JPH0476051B2 - - Google Patents
Info
- Publication number
- JPH0476051B2 JPH0476051B2 JP25119384A JP25119384A JPH0476051B2 JP H0476051 B2 JPH0476051 B2 JP H0476051B2 JP 25119384 A JP25119384 A JP 25119384A JP 25119384 A JP25119384 A JP 25119384A JP H0476051 B2 JPH0476051 B2 JP H0476051B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- tank
- density
- probe
- liquid level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007788 liquid Substances 0.000 claims description 39
- 239000000523 sample Substances 0.000 claims description 18
- 239000012071 phase Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 239000003949 liquefied natural gas Substances 0.000 description 4
- 238000001739 density measurement Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Description
【発明の詳細な説明】
技術分野
本発明は、タンク内の液体質量を測定する計測
装置に関する。DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a measuring device for measuring the mass of liquid in a tank.
従来技術
液体天然ガス(以下LNGという)のような極
低沸点液体がタンクに貯蔵されたとき、LNG産
地による組成の相違、熱授受等によつて相を形成
することがあるが、このような多成分系において
は、上層密度が下層密度よりも大きい場合に層反
転するロールオーバ現象がおこる。このロールオ
ーバ現象がおこると相混合が生じ、そのエネルギ
ー消費によつて急激な蒸気ガスが発生し、大きい
災禍をもたらすという危険があり、そのため、ロ
ールオーバ現象の未然の防止が必要である。この
ために、タンク貯蔵液の密度又は密度と関連する
温度等の物理量を定期的に測定し、測定量を処理
検討して管理する必要がある。測定の具体的な方
法は、信号ケーブルの一端に接続された物理量を
検討するプローブを、タンク底部の定点に降ろさ
れたアンカーに固着している案内ケーブルを案内
としてタンク底部から天井に向つて昇降すること
によつて求めている。その際のプローブの現在位
置は、タンク底部を基準として信号ケーブルの捲
き上げ長さによつて求めている。Prior Art When an extremely low boiling point liquid such as liquid natural gas (hereinafter referred to as LNG) is stored in a tank, phases may be formed due to differences in composition depending on the LNG production area, heat exchange, etc. In a multi-component system, a rollover phenomenon occurs in which layers are inverted when the upper layer density is greater than the lower layer density. When this rollover phenomenon occurs, phase mixing occurs, and the energy consumption thereof causes rapid generation of steam gas, which poses the risk of causing a major disaster.Therefore, it is necessary to prevent the rollover phenomenon. For this purpose, it is necessary to periodically measure the density of the liquid stored in the tank or a physical quantity such as a temperature related to the density, and to manage the measured quantity by considering its processing. The specific measurement method is to raise and lower a probe connected to one end of the signal cable, which examines physical quantities, from the bottom of the tank toward the ceiling using a guide cable fixed to an anchor lowered to a fixed point at the bottom of the tank as a guide. seeking by doing. The current position of the probe at this time is determined by the length of the signal cable rolled up with the bottom of the tank as a reference.
而して、従来は、プローブによる密度測定にお
いて液相から気相に移行する場合に生ずる密度の
急激な変化と液又は気相分がプローブに混入する
ことによつて生ずる密度測定精度の低下を防ぐた
め、プローブが液面上に出ないように別に配設さ
れた液面計により測定された液位とプローブの位
置とを比較し、プローブの昇降制御を行つてい
た。 Conventionally, in density measurement using a probe, the rapid change in density that occurs when transitioning from the liquid phase to the gas phase and the drop in density measurement accuracy that occurs due to liquid or gas phase components entering the probe have been considered. To prevent this, the probe position is compared with the liquid level measured by a separately installed liquid level gauge to prevent the probe from protruding above the liquid surface, and the probe's elevation is controlled.
