JPS6139931Y2 - - Google Patents

Info

Publication number
JPS6139931Y2
JPS6139931Y2 JP16487381U JP16487381U JPS6139931Y2 JP S6139931 Y2 JPS6139931 Y2 JP S6139931Y2 JP 16487381 U JP16487381 U JP 16487381U JP 16487381 U JP16487381 U JP 16487381U JP S6139931 Y2 JPS6139931 Y2 JP S6139931Y2
Authority
JP
Japan
Prior art keywords
excitation
span
electrodes
signal
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16487381U
Other languages
Japanese (ja)
Other versions
JPS5871114U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16487381U priority Critical patent/JPS5871114U/en
Publication of JPS5871114U publication Critical patent/JPS5871114U/en
Application granted granted Critical
Publication of JPS6139931Y2 publication Critical patent/JPS6139931Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

1 考案の技術分野 本考案は、電磁流量計に係り、流速のばらつき
の多い等の流体を測定する電磁流量計の改良に関
するものである。 2 従来技術 この種電磁流量計の従来例を第1図に示す。従
来技術の低周波励磁電磁流量計は電磁流量計検出
器1と電磁流量計変換器6とで構成されている。
変換器6内の所定周波数の同期信号を発信する同
期信号発信器10からの同期信号により作動する
低周波励磁電力発生器11からの励磁電力を受け
て1対の励磁コイル2a,2a′から1対の電極3
aを有する測定管3に磁束13が印加され、測定
管3内を流れる流体の流速に比例した信号起電力
が電極3aから取出される。なお図中1aは外
筐、3bは絶縁性ライニング、4は信号起電力
線、5aは励磁線、12はパワー電源を示す。低
周波励磁の代表的な波形は方形波で、検出器1か
らの信号起電力は励磁磁束とほぼ同一の波形をな
しており、プリアンプ7で信号増幅され、スパン
設定器8で予め設定されていた測定スパンに切換
えられて同期サンプラ付変換器9に入力され、同
期信号発信器10からの信号により第2図に示す
信号波形の過渡現象のなくなる部分Aがサンプリ
ングされ、このサンプリング値が設定されたスパ
ンの流量信号に変換され電磁流量計の出力信号1
4として出力される。 3 従来技術の問題点 従来の低周波励磁電磁流量計は、交流励磁電磁
流量計の際に問題になつた諸々の交流現象による
ノイズ等の悪影響を断ち切るために、第1階微分
または第2階微分がゼロとなる磁束を用いてい
る。そして、磁束の立上りスピードは口径が大き
くなる程遅くなる傾向があるので、現在市販され
ている電磁流量計の励磁周波数は3.125,6.25,
12.5Hzが主流を占めている。コイルの励磁条件で
ある電圧、電流、励磁コイルの巻線抵抗の大きさ
を変えて周波数を上げることは可能であるが、す
ぐに限度となり、電磁流量計検出器の大きさが大
きくなつたり、励磁電源の設計が難しくなるとい
う問題があつた。 4 考案の目的 本考案の目的は、従来からの電磁流量計検出器
とほぼ同一の大きさで、被測定流体中の速い脈動
を含む流体の流量測定が可能になる電磁流量計を
提供することを目的とする。 5 考案の構成 本考案は、主励磁コイルの他に主励磁コイルよ
りコイル頭部を電極に近接して従励磁コイルを配
置し、設定された測定スパンに対応して主励磁コ
イルと従励磁コイルとを選択的に低周波励磁電力
発生器に接続する励磁コイル接続器を設け、低流
速領域の測定時には高流速領域の測定時よりも電
極近傍の磁束密度を高めるようにしたものであ
る。 6 考案の実施例 本考案一実施例の電磁流量計を第3図に示す。
電磁流量計検出器21には、外筐21aの内部に
主励磁コイル2a,2a′が従来と同様に設けられ
ており、更に、この主励磁コイル2a,2a′より
コイルの頭部を1対の電極3aに近接して1対の
従励磁コイル22,22′が設けられている。電
磁流量計変換器26には、プリアンプ7の次にス
パン情報発信器付スパン設定器28を設けるとと
もに、このスパン設定器28からのスパン情報に
より低周波励磁電力発生器11からの励磁電力を
予め定められたパターンに従い主励磁コイル2
a,2a′および従励磁コイル22,22′に選択
接続する励磁コイル接続器25を設ける。5aお
よび5bはそれぞれ主励磁コイル2a,2a′およ
び従励磁コイル22,22′の励磁線である。そ
の他の各要素は第1図と同じである。 上記のように構成された本考案一実施例の電磁
流量計では、同期信号発信器10からの所定周波
数の同期信号により、低周波励磁電力発生器11
は所定周波数の方形波励磁電力を発生する。一
方、スパン情報発信器付スパン設定器28に測定
スパンを設定すると、このスパン情報が励磁コイ
ル接続器25に入力され、励磁コイル接続器25
は予め定められていたスパン情報即ち流速範囲に
対応したパターンに基き低周波励磁電力発生器1
1からの方形波励磁電力を主励磁コイル2a,2
a′および従励磁コイル22,22′に選択接続す
る。これらの励磁コイルにより発生された第1階
微分または第2階微分がゼロとなる磁束が流体に
印加され、信号起電力が1対の電極3aから取出
される。この信号起電力は励磁磁束とほぼ同一の
波形をなしており、プリアンプ7で信号増幅さ
れ、スパン情報発信器付スパン設定器28で予め
設定された測定スパンに切換えられて同期サンプ
ラ付変換器9に入力され、同期信号発信器10か
らの信号により第2図に示す部分Aがサンプリン
グされ、このサンプリング値が設定されたスパン
の流量信号に変換され電磁流量計の出力信号14
として出力される。 低流速領域、例えば流速が0〜0.3m/S,0
〜0.4m/S…0〜1m/Sの如き状態における
流体の流れは比較的尖頭が軸対称であるので、第
4図に示す1対の電極3aを含み測定管3の管軸
に直角な断面において、1対の電極3aを結ぶ直
線XX′を含み紙面に垂直な面および直線XX′に直
角な直線YY′を含み紙面に垂直な面のそれぞれに
対称な磁束であれば測定精度上問題がない(但
し、このような磁束分布で実流校正してあれ
ば)。そこで、励磁電流の小さい割に信号起電圧
の大きく発生する電極近傍部分の磁束を強めてや
れば、電極近傍部分の「重み関数」が大きいので
起電力が大きく発生する。また、低流速時には高
い周波数をもつた速い脈動も起りにくい。したが
つて、電極近傍部分の磁束密度を上げて信号起電
圧を大きくしても誤差がほとんど発生しない。上
述の如き低流速時の流れの性質をふまえて、低流
速時には従励磁コイル22,22′を励磁して電
極近傍部分の磁束密度を高めることにより起電力
を増し、しかも励磁電流は高流速時の励磁電流と
同程度にしても充分な信号起電圧が得られるよう
にして、励磁周波数は従来の市販製品より高くて
も磁束波形は充分立ち上るようにした。 一方、流速が大きい場合には、流体の流れの尖
頭も乱れ、速い脈動が発生しがちになつてくるの
で、主励磁コイル2a,2bのみを励磁してや
り、1対の電極3aを結ぶ直線(第4図の直線
XX′)の各点から測定管3の内壁に向つて遠ざか
るに従つて磁界の強さが増大する磁界分布に近い
いわゆる関数磁界に切り換えて「重み関数」の影
響を相殺するようにし、流速分布のばらつきによ
る測定誤差の発生を防ぐようにする。この場合、
電極近傍の磁界強さが最も弱くなるので、発生起
電力は減少するが、流速が大きいため発生起電圧
がその分大きく発生するので測定上問題ない。 よつて、本考案による電磁流量計では、流速の
大小に対応して下表の如き励磁パターンにより励
磁コイル接続器25が主励磁コイル2a,2a′お
よび従励磁コイル22,22′の選択接続を行な
う。
1. Technical Field of the Invention The present invention relates to an electromagnetic flowmeter, and relates to an improvement of an electromagnetic flowmeter that measures fluids with large variations in flow velocity. 2. Prior Art A conventional example of this type of electromagnetic flowmeter is shown in Fig. 1. A conventional low frequency excited electromagnetic flowmeter is composed of an electromagnetic flowmeter detector 1 and an electromagnetic flowmeter converter 6.
