JPS63212843A - Method for vibrating vibration piece of viscometer - Google Patents

Method for vibrating vibration piece of viscometer

Info

Publication number
JPS63212843A
JPS63212843A JP4636887A JP4636887A JPS63212843A JP S63212843 A JPS63212843 A JP S63212843A JP 4636887 A JP4636887 A JP 4636887A JP 4636887 A JP4636887 A JP 4636887A JP S63212843 A JPS63212843 A JP S63212843A
Authority
JP
Japan
Prior art keywords
viscosity
vibration source
excitation source
constant
ammeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4636887A
Other languages
Japanese (ja)
Inventor
Masatoshi Tokuda
徳田 将敏
Toshiyuki Yamamoto
俊行 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4636887A priority Critical patent/JPS63212843A/en
Publication of JPS63212843A publication Critical patent/JPS63212843A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To keep the drive power to a vibration source constant regardless of any change in impedance accompanied by the change of circumferential environment, by measuring the current and voltage applied to the vibration source and controlling both of them so as to make the driving power of the vibration source constant. CONSTITUTION:An ammeter A is connected to a vibration source 21 in series with respect to a power amplifier 36 and a voltmeter V is connected in parallel to the series circuit of the ammeter A of the vibration source 21. The indication values (i), (v) of the ammeter A and voltmeter V are read by the operation part of a measuring apparatus main body. A control signal is outputted to the power amplifier 36 from an operational control part through an oscillator in order to regulate a current and/or voltage so as to make the driving power P applied to the vibration source 21 given by formula I (wherein Za is the internal impedance of the ammeter) constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主に連続鋳造用パウダー等の高温融体の粘度
測定に用いる粘度計の振動片加振方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of vibrating a vibrating element of a viscometer mainly used for measuring the viscosity of a high-temperature melt such as powder for continuous casting.

〔従来技術〕[Prior art]

振動片方式の粘度計は通常電磁石、又は駆動コイル等を
動力とする加振源により直接又は間接に振動片に所定振
動数の振動を付与し、そのときの振動片の空気中及び被
粘度測定物内での振幅を検出し、予め求めた粘度と振幅
との関係に基づき粘度を測定する構成となっている。
A vibrating one-sided type viscometer applies vibration at a predetermined frequency to the vibrating piece directly or indirectly using an excitation source powered by an electromagnet or a drive coil, and measures the viscosity of the vibrating piece in the air and at that time. The structure is such that the amplitude within the object is detected and the viscosity is measured based on the relationship between the viscosity and the amplitude determined in advance.

ところで粘度の測定精度向上には加振源によって振動片
に付与する振動エネルギーを測定期間中一定に維持する
必要があり、このため通常は加振源に与える電圧又は電
流の一定制御を行うことによってこれを実現することと
している。
By the way, in order to improve the accuracy of viscosity measurement, it is necessary to maintain the vibration energy applied to the vibrating piece by the excitation source constant during the measurement period, and for this reason, it is usually done by constant control of the voltage or current applied to the excitation source. We are trying to achieve this.

第4.第5図は夫々従来の加振源駆動系を示す模式図で
あり、第4図に示す駆動系は定電流制御型のもの、また
第5図に示す駆動系は定電圧制御型のものである。
4th. Fig. 5 is a schematic diagram showing conventional excitation source drive systems, and the drive system shown in Fig. 4 is a constant current control type, and the drive system shown in Fig. 5 is a constant voltage control type. be.

第4図に示す定電流制御型の駆動系はパワーアンプ36
に加振源21と直列に電流計Aを接続して構成してあり
、加振源21のインピーダンスZが常に一定であるとの
前提のもとに電流を一定に制御して加振動に付与する駆
動電力P(=t”Z)を一定となるよう制御する。
The constant current control type drive system shown in Fig. 4 is a power amplifier 36.
An ammeter A is connected in series with the excitation source 21, and the current is controlled to be constant and applied to the excitation on the assumption that the impedance Z of the excitation source 21 is always constant. The driving power P (=t''Z) is controlled to be constant.