目 的
本発明は、上述のごとき従来技術におけるプロ
ーブを液相から気相まで昇降させる場合、昇降速
度を低速にすると、密度測定精度を低下させるこ
とがなく相変化に基づく密度変化の極大値の位置
から液位を算出することが可能となることを利用
して、液面計を省略するとともに、前記プローブ
により計測された密度のタンク内底面から液面迄
の平均値と液位から求めた液体体積との積からタ
ンク内の液体質量を求めることを目的としてなさ
れたものである。Purpose The present invention aims to reduce the maximum value of the density change due to the phase change without reducing the density measurement accuracy by lowering the lifting speed when moving the probe in the prior art as described above from the liquid phase to the gas phase. Taking advantage of the fact that the liquid level can be calculated from the position, the liquid level gauge is omitted, and the density is calculated from the average value from the bottom of the tank to the liquid level measured by the probe and the liquid level. This was done for the purpose of finding the mass of liquid in the tank from the product of the liquid volume.
構 成
第1図は、本発明の一実施例を説明するための
要部構成図で、液位L−LのLNGを収納したタ
ンク1と、密度計を内蔵したプローブ4を有す
る。プローブ4はタンク1の天井面を貫通して案
内ケーブル3を介して垂下されてタンク1の底面
に固定されたアンカー2の鉛直線上を上記案内ケ
ーブル3を案内として、図示しない駆動源により
回転駆動される信号ケーブル5と接続されて移動
する。尚、信号ケーブル5はシール機構6により
タンク内のガスとシールされ、弁7、シーブ8を
介して捲取られるもので、端末はスリツプリング
15を介して演算装置13に接続されており、捲
取長さ即ちプローブの位置はシーブ8の回転を検
出する検出器12の出力信号を演算してタンク1
の底面からの距離として算出される。Configuration FIG. 1 is a main part configuration diagram for explaining one embodiment of the present invention, which includes a tank 1 containing LNG at a liquid level LL, and a probe 4 containing a density meter. The probe 4 penetrates the ceiling of the tank 1 and is suspended via a guide cable 3, and is rotated by a drive source (not shown) with the guide cable 3 as a guide along the vertical line of an anchor 2 fixed to the bottom of the tank 1. It is connected to the signal cable 5 and moves. The signal cable 5 is sealed from the gas in the tank by a sealing mechanism 6, and wound up via a valve 7 and a sheave 8. The terminal is connected to the computing device 13 through a slip ring 15, and the signal cable 5 is wound up through a valve 7 and a sheave 8. The length of the probe, that is, the position of the probe, is determined by calculating the output signal of the detector 12 that detects the rotation of the sheave 8.
It is calculated as the distance from the bottom of the
案内ケーブル3も信号ケーブル5と同様にシー
ル機構6、弁7、シーブ9を介して図示しない駆
動源により回転駆動される回転ドラム11に各々
1端を固定されて昇降される。 Similarly to the signal cable 5, the guide cable 3 is moved up and down through a seal mechanism 6, a valve 7, and a sheave 9, with each end being fixed to a rotating drum 11 which is rotationally driven by a drive source (not shown).
第2図は、上記プローブ4内において使用する
密度検出器の一例を示す図で、イは平面図、ロは
側面図で、図中、40は非磁性材円筒で該非磁性
材円筒面には振動管41が内挿されている。該振
動管41は磁性材の薄肉円筒42で、該円筒42
の端面は流体が流通できるような孔43を貫通し
たフランジ状をなしている。44は駆動コイル、
45は受信コイルで、これらは円筒直径上に対向
して配設されている。これらのコイルは増幅器4
6に接続され、受信コイル45で検出した微小信
号を増幅し、駆動コイル44で振動管を駆動する
よう構成されており、各コイルと増幅器とで閉回
路を構成している。振動管は第2図ハに示すよう
に駆動軸上に長短径を有する楕円振動をするが、
この振動周波数は振動管の剛性と振動管をとり巻
く流体の密度とにより決められ、
ρ=ρp〔(fp/f)2−1〕 ……(1)
ただし、
ρ:測定される流体の密度
ρp:定数
fp:真空中での振動周波数
f:測定される流体中での振動周波数
により密度が求められる。即ち、(1)式に示す通り
密度の逆関数の振動周波数が得られる。この振動
数は、密度演算器47によつて密度に変換され、
記録計48にて記録される。 FIG. 2 is a diagram showing an example of the density detector used in the probe 4, in which A is a plan view and B is a side view. A vibrating tube 41 is inserted. The vibration tube 41 is a thin cylinder 42 made of magnetic material, and the cylinder 42
The end face has a flange shape passing through a hole 43 through which fluid can flow. 44 is a drive coil;
Reference numeral 45 denotes receiving coils, which are arranged to face each other on the diameter of the cylinder. These coils are amplifier 4
6 and is configured to amplify the minute signal detected by the receiving coil 45 and drive the vibrating tube with the driving coil 44, and each coil and the amplifier constitute a closed circuit. The vibrating tube vibrates in an ellipse having major and minor axes on the drive shaft, as shown in Figure 2 C.
