JPS63212830A - Setting of emissivity of radiation thermometer for continuous heat treating furnace - Google Patents

Setting of emissivity of radiation thermometer for continuous heat treating furnace

Info

Publication number
JPS63212830A
JPS63212830A JP4527087A JP4527087A JPS63212830A JP S63212830 A JPS63212830 A JP S63212830A JP 4527087 A JP4527087 A JP 4527087A JP 4527087 A JP4527087 A JP 4527087A JP S63212830 A JPS63212830 A JP S63212830A
Authority
JP
Japan
Prior art keywords
temperature
radiation thermometer
emissivity
metal strip
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4527087A
Other languages
Japanese (ja)
Inventor
Katsuhiko Doi
土肥 克彦
Yasuhiko Masuno
増野 豈彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4527087A priority Critical patent/JPS63212830A/en
Publication of JPS63212830A publication Critical patent/JPS63212830A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve temperature measuring accuracy by dynamically setting the emissivity of a radiation thermometer in accordance with change in an operating condition with the overall heat transfer coefficient of a heat treating furnace obtained from a specific condition by using the temperature of a metal strip measured by the radiation thermometer as a reference. CONSTITUTION:The overall heat transfer coefficient phiCG of a furnace is obtained from a relationship represented by the accompanying expression I by using the temperature TSM of a metal strip 5 indicated by a radiation thermometer 6. When the overall heat transfer coefficient phiCG is equal to an empirically or experimentally determined one, an emissivity epsilon1 set in advance is correct and the temperature TSM of the metal strip 5 represents a correct value. The temperature TS1 of the metal strip 5 is calculated by using the set atmospheric temperature TGO and the overall heat transfer coefficient phiCG of the furnace and an LSD. At this time, the emissivity of the radiation thermometer is changed from epsilon1 to epsilon2 so that the temperature TS1 is made equal to the temperature TSM of the metal strip measured by the radiation thermometer. Thus, temperature measuring accuracy can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属ストリップの連続熱処理炉等で使用する放
射温度計の°測定精度の向上が実現できる連続熱処理炉
における放射温度計の放射率の設定方法に関するもので
ある。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a method for improving the emissivity of a radiation thermometer in a continuous heat treatment furnace, which can improve the degree measurement accuracy of the radiation thermometer used in a continuous heat treatment furnace for metal strips. This is related to the setting method.

(従来の技術) 金属ストリップの連続焼鈍炉等においては所定の材料特
性を得るために熱処理を施すが、この場合金属ス) I
Jツブの温度を正確に把握する必要があり、そのための
手段としては一般に放射温度計が用いられている。放射
温度計は具体的に下記の関係により金属ストリップの温
度が出力される。
(Prior art) In a continuous annealing furnace for metal strips, heat treatment is performed to obtain predetermined material properties.
It is necessary to accurately determine the temperature of the J tube, and a radiation thermometer is generally used as a means for this purpose. Specifically, the radiation thermometer outputs the temperature of the metal strip according to the following relationship.

直λ、S)=εL(λ・T)      ・・・(1)
ここでλ:放射温度計の測定波長、S:金属ストリップ
の輝度温度、L:分光放射輝度、ε:金属ストリップの
設定放射率、T:放射温度計による金属ストリップの指
示温度。
Direct λ, S) = εL(λ・T) ... (1)
Here, λ: measurement wavelength of the radiation thermometer, S: brightness temperature of the metal strip, L: spectral radiance, ε: set emissivity of the metal strip, T: indicated temperature of the metal strip by the radiation thermometer.

すなわち、放射温度計によって金属ストリップの温度を
測定すると、(1)の関係を満足する演算がなされ、上
記のTがストリップ温度として指示される仕組になって
いた。
That is, when the temperature of the metal strip is measured with a radiation thermometer, a calculation is performed that satisfies the relationship (1), and the above T is designated as the strip temperature.