また第5図に示す定電圧制御型の駆動系は、パワーアン
プ36に対し加振源21と並列に電圧計■を接続し、加
振源21のインピーダンスZが常に一定であるとの前提
のもとに電圧を一定制御して、加振源21に付与する駆
動電力P(=V”/Z)が一定となるように制御する。
Furthermore, the constant voltage control type drive system shown in FIG. Basically, the voltage is controlled to be constant so that the driving power P (=V''/Z) applied to the excitation source 21 is constant.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしこのような構成では、両者とも加振源21のイン
ピーダンスZを一定と仮定しているが、加振源21を構
成する鉄芯、コイル等は周囲の環境条件9例えば温度、
湿度変化によってインピーダンスが変化することが知ら
れており、電流又は電圧を一定制御するのみでは加振源
における駆動電力が変化し、これに伴って加振源から振
動片に付与すべき振動振幅値が変化することとなり、粘
度測定精度の向上に限界があった。
However, in both of these configurations, it is assumed that the impedance Z of the excitation source 21 is constant, but the iron core, coil, etc. that constitute the excitation source 21 are subject to environmental conditions 9 such as temperature, temperature, etc.
It is known that impedance changes due to changes in humidity, and if only the current or voltage is controlled at a constant level, the driving power at the excitation source will change, and accordingly, the vibration amplitude value that should be applied from the excitation source to the vibrating piece will change. There was a limit to the improvement of viscosity measurement accuracy.

第6図は、加振源温度と振動との関係を示すグラフであ
って、横軸に加振源温度(’C)を、また縦軸に加振源
振幅(μm)をとって示しである。
Figure 6 is a graph showing the relationship between excitation source temperature and vibration, with excitation source temperature ('C) plotted on the horizontal axis and excitation source amplitude (μm) on the vertical axis. be.

このグラフから明らかな如く、1℃程度の温度の変化で
10μm(約2.9χ)程度振幅値が変化し、これは粘
度換算で15%程度となり、極めて大きな誤差要因とな
っていることが解る。
As is clear from this graph, a change in temperature of about 1°C changes the amplitude value by about 10 μm (about 2.9χ), which is about 15% in terms of viscosity, which is an extremely large error factor. .

本発明方法はかかる事情に鑑みなされたものであって、
その目的とするところは加振源に付与すべき駆動電力を
加振源における周囲環境の変化に伴うインピーダンス変
化の如何にかかわらず振動片に対し所定の振動エネルギ
ーを付与し得るようにした粘度計の振動片加振方法を提
供するにある。
The method of the present invention was made in view of the above circumstances, and
The purpose of this is a viscometer that can apply the driving power to the vibration source to a predetermined vibration energy to the vibrating piece, regardless of impedance changes due to changes in the surrounding environment at the vibration source. The purpose of the present invention is to provide a method for exciting a vibrating element.

〔問題点を解決するための手段〕[Means for solving problems]

本発明方法にあっては、振動片を電気的手段により加振
する加振源を備えた粘度計の振動片加振方法において、
前記加振源に付与すべき電流及び電圧を測定し、加振源
の駆動電力が一定となるよう前記電流及び/又は電圧を
制御する。
In the method of the present invention, a vibrating bar excitation method for a viscometer equipped with an excitation source that excites a vibrating bar by electrical means includes:
The current and voltage to be applied to the excitation source are measured, and the current and/or voltage are controlled so that the driving power of the excitation source is constant.

〔作用〕[Effect]

本発明方法はこれによって、周囲環境の変化に伴うイン
ピーダンス変化の如何にかかわらず、加振源に対する駆
動電力を一定に維持し得ることとなる。
Thereby, the method of the present invention can maintain the driving power for the excitation source constant regardless of impedance changes due to changes in the surrounding environment.

〔実施例〕〔Example〕

以下本発明方法を図面に基づき具体的に説明する。第1
図は、本発明方法を適用した粘度計の模式図であり、図
中1は加熱炉、2は粘度測定器。
The method of the present invention will be specifically explained below based on the drawings. 1st
The figure is a schematic diagram of a viscometer to which the method of the present invention is applied, where 1 is a heating furnace and 2 is a viscosity measuring device.

3は測定装置本体を示している。3 indicates the main body of the measuring device.