A pair of excitation coils 2a, 2a' to 1 receive excitation power from a low frequency excitation power generator 11 which is activated by a synchronization signal from a synchronization signal generator 10 which transmits a synchronization signal of a predetermined frequency within the converter 6. Counter electrode 3
A magnetic flux 13 is applied to the measuring tube 3 having a magnetic field a, and a signal electromotive force proportional to the flow rate of the fluid flowing inside the measuring tube 3 is extracted from the electrode 3a. In the figure, 1a is an outer casing, 3b is an insulating lining, 4 is a signal electromotive force line, 5a is an excitation line, and 12 is a power source. A typical waveform of low frequency excitation is a square wave, and the signal electromotive force from the detector 1 has almost the same waveform as the excitation magnetic flux.The signal is amplified by the preamplifier 7 and set in advance by the span setting device 8. The measurement span is switched to the measured span and inputted to the converter with synchronous sampler 9, and the signal from the synchronous signal generator 10 samples the part A of the signal waveform where the transient phenomenon disappears as shown in FIG. 2, and this sampling value is set. The output signal 1 of the electromagnetic flowmeter is converted into a span flow signal.
Output as 4. 3 Problems with the conventional technology Conventional low-frequency excitation electromagnetic flowmeters use first-order differentiation or second-order A magnetic flux whose differential is zero is used. The rising speed of magnetic flux tends to slow down as the diameter increases, so the excitation frequencies of currently commercially available electromagnetic flowmeters are 3.125, 6.25,
12.5Hz is the mainstream. Although it is possible to increase the frequency by changing the voltage and current that are the excitation conditions for the coil, and the magnitude of the winding resistance of the excitation coil, this will soon reach its limit, and the size of the electromagnetic flowmeter detector will increase. There was a problem in that the design of the excitation power supply became difficult. 4. Purpose of the invention The purpose of the invention is to provide an electromagnetic flowmeter that is approximately the same size as a conventional electromagnetic flowmeter detector and is capable of measuring the flow rate of a fluid containing rapid pulsations in the fluid being measured. With the goal. 5. Structure of the invention In addition to the main excitation coil, this invention arranges a sub-excitation coil with the coil head closer to the electrode than the main excitation coil, and the main excitation coil and the sub-excitation coil are arranged in accordance with the set measurement span. An excitation coil connector is provided to selectively connect the electrodes to a low-frequency excitation power generator, and the magnetic flux density near the electrodes is made higher when measuring low flow velocity regions than when measuring high flow velocity regions. 6 Embodiment of the invention An electromagnetic flowmeter according to an embodiment of the invention is shown in Fig. 3.
The electromagnetic flowmeter detector 21 is provided with main excitation coils 2a and 2a' inside an outer casing 21a as in the conventional case, and furthermore, a pair of coil heads are connected to the main excitation coils 2a and 2a'. A pair of sub-excitation coils 22 and 22' are provided adjacent to the electrode 3a. The electromagnetic flowmeter converter 26 is provided with a span setting device 28 with a span information transmitter next to the preamplifier 7, and the excitation power from the low frequency excitation power generator 11 is set in advance based on the span information from the span setting device 28. Main excitation coil 2 according to a prescribed pattern
An excitation coil connector 25 is provided to selectively connect to the sub-excitation coils 22, 22'. 5a and 5b are excitation lines of the main excitation coils 2a, 2a' and the sub-excitation coils 22, 22', respectively. Other elements are the same as in FIG. In the electromagnetic flowmeter of the embodiment of the present invention configured as described above, the synchronization signal of a predetermined frequency from the synchronization signal generator 10 causes the low frequency excitation power generator 11 to