(発明が解決しようとする問題点) ところで従来より使用されている放射温度計は金属スト
リップの設定放射率εを経験的に、もしくは実験等によ
って予め設定しておく必要があるが、この放射率εは測
定すべきストリップの温度によってその値が異なる。こ
のため、作業条件において変動があった場合には初期に
設定した放射率εでは温度が正確に測定できない不利が
あった。
(Problem to be solved by the invention) By the way, in conventionally used radiation thermometers, it is necessary to set the set emissivity ε of the metal strip empirically or through experiments. The value of ε varies depending on the temperature of the strip to be measured. Therefore, if there is a change in the working conditions, there is a disadvantage that the temperature cannot be accurately measured using the initially set emissivity ε.

本発明の目的は放射温度計によって金属ストリップの温
度を測定する際、放射温度計の放射率を作業条件の変動
に応じて動的に設定し、精度のよい測温か実現できる方
法を提案するところにある。
The purpose of the present invention is to propose a method that dynamically sets the emissivity of the radiation thermometer according to changes in working conditions when measuring the temperature of a metal strip with a radiation thermometer, thereby achieving highly accurate temperature measurement. It is in.

(問題点を解決するための手段) 本発明は、連続熱処理炉に取付けた放射温度計により通
板金属ストリップの温度を測定するに当り、放射温度計
で測定した金属ストリップの温度を用いて下記に示す関
係から熱処理炉の総括熱伝達係数(φCG)を求め、こ
の総括熱伝達係数(φcc)を基準にして正確な温度が
測定できる範囲内に放射温度計の放射率を動的に設定す
ることを特徴とする連続熱処理炉における放射温度計の
放射率の設定方法である。
(Means for Solving the Problems) The present invention provides the following method for measuring the temperature of a threaded metal strip using a radiation thermometer installed in a continuous heat treatment furnace, using the temperature of the metal strip measured by the radiation thermometer. Find the overall heat transfer coefficient (φCG) of the heat treatment furnace from the relationship shown in , and dynamically set the emissivity of the radiation thermometer within a range that allows accurate temperature measurement based on this overall heat transfer coefficient (φcc). This is a method for setting the emissivity of a radiation thermometer in a continuous heat treatment furnace.

Ta = f(TSM、φca、  LSD)T、:炉
の雰囲気温度(C) TsH:金属ストリップの温度(℃)φcG:炉の総括
熱伝達係数(kca j! /hmz″C)LSD j
熱処理負荷(ライン速度m/win X板厚mm)(作
 用) 以下放射温度計の放射率の設定要領を第1図に示すフロ
ーチャートに基づいて詳細に説明する。
Ta = f (TSM, φca, LSD) T,: Furnace ambient temperature (C) TsH: Metal strip temperature (℃) φcG: Furnace overall heat transfer coefficient (kca j!/hmz″C) LSD j
Heat treatment load (line speed m/win x plate thickness mm) (Function) The procedure for setting the emissivity of the radiation thermometer will be explained in detail below based on the flowchart shown in FIG.

炉の雰囲気温度TG (”c) 、金属ス) IJツブ
の温度T* (”C) 、炉の総括熱伝達係数φc6お
よび熱処理負荷LSD (=ライン速度n+/ain 
X板厚鴫)との間には次の関係がある。
Furnace ambient temperature TG ("c), metal) IJ tube temperature T* ("C), furnace overall heat transfer coefficient φc6 and heat treatment load LSD (=line speed n+/ain
There is the following relationship between

Ts = f (Ts、  φcelLSD)    
  ・・・(2)ここで上記の総括熱伝達係数φCGは
経験的にあるいは実験によって決定され、一定の値をと
り、LSDは生産計画、設備能力等により決定する。
Ts = f (Ts, φcelLSD)
...(2) Here, the above-mentioned overall heat transfer coefficient φCG is determined empirically or by experiment, and takes a constant value, and LSD is determined based on the production plan, equipment capacity, etc.