加熱炉1は電気炉等にて構成されており、上部壁中央に
開口部1aを備え、また内部には被粘土測定物を収容す
るルツボ11及び被粘度測定物を加熱溶融するヒータ1
2が配設され、また炉外上部にはルツボ11に被粘度測
定物を供給する供給器13が設置されており、該供給器
13内の被粘度測定物を加熱炉1の炉壁に設けたガイド
孔1bを通じてルツボ11内に投入し、ヒータ12にて
所定温度に加熱溶融せしめるようにしである。
The heating furnace 1 is composed of an electric furnace or the like, and has an opening 1a at the center of the upper wall, and has a crucible 11 for storing the object to be measured and a heater 1 for heating and melting the object to be measured for viscosity.
2 is disposed, and a feeder 13 for supplying the material to be measured for viscosity to the crucible 11 is installed at the upper outside of the furnace. The material is put into the crucible 11 through the guide hole 1b, and heated and melted to a predetermined temperature by the heater 12.

ヒータ12の制御は測定装置本体3の演算制御部31か
らの制御信号に基づき動作する炉コントローラ14にて
行われ、その結果は炉内温度検出プローブ15a、被粘
度測定物の温度検出プローブ15bの検出温度をマルチ
温度計32.演算制御部31を通じて炉コントローラ1
4にフィードバックされるようにしである。また供給器
13からの被粘度測定物の切出量も測定装置本体3のシ
ーケンサ33を通じて演算制御部31にて調節される。
The heater 12 is controlled by a furnace controller 14 that operates based on a control signal from the arithmetic control section 31 of the measuring device main body 3, and the results are transmitted to the furnace temperature detection probe 15a and the temperature detection probe 15b of the object to be measured for viscosity. Detected temperature using multi-thermometer 32. Furnace controller 1 through arithmetic control section 31
This will be fed back to 4th. Further, the amount of the material to be measured for viscosity taken out from the supply device 13 is also adjusted by the arithmetic control section 31 through the sequencer 33 of the measuring device main body 3.

粘度測定器2はコーン型のスピーカ等にて構成される加
振源21に上端部を連繋させたシャフト22を熱遮蔽板
23を通して垂下させ、その下端部に振動片24を設け
ると共に、シャフト22の上端部近傍に振動片24の振
幅を検出する変位計25を臨ませて構成されており、図
示しない昇降手段にて図面に示す如く振動片24が加熱
炉lの外部に引上げられた位置と、振動片24が開口部
1aを通してルツボ11内の被粘度測定物内に浸漬した
位置とに昇降移動せしめられるようになっている。
The viscosity measuring device 2 has a shaft 22 whose upper end is connected to an excitation source 21 constituted by a cone-shaped speaker, etc., hangs down through a heat shield plate 23, and a vibrating piece 24 is provided at the lower end of the shaft 22. A displacement meter 25 for detecting the amplitude of the vibrating piece 24 faces near the upper end, and the position where the vibrating piece 24 is pulled up to the outside of the heating furnace l as shown in the drawing by means of lifting means (not shown). The vibrating piece 24 is moved up and down through the opening 1a to a position where it is immersed in the object to be measured for viscosity inside the crucible 11.

熱遮蔽板23は水冷ジャケットを備えており、加熱炉1
等の熱を遮断し、粘度測定器2に対する熱影響を低減す
るようになっている。
The heat shield plate 23 is equipped with a water cooling jacket, and the heating furnace 1
The viscosity measuring device 2 is designed to cut off heat from the viscosity measuring device 2, thereby reducing the influence of heat on the viscosity measuring device 2.

また変位計25はシャフト22を通じて振動片24の振
幅を検出するようにしてあり、その検出信号はコントロ
ーラ26及び測定装置本体3のマルチメータ34を通じ
て演算制御部31に取込まれる。
Further, the displacement meter 25 is configured to detect the amplitude of the vibrating piece 24 through the shaft 22, and the detection signal is taken into the calculation control section 31 through the controller 26 and the multimeter 34 of the measuring device main body 3.

