method for depositing epitaxial monocrystalline semiconductive layers via sliding liquid phase epitaxy
US4261770A (en) Process for producing epitaxial semiconductor material layers on monocrystalline substrates via liquid phase shift epitaxy
Bliss et al. Indium phosphide
KR870003552A (en) Method of manufacturing compound semiconductor device
JPS6311596A (en) Liquid phase epitaxy for multiple element compound semiconductor by two-phase melt method
US4620854A (en) Method of preparing indium ingots
JPH02102191A (en) Growth of semiconductor crystal
JPS57106117A (en) Method for liquid phase epitaxial growth
JP2591018B2 (en) Liquid phase epitaxial growth method
GB2037181A (en) Process and apparatus for melt epitaxy
JPS57155727A (en) Manufacture of semiconductor device
JPS5710227A (en) Manufacture of semiconductor wafer
JPS63157415A (en) Manufacture of semiconductor crystal
JPH08165192A (en) Method for growth in liquid phase
JPS61271823A (en) Liquid phase epitaxial growing method
JPS5737823A (en) Vapor phase growth device
IE35057B1 (en) Methods of growing multilayer semiconductor crystals
Sun et al. Large diameter Sn-doped indium phosphide single crystal growth by LEC method
JPS6129122A (en) Gaas liquid phase epitaxial growth method
JPS5520258A (en) Liquid phase epitaxial growing method and device
JPH0566353B2 (en)