合金属ストリップの加熱目標温度をT、。とすると炉の
設定雰囲気温度TG。は(2)の関係より算出すること
ができる。
The target temperature for heating the alloy strip is T. Then, the set atmosphere temperature of the furnace is TG. can be calculated from the relationship (2).

次にこの条件で金属ストリップに熱処理を施し、このと
きの放射温度計にて示された金属ストリップの温度はT
□(”C)であったとする、この場合放射温度計の放射
率はC1に設定しである。
Next, heat treatment was applied to the metal strip under these conditions, and the temperature of the metal strip indicated by the radiation thermometer at this time was T.
□ ("C). In this case, the emissivity of the radiation thermometer is set to C1.

次に上記金属ストリップの温客T、を用いて(2)の関
係より炉の総括熱伝達係数φCGNを求める。
Next, the overall heat transfer coefficient φCGN of the furnace is determined from the relationship (2) using the temperature coefficient T of the metal strip.

ここで得られた総括熱伝達係数φC11Mが前記の総括
熱伝達係数φ、Gと比較して等しければ予め設定した放
射率1は正しく、また放射温度計にて示された金属スト
リップの温度tsxは正しい値であることを意味してい
る。実際にはストリップの許容温度を考慮して下記の判
定を行う。
If the overall heat transfer coefficient φC11M obtained here is equal to the above-mentioned overall heat transfer coefficient φ, G, the preset emissivity 1 is correct, and the temperature tsx of the metal strip indicated by the radiation thermometer is This means that it is a correct value. In reality, the following determination is made taking into consideration the allowable temperature of the strip.

−α≦φ。−φC0≦α       ・・・(3)次
に算出された総括熱伝達係数φCGMが(3)を満足し
ていない場合には放射率ε、は正しくないとして以下の
手順で放射率の設定変更を行う。
−α≦φ. -φC0≦α ...(3) Next, if the calculated overall heat transfer coefficient φCGM does not satisfy (3), consider that the emissivity ε is incorrect and change the emissivity setting using the following procedure. conduct.

まず(2)に示す関係から炉の設定雰囲気温度Ta。、
総括熱伝達係数φ、aおよびLSDを用いて金属ストリ
ップの温度rs+を算出する。この場合金属ストリップ
の温度rstと放射温度計により測定した金属ストリッ
プの温度T、工との間には当然のことながら差が生じる
。そこで金属ストリップの温度TINがrstに等しく
なるように放射温度計の放射率をε、からεfに変更す
る。
First, the set atmosphere temperature Ta of the furnace is determined from the relationship shown in (2). ,
Calculate the temperature rs+ of the metal strip using the overall heat transfer coefficient φ, a and LSD. In this case, there naturally arises a difference between the temperature rst of the metal strip and the temperature T of the metal strip measured by the radiation thermometer. Therefore, the emissivity of the radiation thermometer is changed from ε to εf so that the temperature TIN of the metal strip becomes equal to rst.

ウィーンの式によれば ここでC1”5.9548X10−”14・l112C
z −0,014388m−k (1)、 (4)および(5)より (6)式に上記の各値を代入し 上記の式(7)、 (8)より放射率ε2を求める。
According to the Vienna equation, here C1"5.9548X10-"14・l112C
z -0,014388m-k Substitute the above values into equation (6) from (1), (4) and (5), and calculate emissivity ε2 from equations (7) and (8) above.

ここで金属ストリップの温度と放射率の関係は例えば第
2図に示すように実験によって予めわかるのでこれを基
準放射率ε。、とし、金属ストリ・ノブの温度Tff+
における基準放射率ε。1をグラフ等により求め、得ら
れたε2が正しいか否かを下記の如き要領で判定する。
Here, the relationship between the temperature and emissivity of the metal strip can be known in advance through experiments, for example, as shown in FIG. 2, so this is taken as the reference emissivity ε. , and the temperature of the metal strip knob Tff+
Reference emissivity ε at . 1 using a graph or the like, and whether or not the obtained ε2 is correct is determined in the following manner.