generates square wave excitation power at a predetermined frequency. On the other hand, when the measurement span is set in the span setting device with span information transmitter 28, this span information is input to the excitation coil connector 25, and the span information is inputted to the excitation coil connector 25.
is a low frequency excitation power generator 1 based on predetermined span information, that is, a pattern corresponding to the flow velocity range.
1 to the main excitation coils 2a, 2.
a' and the slave excitation coils 22, 22'. A magnetic flux whose first-order differential or second-order differential is zero, generated by these excitation coils, is applied to the fluid, and a signal electromotive force is extracted from the pair of electrodes 3a. This signal electromotive force has almost the same waveform as the excitation magnetic flux, and is amplified by the preamplifier 7, switched to a preset measurement span by the span setting device 28 with a span information transmitter, and then transferred to the converter 9 with a synchronous sampler. The part A shown in FIG. 2 is sampled by the signal from the synchronous signal transmitter 10, and this sampling value is converted into a flow rate signal of a set span and output signal 14 of the electromagnetic flowmeter.
is output as Low flow velocity region, e.g. flow velocity of 0 to 0.3 m/S, 0
〜0.4m/S…0〜1m/S Since the fluid flow is relatively axially symmetrical at the tip, it includes a pair of electrodes 3a shown in FIG. In terms of measurement accuracy, if the magnetic flux is symmetrical in a plane that includes the straight line XX' connecting the pair of electrodes 3a and is perpendicular to the plane of the paper, and in a plane that includes the straight line YY' that is perpendicular to the line XX' and is perpendicular to the plane of the paper in the cross section, There is no problem (provided that the actual flow is calibrated using this kind of magnetic flux distribution). Therefore, if the magnetic flux near the electrodes where a large signal electromotive force is generated despite the small excitation current is strengthened, a large electromotive force will be generated because the "weighting function" near the electrodes is large. Also, when the flow velocity is low, rapid pulsations with high frequencies are less likely to occur. Therefore, even if the signal electromotive voltage is increased by increasing the magnetic flux density in the vicinity of the electrode, almost no error occurs. Based on the above-mentioned flow characteristics at low flow speeds, the electromotive force is increased by exciting the sub-excitation coils 22 and 22' to increase the magnetic flux density near the electrodes at low flow speeds, and the excitation current is lower at high flow speeds. A sufficient signal electromotive voltage can be obtained even if the excitation current is made to be about the same as that of the excitation current, and the magnetic flux waveform rises sufficiently even if the excitation frequency is higher than that of conventional commercially available products. On the other hand, when the flow velocity is high, the peak of the fluid flow is also disturbed and rapid pulsations tend to occur. Straight line in Figure 4
XX') is switched to a so-called functional magnetic field that is close to a magnetic field distribution in which the strength of the magnetic field increases as it moves away from each point toward the inner wall of the measuring tube 3 to cancel out the influence of the "weighting function", and the flow velocity distribution To prevent measurement errors due to variations in the in this case,
Since the magnetic field strength near the electrode is the weakest, the generated electromotive force is reduced, but since the flow velocity is high, the generated electromotive force is correspondingly large, so there is no problem in measurement. Therefore, in the electromagnetic flowmeter according to the present invention, the excitation coil connector 25 selectively connects the main excitation coils 2a, 2a' and the sub-excitation coils 22, 22' according to the excitation pattern shown in the table below depending on the magnitude of the flow velocity. Let's do it.