加振源21は電磁石、又は駆動コイル等の電気的手段に
て振動板を振動し、その振動をシャフト22を通じて振
動片24に伝達するよう構成されており、その振動数、
振幅は測定装置本体3の演算制御部31の制御信号を発
振器35、パワーアンプ36に人力することにより設定
される。振動数としては主に振動系の共振振動数が用い
られ、振幅もそのときの振幅が用いられる。
The vibration source 21 is configured to vibrate the diaphragm using an electric means such as an electromagnet or a drive coil, and transmit the vibration to the vibrating piece 24 through the shaft 22.
The amplitude is set by manually inputting a control signal from the arithmetic control section 31 of the measuring device main body 3 to the oscillator 35 and power amplifier 36. The resonance frequency of the vibration system is mainly used as the frequency, and the amplitude at that time is also used as the amplitude.

第2図は前記加振源21の駆動系を示す模式図であり、
パワーアンプ36に対し、加振源21と直列に電流計A
を接続すると共に、この加振源21電流計Aの直列回路
と並列に電圧計Vを並列接続して構成されており、電流
計A、電圧計■の各指示値i。
FIG. 2 is a schematic diagram showing the drive system of the vibration source 21,
An ammeter A is connected in series with the excitation source 21 to the power amplifier 36.
and a voltmeter V is connected in parallel with the series circuit of the excitation source 21 and the ammeter A, and the indicated values i of the ammeter A and the voltmeter ■.

■を演算制御部にて読み取り、下記(1)式で与えられ
る加振源21に付与される駆動電力Pが一定となるよう
電流及び/又は電圧を調節すべく演算制御部から発振器
35を通じてパワーアンプ36に制御信号を出力するよ
うになっている。
(2) is read by the calculation control unit, and the calculation control unit outputs power through the oscillator 35 in order to adjust the current and/or voltage so that the driving power P given to the excitation source 21 given by the following equation (1) is constant. A control signal is output to the amplifier 36.

P =vi−i”Za      −(1)但しZa:
電流計の内部インピーダンス16は標準粘度液であって
、粘度測定開始に先立って振動片24をこれに浸漬し、
そのときの温度。
P=vi−i”Za −(1) However, Za:
The internal impedance 16 of the ammeter is a standard viscosity liquid, and the vibrating piece 24 is immersed in it before starting viscosity measurement.
temperature at that time.

振幅を検出し、粘度測定器2自体の特性を定めるのに用
いられる。
It is used to detect the amplitude and define the characteristics of the viscosity measuring device 2 itself.

測定装置本体3の演算制御部31は変位計25で検出し
た共振振動数のもとての振動片24の空気中での振動振
幅Ea及び被粘度測定物内での振動振幅Eを読取り、下
記(2)式に従って被粘度測定物の粘度ηを算出する。
The arithmetic control unit 31 of the measuring device main body 3 reads the vibration amplitude Ea in the air of the vibrating piece 24, which is the source of the resonance frequency detected by the displacement meter 25, and the vibration amplitude E in the object to be measured for viscosity, and calculates the following. The viscosity η of the viscosity measurement object is calculated according to equation (2).

但し、ρ :被粘度測定物の密度 RH:粘度計固有の機械的インピーダ ンスの抵抗骨 子a :空気中での共振周波数 f :被粘度測定物中での共振周波数 S  :振動片の両面の面積 なお(2)式中のR4′/πfaS”は装置定数であり
、これをKとし、 あるからこれを八。とすれば前記(2)式は(3)式の
如くに書き直せる。
However, ρ: Density of the object to be measured for viscosity RH: Resistance outline of mechanical impedance specific to the viscometer a: Resonance frequency in air f: Resonance frequency in the object to be measured for viscosity S: Area of both sides of the vibrating piece R4'/πfaS'' in equation (2) is an apparatus constant, and if this is K, and it is 8, then equation (2) can be rewritten as equation (3).

ρη=に八〇       ・・・(3)空気中での共
振周波数fa、空気中での振動振幅Eaは測定開始前に
大気中で振動片に異なる周波数の振動を与え、振幅が最
大となる周波数を共振周波数fa、そのときの振幅をH
aとして定めておく。
ρη = 80 (3) Resonance frequency fa in air and vibration amplitude Ea in air are the frequencies at which vibrations of different frequencies are given to the vibrating piece in the air before the start of measurement, and the amplitude is maximum. is the resonance frequency fa, and the amplitude at that time is H
It is defined as a.