一β≦ε2−ε。1≦β         ・・・(9
)そして放射率ε2が(9)を満足すれば放射温度計の
放射率ε1をε2へと変更する。
1β≦ε2−ε. 1≦β...(9
) If the emissivity ε2 satisfies (9), the emissivity ε1 of the radiation thermometer is changed to ε2.

放射率ε2が(9)の許容範囲を外れた場合には前述し
た金属ストリップの温度Titが異常であるものと判定
し、この場合には総括熱伝達係数φCGの値が適切でな
いものとしてφ。、の値をφcalに修正する。
If the emissivity ε2 is outside the allowable range of (9), it is determined that the temperature Tit of the metal strip described above is abnormal, and in this case, the value of the overall heat transfer coefficient φCG is determined to be inappropriate and φ is determined. , is corrected to φcal.

φ、Gの修正に当たつては(3)において定められた許
容範囲内で増減する。すなわち 一α≦φ。、−φCGI ≦α       ・・・0
0)得られた放射率ε2が(9)において下方に外れた
場合には0■におけるφc6を小さくする方向で、また
上方に外れた場合にはOmにおけるφ、Gを大きくする
方向で修正する。
When modifying φ and G, increase or decrease within the allowable range determined in (3). That is, one α≦φ. , -φCGI ≦α ...0
0) If the obtained emissivity ε2 deviates downward in (9), correct it in the direction of decreasing φc6 at 0■, and if it deviates upward, correct it in the direction of increasing φ and G in Om. .

φCG+ −φcG−1ニア!llφ        
 ・・・θDそしてこのφcc+を用いて再度金属スト
リップの温度TS1、放射率e2を算出し放射率ε2が
(9)を満足する値となるまで上記の如き要領で計算を
繰返す。
φCG+ -φcG-1 Near! llφ
... θD and this φcc+ are used to calculate the temperature TS1 and emissivity e2 of the metal strip again, and the calculations are repeated in the manner described above until the emissivity ε2 reaches a value that satisfies (9).

以上のように本発明では熱処理炉の総括熱伝達係数φ、
Gを基準にして放射温度計の放射率を設定するので金属
ストリップの板温を正確に測定できるのである。
As described above, in the present invention, the overall heat transfer coefficient φ of the heat treatment furnace,
Since the emissivity of the radiation thermometer is set based on G, the temperature of the metal strip can be measured accurately.

(実施例) 実施例−1 第3図に示す熱処理炉を用いて厚さ0.211Im、幅
890胴のブリキ原板にライン速度650m/min、
目標板温660 ”Cの条件下で連続焼鈍処理を施し、
その状態から目標板温T、、=f34o℃に変更してそ
のときの放射温度計の放射率を本発明に従って設定した
(Example) Example-1 Using the heat treatment furnace shown in Fig. 3, a tin plate with a thickness of 0.211 Im and a width of 890 mm was treated at a line speed of 650 m/min.
Continuous annealing treatment is performed under the target plate temperature of 660"C,
From that state, the target plate temperature was changed to T, .=f34° C., and the emissivity of the radiation thermometer at that time was set according to the present invention.

この実施例で使用した熱処理炉では 総括熱伝達係数φcG−0,32であることがわかって
おり、また放射温度計の放射率ε、は0.33に設定し
である。
It is known that the heat treatment furnace used in this example has an overall heat transfer coefficient φcG-0.32, and the emissivity ε of the radiation thermometer is set to 0.33.

まず目標板温T、。−640℃を上記02)式に代入し
て炉の設定雰囲気温度TGOを求めたところT6゜−7
59℃であった。
First, target plate temperature T. By substituting -640°C into the above equation 02), the set atmosphere temperature TGO of the furnace was found, and it was T6°-7.
The temperature was 59°C.

次に熱処理炉の雰囲気温度を759 ’Cに変更してか
ら放射温度計によってブリキ原板の温度を測定した。そ
のときの指示温度T!Mは654℃であった。
Next, the ambient temperature of the heat treatment furnace was changed to 759'C, and then the temperature of the tin plate original was measured using a radiation thermometer. The indicated temperature at that time is T! M was 654°C.