【表】 上記のようなパターンにより低流速領域と高流
速領域とで磁界分布を変えることによつて、従来
の低周波励磁電磁流量計の欠点である「流体中の
速い脈動を含む測定困難」を改善することができ
る。 7 考案の変形例 (a) 励磁コイルが2対をこえる複数対の場合も上
記の表に示したパターンに準じて選択接続を行
なうことにより同様な効果が得られる。 (b) 電極は複数対設けてもよい。この場合には、
各対の電極からの出力信号を平均化する平均化
回路を設ければよい。 8 考案の効果 本考案によれば、主励磁コイルの他に従励磁コ
イルを設け、被測定流体の流速に対応した測定ス
パンの切換に従つて励磁コイル接続器により主励
磁コイルおよび従励磁コイルの付勢を定められた
パターンで切換えるようにして、低流速領域では
電極近傍部分の磁束密度を高めて信号起電力を増
してやり、励磁電流を小さくしても測定に必要充
分な起電圧を得られるようにし、励磁周波数を従
来の市販品より高くしても磁束波形が十分立上る
ようにした。また高流速領域では関数分布磁界を
得るようにして、流体中の速い脈動や流速分布の
ばらつきによる測定誤差を防ぐようにした。この
ような磁界分布の切換を流速の大小に対応して行
なうようにしたことにより、電磁流量計の大きさ
を増大することなくして従来の低周波励磁電磁流
量計の欠点である「流体中の速い脈動を含む流体
の測定困難」を改善することができた。
[Table] By changing the magnetic field distribution between the low flow rate region and the high flow rate region using the pattern shown above, the disadvantage of conventional low frequency excitation electromagnetic flowmeters, ``difficulty in measurement including fast pulsations in the fluid,'' can be avoided. can be improved. 7. Modification of the invention (a) Even when there are more than two pairs of excitation coils, the same effect can be obtained by selectively connecting them according to the patterns shown in the table above. (b) Multiple pairs of electrodes may be provided. In this case,
An averaging circuit may be provided to average the output signals from each pair of electrodes. 8. Effects of the invention According to the invention, a sub-excitation coil is provided in addition to the main excitation coil, and the main excitation coil and the sub-excitation coil are connected by an excitation coil connector according to switching of the measurement span corresponding to the flow velocity of the fluid to be measured. By switching the energization in a predetermined pattern, the magnetic flux density near the electrode is increased in the low flow velocity region to increase the signal electromotive force, and even if the excitation current is reduced, sufficient electromotive force necessary for measurement can be obtained. This allows the magnetic flux waveform to rise sufficiently even if the excitation frequency is higher than that of conventional commercially available products. Furthermore, in the high flow velocity region, a functional distribution magnetic field is obtained to prevent measurement errors due to fast pulsations in the fluid and variations in flow velocity distribution. By switching the magnetic field distribution in accordance with the magnitude of the flow velocity, the disadvantage of conventional low-frequency excitation electromagnetic flowmeters, which is the problem of "magnetic We were able to improve the difficulty of measuring fluids containing rapid pulsation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は低周波励磁電磁流量計の従来例を示す
構成図、第2図は方形波励磁電磁流量計の信号起
電力の波形を示す波形図、第3図は本考案一実施
例の電磁流量計を示す構成図、第4図は1対の電
極を含み測定管の管軸に直角な断面を示す説明図
である。 3……測定管、3a……電極、3b……絶縁性
ライニング、4……信号起電力線、5a,5b…
…励磁線、7……プリアンプ、9……同期サンプ
ラ付変換器、10……同期信号発信器、11……
低周波励磁電力発生器、12……パワー電源、1
4……出力信号、2a,2a′……主励磁コイル、
21……電磁流量計検出器、21a……外筐、2
2,22′……従励磁コイル、25……励磁コイ
ル接続器、26……電磁流量計変換器、28……
スパン情報発信器付スパン設定器。