またに、nについては測定開始前に2種以上の標準粘度
液中に振動片を浸漬し、振動片に異なる周波数の振動を
与え、振幅が最大となる周波数をf。
In addition, for n, before starting the measurement, the vibrating piece is immersed in two or more types of standard viscosity liquids, and the vibrating piece is vibrated at different frequencies, and the frequency at which the amplitude is maximum is f.

そのときの振幅をEと定めると共に標準粘度液の密度ρ
、粘度等に基づき予め求めておく。
The amplitude at that time is defined as E, and the density of the standard viscosity liquid is ρ.
, is determined in advance based on viscosity, etc.

演算制御部31で求めた被粘度測定物温度及び粘度はそ
の都度CRT、プリンタにて表示、記録される。
The temperature and viscosity of the object to be measured for viscosity determined by the arithmetic control section 31 are displayed and recorded on a CRT or printer each time.

而して上述した如き本発明方法に依った場合の粘度測定
試験結果は第3図に示すとおりである。
The results of the viscosity measurement test using the method of the present invention as described above are shown in FIG.

第3図のグラフは横軸に加振源の温度(’C)を、また
縦軸に加振源の振幅をとって示しである。
The graph in FIG. 3 shows the temperature ('C) of the vibration source on the horizontal axis and the amplitude of the vibration source on the vertical axis.

このグラフから明らかな如く、本発明方法に依った場合
にあっては、加振源温度が50℃前後変化したときの振
幅変化は0.5μ輸以内(0,5%程度)であり、粘度
換算で略0.7%の誤差となり、第6図に示す従来方法
と比較して測定精度が格段に向上していることが解る。
As is clear from this graph, when the method of the present invention is used, the amplitude change is within 0.5 μm (approximately 0.5%) when the excitation source temperature changes by around 50°C, and the viscosity The converted error is approximately 0.7%, and it can be seen that the measurement accuracy is significantly improved compared to the conventional method shown in FIG.

〔効果〕〔effect〕

以上の如く本発明方法にあっては振動片の加振源に対し
、その駆動電力を一定とすべく、電流及び/又は電圧を
制御することとしているから、加熱炉の温度等の環境条
件に影響されることなく、一定の加振源駆動電力を維持
し得て、粘度測定精度が格段に向上するなど本発明は優
れた効果を奏するものである。
As described above, in the method of the present invention, the current and/or voltage is controlled to keep the driving power constant for the vibration source of the vibrating element, so it is possible to The present invention has excellent effects, such as being able to maintain a constant excitation source driving power without being affected, and significantly improving viscosity measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を適用した粘度計の模式図、第2図
は第1図に示す加振源の駆動系を示す模式図、第3図は
加振源の振幅と温度との関係を示すグラフ、第4.5図
は従来の加振源駆動系を示す模式図、第6図は従来方法
に依った場合の加振源の振幅とその温度との関係を示す
グラフである。 1・・・加熱炉 2・・・粘度測定器 3・・・測定装
置本体 11・・・ルツボ 12・・・ヒータ 13・
・・供給器 14・・・炉コントローラ 15a、 1
5b・・・温度検出用プローブ16・・・標準粘度液 
 21・・・加振源 22・・・シャフト24・・・振
動片 25・・・変位計 31・・・演算制御部時 許
 出願人  住友金属工業株式会社代理人 弁理士  
河  野  登  夫加S渡温度(’C) 第3図 加振源温度(1) 第 4  図
Fig. 1 is a schematic diagram of a viscometer to which the method of the present invention is applied, Fig. 2 is a schematic diagram showing the drive system of the excitation source shown in Fig. 1, and Fig. 3 is the relationship between the amplitude of the excitation source and temperature. 4.5 is a schematic diagram showing a conventional excitation source drive system, and FIG. 6 is a graph showing the relationship between the amplitude of the excitation source and its temperature when using the conventional method. 1... Heating furnace 2... Viscosity measuring device 3... Measuring device body 11... Crucible 12... Heater 13.
...Supplier 14...Furnace controller 15a, 1
5b...Temperature detection probe 16...Standard viscosity liquid
21... Vibration source 22... Shaft 24... Vibration piece 25... Displacement meter 31... Arithmetic control unit Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney
Noboru Kono Calculation temperature ('C) Fig. 3 Excitation source temperature (1) Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 1、電気的手段により加振する加振源を備えた粘度計の
振動片加振方法において、前記加振源に付与すべき電流
及び電圧を測定し、加振源の駆動電力が一定となるよう
前記電流及び/又は電圧を制御することを特徴とする粘
度計の振動片加振方法。
1. In a method of excitation of a vibrating element of a viscometer equipped with an excitation source that is vibrated by electrical means, the current and voltage to be applied to the excitation source are measured, and the driving power of the excitation source is kept constant. A method for exciting a vibrating element of a viscometer, characterized in that the current and/or voltage is controlled in such a manner as to
JP4636887A 1987-02-27 1987-02-27 Method for vibrating vibration piece of viscometer Pending JPS63212843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4636887A JPS63212843A (en) 1987-02-27 1987-02-27 Method for vibrating vibration piece of viscometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4636887A JPS63212843A (en) 1987-02-27 1987-02-27 Method for vibrating vibration piece of viscometer