次にT□−654℃とT、。−759℃およびLSD 
=130 m/win−rrtmを(121式に代入し
て炉の総括熱伝達係数φcGM−0,347を得た。
Next, T□-654℃ and T. -759℃ and LSD
= 130 m/win-rrtm was substituted into equation (121) to obtain the overall heat transfer coefficient of the furnace φcGM-0,347.

ここで総括熱伝達係数φCGMが下記の許容範囲に納ま
るか否か調べた結果、その値は許容範囲から大きく外れ
ているのがわかり放射温度計の放射率ε、が適当でない
ことが判明した。
Here, as a result of checking whether the overall heat transfer coefficient φCGM falls within the following tolerance range, it was found that the value was significantly outside the tolerance range, and it was found that the emissivity ε of the radiation thermometer was not appropriate.

−0,02≦φ、G−φ、。≦0.02      ・
・・θ■そこでTG、=759℃5LSD =130 
m/+in−mm、およびφce=0.32を0り式に
代入してブリキ原板の温度T3.を求めたところTs+
””639℃を得た。
−0,02≦φ, G−φ,. ≦0.02 ・
...θ■ Then TG, = 759℃5LSD = 130
By substituting m/+in-mm and φce=0.32 into the equation, the temperature of the tinplate original plate T3. When I calculated Ts+
""639°C was obtained.

次に(7)、 (8)式により ここでλ−0,9μ論 とし、輝度温度Sを消去して6g ”’0.44を得た
Next, using equations (7) and (8), the λ-0.9μ theory was used, and the brightness temperature S was eliminated to obtain 6g''0.44.

板温Ts+”639℃における基準放射率ε。1を第2
図より求めたところε。、−0,、i5であり放射率ε
2は下記の範囲に収まることが確かめられた。
Standard emissivity ε at plate temperature Ts+”639°C.
As determined from the figure, ε. , −0,, i5 and the emissivity ε
2 was confirmed to fall within the following range.

−0,04ea t z  t as ≦0.04  
     ”06)そこで放射温度計の放射率をεI 
−0,33から82−0.44に設定変更して測温した
結果放射温度計による指示温度は639℃となった。
−0,04ea t z t as ≦0.04
”06) Therefore, the emissivity of the radiation thermometer is εI
As a result of changing the setting from -0.33 to 82-0.44 and measuring the temperature, the temperature indicated by the radiation thermometer was 639°C.

実施例−2 実施例−1と同様に厚さ0.2鴎、幅885髄のブリキ
原板にライン速度650m/sin、目標板温660℃
総括熱伝達係数φ。。−0,32、熱処理負荷LSD 
=130m/min・鵬の条件で連続焼鈍処理を施し、
この状態から目標板温↑、。−640℃に変更し、その
ときの放射温度計の放射率を本発明に従って設定した。
Example-2 Similar to Example-1, a tin plate with a thickness of 0.2 mm and a width of 885 mm was lined at a line speed of 650 m/sin and a target plate temperature of 660°C.
Overall heat transfer coefficient φ. . -0,32, heat treatment load LSD
Continuous annealing treatment was performed under the conditions of = 130 m/min.
From this state, the target plate temperature is ↑. The temperature was changed to -640°C, and the emissivity of the radiation thermometer at that time was set according to the present invention.

まず目標板温T、。−640℃を02)に代入して炉の
設定雰囲気温度T、。を求めたところT、。=759℃
であった。− 次に炉の雰囲気温度TGOを759℃に保った状態で放
射温度計によりブリキ原板の温度を測定したそのときの
指示温度Tss−663℃であった。
First, target plate temperature T. By substituting -640°C into 02), the set atmosphere temperature T of the furnace is obtained. When I asked for it, I got T. =759℃
Met. - Next, the temperature of the original tin plate was measured with a radiation thermometer while keeping the furnace atmosphere temperature TGO at 759°C, and the indicated temperature at that time was Tss - 663°C.