Fig. 1 is a configuration diagram showing a conventional example of a low frequency excitation electromagnetic flowmeter, Fig. 2 is a waveform diagram showing the signal electromotive force waveform of a square wave excitation electromagnetic flowmeter, and Fig. 3 is an electromagnetic flowmeter according to an embodiment of the present invention. FIG. 4 is a block diagram showing a flowmeter, and is an explanatory diagram showing a cross section perpendicular to the tube axis of a measuring tube including a pair of electrodes. 3...Measurement tube, 3a...Electrode, 3b...Insulating lining, 4...Signal electromotive force line, 5a, 5b...
... Excitation line, 7 ... Preamplifier, 9 ... Converter with synchronous sampler, 10 ... Synchronous signal generator, 11 ...
Low frequency excitation power generator, 12...Power power supply, 1
4... Output signal, 2a, 2a'... Main excitation coil,
21...Electromagnetic flowmeter detector, 21a...Outer casing, 2
2, 22'...Subexcitation coil, 25...Excitation coil connector, 26...Magnetic flow meter converter, 28...
Span setting device with span information transmitter.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 流体を通す測定管と、この測定管の管軸に直角
な方向をとつて測定管に対向配置された少なくと
も1対の電極と、この電極を結ぶ直線および流体
の流れの方向に直交する少なくとも1対の主励磁
コイルと、この主励磁コイルよりコイル頭部を前
記電極に近接して配置され電極を結ぶ直線および
流体の流れの方向に直交する少なくとも1対の従
励磁コイルと、これらを内装した外筐とを具えた
電磁流量計検出器と、設定された測定スパンに対
応したスパン情報を発信するスパン情報発信器付
スパン設定器と、所定周波数の同期信号を発信す
る同期信号発信器と、この同期信号発信器からの
同期信号により信号起電力をサンプリングし前記
スパン設定器からのスパン情報に対応したスパン
の流量信号を出力する同期サンプラ付変換器と、
前記同期信号発信器からの同期信号の周波数で励
磁電力を発生する低周波励磁電力発生器と、この
低周波励磁電力発生器からの励磁電力を前記スパ
ン情報発信器付スパン設定器からのスパン情報に
より定められたパターンで前記主励磁コイルおよ
び従励磁コイルに選択接続する励磁コイル接続器
とを具えた電磁流量計変換器とを具備してなる電
磁流量計。
A measuring tube through which a fluid passes, at least one pair of electrodes arranged opposite to the measuring tube in a direction perpendicular to the tube axis of the measuring tube, and at least one pair of electrodes that are perpendicular to the straight line connecting the electrodes and the direction of fluid flow. A pair of main excitation coils, at least one pair of sub-excitation coils whose coil heads are disposed closer to the electrodes than the main excitation coils and which are perpendicular to the straight line connecting the electrodes and the direction of fluid flow; an electromagnetic flowmeter detector comprising an outer casing, a span setting device with a span information transmitter that transmits span information corresponding to a set measurement span, and a synchronization signal transmitter that transmits a synchronization signal of a predetermined frequency; a converter with a synchronous sampler that samples a signal electromotive force using a synchronous signal from the synchronous signal generator and outputs a span flow rate signal corresponding to span information from the span setting device;
A low-frequency excitation power generator generates excitation power at the frequency of the synchronization signal from the synchronization signal generator, and the excitation power from the low-frequency excitation power generator is used to generate span information from the span setting device with span information transmitter. an electromagnetic flowmeter converter comprising an excitation coil connector selectively connected to the main excitation coil and the sub-excitation coil in a pattern determined by the method.
JP16487381U 1981-11-06 1981-11-06 electromagnetic flow meter Granted JPS5871114U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16487381U JPS5871114U (en) 1981-11-06 1981-11-06 electromagnetic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16487381U JPS5871114U (en) 1981-11-06 1981-11-06 electromagnetic flow meter