Publications (1)

Publication Number Publication Date
JPS63212843A true JPS63212843A (en) 1988-09-05

Family

ID=12745209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4636887A Pending JPS63212843A (en) 1987-02-27 1987-02-27 Method for vibrating vibration piece of viscometer

Country Status (1)

Country Link
JP (1) JPS63212843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082755A (en) * 1989-10-02 1992-01-21 General Electric Company Liquid crystal programmable photoresist exposure method for making a set of masks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417694A (en) * 1977-07-05 1979-02-09 Motorola Inc Piezooelectric bimorph or monomorph curved vibrator structure
JPS6012414A (en) * 1983-06-10 1985-01-22 ジ・ア−サ−・ジ−・ラツセル・カンパニ−・インコ−ポレ−テツド Control circuit for vibrator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417694A (en) * 1977-07-05 1979-02-09 Motorola Inc Piezooelectric bimorph or monomorph curved vibrator structure
JPS6012414A (en) * 1983-06-10 1985-01-22 ジ・ア−サ−・ジ−・ラツセル・カンパニ−・インコ−ポレ−テツド Control circuit for vibrator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082755A (en) * 1989-10-02 1992-01-21 General Electric Company Liquid crystal programmable photoresist exposure method for making a set of masks

Similar Documents

Publication Publication Date Title
KR101504975B1 (en) Apparatus for measuring leakage current and method for operating the same
JP6304693B2 (en) Method and apparatus for determining electrode material wear during operation of an electric furnace
WO1991013324A1 (en) Liquid level detecting apparatus and liquid level detecting method
US4446562A (en) Method and apparatus for measuring crucible level of molten metal
JPS63212843A (en) Method for vibrating vibration piece of viscometer
JP2006214842A (en) Liquid physical property value measuring instrument and liquid physical property value measuring method
JP2508058B2 (en) High-temperature melt viscosity automatic measurement device
JPS63214653A (en) Method for determining crystallization temperature of high-temperature melt
JPH03202748A (en) Vibrating-reed type viscosity measuring method
JPH04348230A (en) Dipping type level gauge for high temperature molten metal, dipping type temperature measuring apparatus with level measuring function for high temperature molten metal and surveillance probe with level measuring function
US3467862A (en) Apparatus for recording resistance changes during the entire coagulation process in a biological fluid
CN108827831A (en) Oscillatory type viscosity apparatus and its Detection Method of Liquid Viscosity
JPS60133955A (en) Method for electromagnetic stirring in continuous casting
JP4741108B2 (en) Electrostatic level meter for casting and method and apparatus for filling molten metal into mold using the same
JP3196457B2 (en) Floating melting equipment
KR100911257B1 (en) Measuring apparatus and method for ultrasound power by using latent heat
CN211317944U (en) Grinding aid detection device
JPH09164462A (en) Continuous casting method of steel
JP3094904B2 (en) Apparatus and method for melting and solidifying material
JPH0476051B2 (en)
JPH01309767A (en) Method and device for cutting slag in continuous casting
JPH11188470A (en) Molten metal surface level measuring method in continuous casting and molten metal surface leveler
SU1717277A1 (en) Process for continuous casting of metal band
SU1262267A1 (en) Method of determining mechanical tension stresses
SU1442878A1 (en) Method of measuring medium density