次にTS、−663℃、T、、=759℃およびLSD
 =130 m+/n+in−mmを021式に代入し
て炉の総括熱伝達係数φcas−0,359を得た。
Then TS, -663℃, T, , = 759℃ and LSD
=130 m+/n+in-mm was substituted into equation 021 to obtain the overall heat transfer coefficient φcas-0,359 of the furnace.

上記の総括熱伝達係数φc1が0■の範囲にあるか否か
調べた結果その範囲からはずれており、そこで放射率ε
、を異常と判定し、前述した要領で放射率ε、を求めた
As a result of investigating whether the above overall heat transfer coefficient φc1 is within the range of 0■, it is found to be outside that range, and the emissivity ε
, was determined to be abnormal, and the emissivity ε was determined as described above.

(7)、 (8)式により 上記(l〕、θ0式よりε! =0.51を得た。According to equations (7) and (8), From the above equation (l) and θ0, ε!=0.51 was obtained.

この放射率ε2はブリキ原板の温度Ts+=640℃に
おけるε。、=0.44と比較するとθωにおいて許容
範囲外になるので、ブリキ原板の温度rs+が異常であ
ると判定した。
This emissivity ε2 is ε at the temperature of the original tin plate Ts+=640°C. , = 0.44, θω is out of the allowable range, so it was determined that the temperature rs+ of the tinplate original plate was abnormal.

そこで総括熱伝達係数φc6を0.32から0.33に
変更しこの総括熱伝達係数φcsを用いて再度金属スト
リップの温度TRIおよび放射率1.を算出した。
Therefore, the overall heat transfer coefficient φc6 was changed from 0.32 to 0.33, and using this overall heat transfer coefficient φcs, the temperature TRI and the emissivity of the metal strip were changed to 1. was calculated.

このときの放射率ε2は(7)、 (8)式よりε、 
−0,46を得た。この放射率ε2はT□−645℃に
おけるε。I−0,47とからOeにおいて許容範囲に
収まることが確かめられたのでφcc”0.33、ε露
=0.46に設定してブリキ原板の測温を続行した。そ
の結果放射温度計による指示温度は645℃であり、そ
の精度は±3℃以内であった。
The emissivity ε2 at this time is ε from equations (7) and (8),
-0.46 was obtained. This emissivity ε2 is ε at T□-645°C. Since it was confirmed that Oe was within the allowable range from I-0, 47, I set φcc"0.33 and ε dew=0.46 and continued measuring the temperature of the tin plate. As a result, the temperature was measured using a radiation thermometer. The indicated temperature was 645°C, and its accuracy was within ±3°C.

(発明の効果) 本発明によれば放射温度計の放射率を正確に設定するこ
とができるので板温測定における精度の向上を図ること
が可能となり製品の品質保証に大きく寄与し、その効果
は極めて大きい。
(Effects of the Invention) According to the present invention, since the emissivity of the radiation thermometer can be set accurately, it is possible to improve the accuracy in plate temperature measurement, which greatly contributes to product quality assurance. Extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は放射率の設定要領の説明図、 第2図は放射率ε。1と鋼板温度の関係を示すグ・ ラ
フ、 第3図は実施例における熱処理炉の模式図である。
Figure 1 is an explanatory diagram of how to set the emissivity, and Figure 2 is the emissivity ε. Figure 3 is a graph showing the relationship between 1 and the steel sheet temperature, and is a schematic diagram of the heat treatment furnace in the example.