Publications (2)

Publication Number Publication Date
JPS5871114U JPS5871114U (en) 1983-05-14
JPS6139931Y2 true JPS6139931Y2 (en) 1986-11-15

Family

ID=29957096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16487381U Granted JPS5871114U (en) 1981-11-06 1981-11-06 electromagnetic flow meter

Country Status (1)

Country Link
JP (1) JPS5871114U (en)

Also Published As

Publication number Publication date
JPS5871114U (en) 1983-05-14

Similar Documents

Publication Publication Date Title
US5090250A (en) Electromagnetic flowmeter utilizing magnetic fields of a plurality of frequencies
US5935077A (en) Noninvasive blood flow sensor using magnetic field parallel to skin
US4290312A (en) Signal generator for electromagnetic flowmeter
US4357835A (en) Electromagnetic flowmeter in shielded lines
CN109470322A (en) A kind of coriolis mass flow sensor
JPS6139931Y2 (en)
CN111024167A (en) Electromagnetic flow measuring device
US3433066A (en) Magnetic flowmeter apparatus
CN110609163A (en) Non-invasive current and voltage metering device
CN211117871U (en) Flow measurement control integration electric valve
CN208282877U (en) A kind of steel-making feedwater flow measuring device
JP2001241983A (en) Electromagnetic flowmeter
JP2000028408A (en) Electromagnetic flow meter
JP4004878B2 (en) Electromagnetic flow meter
CN114280350B (en) High-precision current sensor and shunt-based high-current measurement method
JPS5863810A (en) Electromagnetic flowmeter
SU1315908A2 (en) Method of dynamic calibration of hot-wire anemometer
SU1185090A1 (en) Method and apparatus for measuring the consumption of electroconductive media
EP3759441B1 (en) An electromagnetic flowmeter
SU608054A1 (en) Touchless method of measuring electroconductive medium rate-of-flow
SU1007015A1 (en) Flow parameter electromagnetic converter
SU901825A1 (en) Device for touch-free measuring of flowrateof electroconductive liquid
JPH0441296Y2 (en)
SU556910A1 (en) Electromagnetic sensor to monitor the weld joint
JPS6011168A (en) Eddy current-type current meter