This vibration frequency is determined by the rigidity of the vibrating tube and the density of the fluid surrounding the vibrating tube, and ρ=ρ p [(f p /f) 2 −1] ...(1) where ρ is the fluid to be measured. Density ρ p : Constant f p : Vibration frequency in vacuum f : Density is determined from the vibration frequency in the fluid to be measured. That is, as shown in equation (1), a vibration frequency that is an inverse function of density is obtained. This frequency is converted into density by a density calculator 47,
It is recorded by a recorder 48.
また、上述のように、共振周波数が密度により
変化する検出器においては、プローブがタンク内
液体中にある時と、液体から出た時では、第3図
に示すように、その共振周波数が大きく異なるの
で、この共振周波数の変化、換言すれば、密度変
化率の最も大きい位置から、タンク内液面を検出
することができる。 In addition, as mentioned above, in a detector whose resonant frequency changes depending on the density, the resonant frequency increases when the probe is in the liquid in the tank and when it comes out of the liquid, as shown in Figure 3. Therefore, the liquid level in the tank can be detected from the position where the change in resonance frequency, in other words, the rate of change in density is the largest.
而して、底面積が一定のタンクにおいては、上
述のようにして液面が検出されると、検出器12
の出力信号と前述のごとくして検出された液面よ
りタンク底面から液面までの液位を検出すること
ができ、従つてこの液位より液体の体積を求める
ことができ、一方、上述のごとくして求めた液体
密度より当該液体の平均密度を認めることがで
き、これら液体の体積と平均密度より液体の質量
を求めることができる。 Therefore, in a tank with a constant bottom area, when the liquid level is detected as described above, the detector 12
The liquid level from the bottom of the tank to the liquid level can be detected from the output signal of the output signal and the liquid level detected as described above, and therefore the volume of the liquid can be determined from this liquid level. The average density of the liquid can be determined from the liquid density determined as above, and the mass of the liquid can be determined from the volume and average density of the liquid.
効 果
以上の説明から明らかなように、本発明による
と、タンク内の物理量、特に、タンク内液体の垂
直方向における密度変化及び液面を計測精度よ
く、かつ、タンク内液体の質量を正確に求めるこ
とができる。Effects As is clear from the above description, according to the present invention, it is possible to accurately measure physical quantities in a tank, particularly density changes and liquid levels in the vertical direction of the liquid in the tank, and to accurately determine the mass of the liquid in the tank. You can ask for it.
第1図は、本発明の一実施例を説明するための
要部側面構成図、第2図は、本発明の実施に使用
する密度検出器の一例を示す図で、イは平断面
図、ロは側断面図、ハは振動状態を示す図、第3
図は、液位と密度との関係を示す図である。
1……タンク、2……アンカ、3……案内ケー
ブル、4……プローブ、6……シール機構、7…
…弁、8,9……シーブ、10,11……ドラ
ム。
FIG. 1 is a side view of essential parts for explaining an embodiment of the present invention, FIG. 2 is a diagram showing an example of a density detector used in implementing the present invention, and A is a plan cross-sectional view; B is a side sectional view, C is a diagram showing the vibration state, 3rd
The figure is a diagram showing the relationship between liquid level and density. 1...Tank, 2...Anchor, 3...Guide cable, 4...Probe, 6...Seal mechanism, 7...