Claims (1)

【特許請求の範囲】 1、連続熱処理炉に取付けた放射温度計により通板金属
ストリップの温度を測定するに当り、放射温度計で測定
した金属ストリップの温度を用いて下記に示す関係から
熱処理炉の総括熱伝達係数(φ_C_G)を求め、この
総括熱伝達係数(φ_C_G)を基準にして正確な温度
が測定できる範囲内に放射温度計の放射率を動的に設定
することを特徴とする連続熱処理炉における放射温度計
の放射率の設定方法。 T_G=f(T_S_M、φ_C_G、LSD) T_G:炉の雰囲気温度(℃) T_S_M:金属ストリップの温度(℃) φ_C_G:炉の総括熱伝達係数(kcal/hm^2
℃)
[Claims] 1. When measuring the temperature of a passed metal strip with a radiation thermometer attached to a continuous heat treatment furnace, the temperature of the metal strip measured with the radiation thermometer is used to determine the temperature of the heat treatment furnace from the following relationship. A continuous method characterized by determining the overall heat transfer coefficient (φ_C_G) of How to set the emissivity of a radiation thermometer in a heat treatment furnace. T_G=f(T_S_M, φ_C_G, LSD) T_G: Furnace ambient temperature (℃) T_S_M: Metal strip temperature (℃) φ_C_G: Overall heat transfer coefficient of furnace (kcal/hm^2
℃)
JP4527087A 1987-03-02 1987-03-02 Setting of emissivity of radiation thermometer for continuous heat treating furnace Pending JPS63212830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4527087A JPS63212830A (en) 1987-03-02 1987-03-02 Setting of emissivity of radiation thermometer for continuous heat treating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4527087A JPS63212830A (en) 1987-03-02 1987-03-02 Setting of emissivity of radiation thermometer for continuous heat treating furnace

Publications (1)

Publication Number Publication Date
JPS63212830A true JPS63212830A (en) 1988-09-05

Family

ID=12714619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4527087A Pending JPS63212830A (en) 1987-03-02 1987-03-02 Setting of emissivity of radiation thermometer for continuous heat treating furnace

Country Status (1)

Country Link
JP (1) JPS63212830A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515124B1 (en) * 1999-12-14 2005-09-16 일본국 통상산업성 공업기술원 Epitaxial compound structure and device comprising same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515124B1 (en) * 1999-12-14 2005-09-16 일본국 통상산업성 공업기술원 Epitaxial compound structure and device comprising same

Similar Documents

Publication Publication Date Title
KR940010643B1 (en) Mehtod of and apparatus for controlling temperature in the processing of a substrate
US5618461A (en) Reflectance method for accurate process calibration in semiconductor wafer heat treatment
JPS63212830A (en) Setting of emissivity of radiation thermometer for continuous heat treating furnace
CN104722584B (en) Apparatus and method for controlling the width of multi-stand rolling mill
TW201938804A (en) Steel sheet heating method in continuous annealing and continuous annealing facility
Herrejón-Escutia et al. Compensation of the Temperature Measurement Signal in an Experimental Dilatometer by Joule Heating and Controlled Atmosphere
KR100660214B1 (en) An on-line calibration method of infrared thermometry
US11591250B2 (en) Furnace for relieving stress from glass products
JP3380330B2 (en) Sheet temperature control method for continuous annealing furnace
WO2022163214A1 (en) Heater control device
JPH07179952A (en) Method for controlling heat treatment of material, device for controlling heat treatment and instrument for measuring heat treatment history
JPH03221821A (en) Method for controlling temperature of surface of object
JPH02207909A (en) Method for online measuring shape of hot rolled material
JPS63293123A (en) Method for controlling continuous heating of material to be heated and equipment therefor
JPH04168232A (en) Method for controlling temperature of steel strip
JP2004109023A (en) Method and apparatus for measuring surface temperature of steel product
Chen et al. Design of Temperature Control System Based on Vacuum Furnace
JPS62238328A (en) Equipment for controlling heating
JPS62174325A (en) Method for controlling temperature of heating furnace
JPH0230650B2 (en) HOSHAONDOKEINYORURONAIKOHANONDOSOKUTEIHOHO
JPH06317476A (en) Temperature measuring apparatus
JPH0217609B2 (en)
JPS61173123A (en) Correcting method of emissivity of radiation thermometer
JPH09143575A (en) Continuous annealing method for stainless steel strip
JPH04193913A (en) Method for controlling heating in continuous heating furnace