...Valve, 8,9...Sheave, 10,11...Drum.
Claims (1)
プローブをタンク外に配設された昇降装置によつ
てタンク内底面および天井附近迄昇降し、該タン
ク内液体の鉛直上の密度変化を計測するとともに
密度の変化率の極大位置から液面を検知し、前記
プローブにより計測された密度のタンク内底面か
ら液面迄の平均値と液面から求めた液体体積との
乗算により液体質量を計測することを特徴とする
タンク内の液体質量計測装置。1. A probe that measures the density of the liquid stored in the tank is raised and lowered to the bottom and ceiling of the tank using a lifting device installed outside the tank, and the vertical density change of the liquid in the tank is measured. At the same time, the liquid level is detected from the maximum position of the density change rate, and the liquid mass is measured by multiplying the average value of the density measured by the probe from the bottom of the tank to the liquid level by the liquid volume determined from the liquid level. A device for measuring the mass of liquid in a tank, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25119384A JPS61129533A (en) | 1984-11-28 | 1984-11-28 | Measuring instrument for mass of liquid within tank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25119384A JPS61129533A (en) | 1984-11-28 | 1984-11-28 | Measuring instrument for mass of liquid within tank |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61129533A JPS61129533A (en) | 1986-06-17 |
JPH0476051B2 true JPH0476051B2 (en) | 1992-12-02 |
Family
ID=17219064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25119384A Granted JPS61129533A (en) | 1984-11-28 | 1984-11-28 | Measuring instrument for mass of liquid within tank |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61129533A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1034414A4 (en) * | 1997-11-25 | 2001-10-24 | Choon Loong Chong | Load creation apparatus and method |
CN103499379B (en) * | 2013-10-15 | 2015-05-27 | 中国电子科技集团公司第三十八研究所 | Fast detection system for amount of stored oil |
CN109682729B (en) * | 2019-01-31 | 2021-08-20 | 广西壮族自治区环境监测中心站 | Data acquisition system and method for soil detection |
-
1984
- 1984-11-28 JP JP25119384A patent/JPS61129533A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61129533A (en) | 1986-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3902365A (en) | Mass flow monitoring system and method | |
US4021774A (en) | Borehole sensor | |
US2624198A (en) | Flowmeter | |
US3982431A (en) | Control system for borehole sensor | |
JP2002365201A (en) | Method and apparatus for automatic permeability test | |
JPH0476051B2 (en) | ||
US3225588A (en) | Densimetering systems | |
US3999421A (en) | Powder bulk density instrument | |
JPH0450965B2 (en) | ||
US4388827A (en) | Method for measuring the depth of a liquid body | |
Tucker et al. | A capacitance-wire recorder for small waves | |
Drawin | Development of friction type vacuum gauges | |
JP2003090749A (en) | Electromagnetic flowmeter | |
JPH06138134A (en) | Flow-velocity measuring method of fluid | |
Barnum et al. | An Experimental Study of the Dynamic Behavior of Foil Bearings | |
US3108476A (en) | Recording apparatus for measuring small changes in gas volume in reaction vessels | |
RU2557680C2 (en) | Method for determining parameters of liquid in tank and device for its implementation | |
SU731355A1 (en) | Method of determining the coefficient of rotational viscosity of liquid crystals | |
SU1177697A1 (en) | Method of pressure gauging | |
JPS6231866Y2 (en) | ||
SU368858A1 (en) | THROMBOZLASTOGRAFvogso; basic ifiiTOiT -: ^ '..K ;; HV: HAI ^ J | |
JPS6139931Y2 (en) | ||
Barrow et al. | Automatic apparatus for high resolution internal friction measurements | |
SU1275211A1 (en) | Flowmeter | |
SU1452958A1 (en) | Integrated downhole instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |