JPS61173123A - Correcting method of emissivity of radiation thermometer - Google Patents

Correcting method of emissivity of radiation thermometer

Info

Publication number
JPS61173123A
JPS61173123A JP60013493A JP1349385A JPS61173123A JP S61173123 A JPS61173123 A JP S61173123A JP 60013493 A JP60013493 A JP 60013493A JP 1349385 A JP1349385 A JP 1349385A JP S61173123 A JPS61173123 A JP S61173123A
Authority
JP
Japan
Prior art keywords
temp
steel plate
temperature
emissivity
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60013493A
Other languages
Japanese (ja)
Other versions
JPH0656327B2 (en
Inventor
Keizo Goto
桂三 後藤
Akiyoshi Honda
昭芳 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP60013493A priority Critical patent/JPH0656327B2/en
Publication of JPS61173123A publication Critical patent/JPS61173123A/en
Publication of JPH0656327B2 publication Critical patent/JPH0656327B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • G01J5/802Calibration by correcting for emissivity

Abstract

PURPOSE:To correct exactly the emissivity of a radiation thermometer by obtaining an emissivity correction value from the temp. at the transformation point of a measuring object and the temp. when the change of the temp. rising speed of the measuring object slows down and using the same as the correction set value of the measuring temp. CONSTITUTION:The temp. at the transformation point where the crystal structure of a steel plate 17 or the like changes is first known from the components of said steel plate and is determined as the true temp. of the steel plate 17 in the stage of measuring the temp. in a furnace such as continuous annealing furnace for the steel plate 17, etc. by using the radiation thermometer. The steel plate 17 is gradually heated and the temp. thereof is measured by a temp. sensor 32. The emissivity correction value is determined in an emissivity correction circuit 34 from the temp. when the change of the temp. rising speed thereof slows down and the temp. at the transformation point which is the true value. The value is then outputted from a correction setting part 31 and the true temp. is obtd. as the correction value of the measuring temp. The exact measurement is thus made possible by making use of the actual operating conditions in the actual furnace without requiring special apparatus.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、放射温度計の放射率補正方法の改良に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in an emissivity correction method for a radiation thermometer.

〔発明の技術的背景〕[Technical background of the invention]

一般に、鋼板の連続焼鈍炉では、炉内の温度を測定する
ために放射温度計が用いられている。この放射濃度計に
より正しい鋼板温度を測定するには、鋼板の放射率を正
確に測定し、これに基づいて放射率補正値を設定し、放
射温度計によって測定された温度に放射率補正値を補正
することにより真値の温度を得る必要がある。
Generally, in a continuous annealing furnace for steel sheets, a radiation thermometer is used to measure the temperature inside the furnace. To measure the correct steel plate temperature using this radiodensitometer, accurately measure the emissivity of the steel plate, set an emissivity correction value based on this, and then apply the emissivity correction value to the temperature measured by the radiation thermometer. It is necessary to obtain the true value of temperature by correcting it.

そこで、従来、鋼板の放射率を求める手段として、鋼板
の真の温度を放射温度計以外の例えば接触式温度計にて
測定し、それと同時に放射温度計でも測定を行なって、
放射温度計の測定値が真の濃度と同じ温度になる様な放
射率補正値を算出するといった手段がとられている。
Therefore, conventionally, as a means of determining the emissivity of a steel plate, the true temperature of the steel plate is measured with a contact thermometer other than a radiation thermometer, and at the same time, a radiation thermometer is also used to measure the true temperature of the steel plate.
Measures are taken to calculate an emissivity correction value such that the measured value of the radiation thermometer becomes the same temperature as the true concentration.

しかし、鋼板の放射率は鋼板表面の酸化状態や放射温度
計の使用波長帯域によって影響を受けるため、炉の条件
が違ったり、また使用する放射温度計の種類が異なった
りすると、放射率もまた異なってしまう。このため、正
しい放射率補正値を求める場合には、実験設備にてその
炉の条件を実現して鋼板の放射率補正値を求めるか、あ
るいは実炉にて鋼板の放射率補正値を求めなければなら
ない。
However, the emissivity of a steel plate is affected by the oxidation state of the steel plate surface and the wavelength band used by the radiation thermometer, so if the furnace conditions differ or the type of radiation thermometer used differs, the emissivity will also change. It will be different. Therefore, in order to obtain the correct emissivity correction value, it is necessary to obtain the emissivity correction value of the steel plate by realizing the conditions of the furnace using experimental equipment, or to obtain the emissivity correction value of the steel plate in an actual furnace. Must be.

〔背景技術の問題点〕[Problems with background technology]

しかし、前者のような手段を用いて放射率補正値を求め
る方法では、実炉と同じ条件で実験設備を作°ることが
事実上非常に難しく、結局、正確な放射率補正値を得る
ことができない。一方、後者の実炉を用いて放射率を求
める方法にあっては、実際に鋼板が動いているために真
の鋼・板温度を求めることが難しい。また、移動鋼板の
温度測定方法として、第5図に示すように移動する鋼板
1の面部に接触式温度計2を当接させて測定しているが
、鋼板1が移動しているために接触状態が悪く、また摩
擦熱も発生するために正確な放射率補正値が得られない
。そこで、鋼板1の走行を止めて接触式温度計2を用い
て温度を測定することも考えられるが、鋼板1の表面状
態及び鋼板温度が常に変化しているために同様に正確な
放射率補正値を得ることができない。3は炉壁を示す。
However, when using the former method to obtain emissivity correction values, it is actually very difficult to create experimental equipment under the same conditions as an actual reactor, and in the end, it is difficult to obtain accurate emissivity correction values. I can't. On the other hand, in the latter method of determining emissivity using an actual furnace, it is difficult to determine the true steel/plate temperature because the steel plate is actually moving. In addition, as a method of measuring the temperature of a moving steel plate, as shown in Fig. 5, the contact thermometer 2 is brought into contact with the surface of the moving steel plate 1, but since the steel plate 1 is moving, Since the condition is poor and frictional heat is generated, accurate emissivity correction values cannot be obtained. Therefore, it is conceivable to stop the running of the steel plate 1 and measure the temperature using the contact thermometer 2, but since the surface condition of the steel plate 1 and the steel plate temperature are constantly changing, it is also possible to use accurate emissivity correction. I can't get the value. 3 indicates the furnace wall.

以上述べたように、従来の放射率補正値を求める手段は
、連続鈍炉等の鋼板温度を測定するために設置された放
射温度計の放射率補正値を正確に求めることができない
As described above, the conventional means for determining the emissivity correction value cannot accurately determine the emissivity correction value of a radiation thermometer installed to measure the temperature of a steel plate in a continuous blunt furnace or the like.

(発明の目的) 本発明は以上の様な点に着目してなされたちので、実炉
において実際の操業条件を生かして簡単かつ正確に放射
温度計の放射率補正値を求め、この補正値を用いて被測
定対象物の温度を正確に測定する放射温度計の放射率補
正方法を提供するものである。
(Objective of the Invention) The present invention has been made with attention to the above-mentioned points. Therefore, the emissivity correction value of the radiation thermometer is easily and accurately determined by taking advantage of the actual operating conditions in an actual reactor, and this correction value is The present invention provides an emissivity correction method for a radiation thermometer that accurately measures the temperature of an object to be measured.

〔発明の概要〕[Summary of the invention]

本発明は、予め測定対象物の変態点温度を知り、実炉に
おいて実際の操業条件を用いて前記測定対象物を徐々に
加熱して温度上昇速度の変化の鈍化部分を見つけ、この
ときの温度と真値である前記変態点温度から放射率補正
値を得て測定濃度の補正設定値とする放射温度計の放射
率補正方法である。
In the present invention, the transformation point temperature of the object to be measured is known in advance, the object to be measured is gradually heated in an actual furnace using actual operating conditions, and the portion where the temperature increase rate slows down is found. This is an emissivity correction method for a radiation thermometer in which an emissivity correction value is obtained from the transformation point temperature, which is the true value, and is used as a correction set value for the measured concentration.

〔発明の実施例〕[Embodiments of the invention]

先ず、実炉において走行する鋼板の真の温度を如何に求
めるかにある。そこで、本発明者等は、被測定対象物例
えば鉄の組織に着目するに1、該鉄は温度によって結晶
構造が変化する変態点を持っている。この変態点は、第
1図に示すようにある温度で比熱が急激に増大する。こ
の変態点温度は例えば鋼板のご如き場合には、その鋼板
の成分が決まれば表面状態のいかんに拘らず一定であり
、よって、変態点温度を利用すれば真の鋼板温度を求め
ることができる。
First, there is a problem in how to find the true temperature of a steel plate running in an actual furnace. Therefore, the present inventors focused on the structure of the object to be measured, for example, iron. 1. Iron has a transformation point where its crystal structure changes depending on temperature. At this transformation point, as shown in FIG. 1, the specific heat increases rapidly at a certain temperature. For example, in the case of a steel plate, once the composition of the steel plate is determined, this transformation point temperature remains constant regardless of the surface condition. Therefore, by using the transformation point temperature, the true steel plate temperature can be determined. .

そこで5本発明方法は、上記変態点温度を利用して実炉
で放射濃度計の放射率補正値を求めることにあり、以下
、その実炉例えば連続焼鈍炉について第2図を参照して
その概略構成を説明する。
Therefore, the method of the present invention is to obtain the emissivity correction value of the radiodensitometer in an actual furnace using the above-mentioned transformation point temperature, and the outline thereof will be explained below with reference to FIG. Explain the configuration.

この焼鈍炉は、加熱帯11および均熱帯12と、過時効
処理帯13および最終冷却帯14の順序で配置されてい
るとともに、均熱帯12と過時効処理帯13との間に冷
却帯15を設けて鋼板の冷却を行なうようになっている
。そして、ペイオフリール16から繰出される鋼板17
が洗浄槽18を通って先ず最初に加熱帯11に供給され
、ここで鋼板17を徐々に加熱して所要とする鋼板温度
まで上昇させていく。この場合の加熱手段は図示されて
いないが加熱帯11の鋼板搬送路に沿って所定数のバー
ナが配置され、これらのバーナを制御することによって
行なう。このとき、加熱帯11と均熱帯12との間に放
射温度計19が設けられ、鋼板17の温度を測定する。
In this annealing furnace, a heating zone 11, a soaking zone 12, an overaging zone 13, and a final cooling zone 14 are arranged in this order, and a cooling zone 15 is provided between the soaking zone 12 and the overaging zone 13. It is designed to cool the steel plate. Then, the steel plate 17 is fed out from the payoff reel 16.
is first supplied to the heating zone 11 through the cleaning tank 18, where the steel plate 17 is gradually heated to a desired temperature. Although the heating means in this case is not shown, a predetermined number of burners are arranged along the steel plate conveying path of the heating zone 11, and heating is performed by controlling these burners. At this time, a radiation thermometer 19 is provided between the heating zone 11 and the soaking zone 12 to measure the temperature of the steel plate 17.

半20はルーバー、21は調質圧延機、22はテンショ
ンリールである。
The half 20 is a louver, 21 is a temper rolling mill, and 22 is a tension reel.

次に、本発明方法の一実施例について説明する。Next, an embodiment of the method of the present invention will be described.

先ず、鋼板17の成分が決まれば鋼板17の変態点温度
が定まる。従って、予め鋼板17の変態点温度が分れば
、これを鋼板17の真の温度と定めることができめる。
First, once the composition of the steel plate 17 is determined, the transformation point temperature of the steel plate 17 is determined. Therefore, if the transformation point temperature of the steel plate 17 is known in advance, this can be determined as the true temperature of the steel plate 17.

そこで、以上のように鋼板17の変態点温度を知ったう
えで、ペイオフリール16から繰り出される鋼板17を
連続焼鈍炉の加熱帯11に装入していく、。このとき、
焼鈍炉において実際の操業条件に基づいてバーナを制御
し鋼板17の温度を徐々に加熱していく。今、例えば幅
1200am、厚さ0.75jw+の鋼板17を加熱帯
11に速度120m/sinで装入し、燃料を供給して
バーナを制御し、鋼板17の温度を第3図に示す700
℃から2.5℃/winの昇温速度で徐々に上昇させて
い(とする。このとき、第4図に示すように放射温度計
19の補正設定部31の補正設定値を1とし、鋼板17
の温度を温度センサ32によって測定していく。33は
リニアライズ回路である。従って、センサ32、および
リニアライズ回路33によって測定出力される鋼板17
の温度は除々に上昇し、その温度上昇速度の変化は第3
図に示すようにほぼ一定となる。そして、鋼板温度が7
20℃になると、その温度上昇速度の変化が鈍化し、い
わゆる鋼板17の変態点(+ 濡n’J達する。このときの放射温度計19の温度は前
述したように補正設定値を仮想的に1と設定しているの
で、720℃の変態点温度を示すことなく例えば730
’Cの温度を示したとすると、ここで補正設定部31の
例えば設定ダイヤル等を用いて、720℃に相応する出
力Sが出るように操作すれば、そのときの設定ダイヤル
値ひいては設定部31の出力が放射率設定値と定めるこ
とができる。そして、この放射率補正値を補正設定部3
1から補正設定値として出力し、放射率補正回路34等
で鋼板測定温度に補正値として補正をしてやれば、鋼板
17の真の温度を測定することができる。
Therefore, after knowing the transformation point temperature of the steel plate 17 as described above, the steel plate 17 fed out from the payoff reel 16 is charged into the heating zone 11 of the continuous annealing furnace. At this time,
In the annealing furnace, the burner is controlled based on actual operating conditions to gradually increase the temperature of the steel plate 17. Now, for example, a steel plate 17 with a width of 1200 am and a thickness of 0.75 jw+ is charged into the heating zone 11 at a speed of 120 m/sin, fuel is supplied and the burner is controlled, and the temperature of the steel plate 17 is set to 700 m/sin as shown in FIG.
The temperature is gradually increased from ℃ to 2.5℃/win (as shown in FIG. 4). At this time, as shown in FIG. 17
The temperature is measured by the temperature sensor 32. 33 is a linearization circuit. Therefore, the steel plate 17 that is measured and output by the sensor 32 and the linearization circuit 33
temperature increases gradually, and the change in temperature increase rate is the third
As shown in the figure, it remains almost constant. And the steel plate temperature is 7
When the temperature reaches 20°C, the change in the rate of temperature increase slows down and reaches the so-called transformation point (+ wet n'J) of the steel plate 17.The temperature of the radiation thermometer 19 at this time is determined by hypothetically adjusting the correction setting value as described above. 1, for example, 730°C without indicating the transformation point temperature of 720°C.
If the temperature is indicated as 'C', if you use the setting dial etc. of the correction setting section 31 to output an output S corresponding to 720 degrees Celsius, the setting dial value at that time and the setting dial value of the setting section 31. The output can be defined as the emissivity setpoint. Then, this emissivity correction value is applied to the correction setting section 3.
The true temperature of the steel plate 17 can be measured by outputting it as a correction setting value from 1 and correcting the measured temperature of the steel plate as a correction value using the emissivity correction circuit 34 or the like.

従って、以上のような実施例によれば、鋼板17の成分
により一義的に定まる真の温度である変態点温度を利用
し、実炉において実際の操業条件により鋼板17の温度
を上げて変態点温度を検知することにより放射率補正値
を得るようにしたので、従来のように実炉と同じ条件の
実験設備を作る必要がなく、また移動鋼板17との接触
状態、摩擦熱等の影響を受けるような接触式温度計を使
用する必要もなく、通常の実炉を用いて鋼板17を走行
させながら簡単かつ正確に鋼板17の真の温度を測定す
ることができる。
Therefore, according to the embodiments described above, the transformation point temperature, which is the true temperature uniquely determined by the composition of the steel plate 17, is used, and the temperature of the steel plate 17 is raised according to the actual operating conditions in an actual furnace to reach the transformation point. Since the emissivity correction value is obtained by detecting the temperature, there is no need to create experimental equipment with the same conditions as the actual furnace as in the past, and the influence of the contact state with the moving steel plate 17, frictional heat, etc. There is no need to use a contact type thermometer such as a conventional furnace, and the true temperature of the steel plate 17 can be easily and accurately measured while the steel plate 17 is running in a normal actual furnace.

なお、本発明は上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

例えば上記実施例では鉄のA2変態点温度での測定例を
示したが、他の変態点を使用してもよく、また変態点を
持った他の金属にも適用できることは言うまでもない。
For example, in the above embodiment, an example of measurement was shown at the A2 transformation point temperature of iron, but it goes without saying that other transformation points may be used, and that the present invention can also be applied to other metals having transformation points.

また、連続焼鈍炉に限らず、他の加熱炉、焼鈍炉であっ
てもよい。また、この方法を用いて放射濃度計の放射率
補正値の決定だけでなく、温度計の測定値の異常チェッ
クにも利用できる。その他、本発明はその要旨を逸脱し
ない範囲で種々変形して実施できるものである。
Moreover, it is not limited to a continuous annealing furnace, and may be any other heating furnace or annealing furnace. Furthermore, this method can be used not only to determine the emissivity correction value of the radiodensitometer, but also to check for abnormalities in the measured values of the thermometer. In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように本発明によれば、被測定対象物の変
態点温度知り、この変態点温度および実炉における実際
の操業条件を生かして放射温度計の放射率補正値を得る
ようにしたので、特別な設備をや機器を必要とすること
なく、簡単な構成で正確に放射率補正値を求め得、よっ
て被測定対象物の真の温度を正確に求めることができる
As detailed above, according to the present invention, the transformation point temperature of the object to be measured is known, and the emissivity correction value of the radiation thermometer is obtained by utilizing this transformation point temperature and the actual operating conditions in the actual furnace. Therefore, the emissivity correction value can be accurately determined with a simple configuration without requiring special equipment or equipment, and the true temperature of the object to be measured can therefore be accurately determined.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明に係わる放射温度計の放射
率補正方法の一実施例を説明するためのもので、第1図
は鉄の温度と比熱の関係図、第2図は連続焼鈍炉の模式
図、第3因は加熱時間と鋼板温度の関係から変態点温度
を検知するための説明図、第4図は放射温度計の模式的
な構成図、第5因は接触式温度計を用いた従来の放射率
補正方法の説明図である。 11・・・加熱帯、12・・・均熱帯、17・・・被測
定対象物(例えば鋼板)、19・・・放射温度計、31
・・・補正値設定部、34・・・放射率補正回路。 出願人代理人 弁理士 鈴江武彦 鱈づυ 口====エコ と さ
Figures 1 to 4 are for explaining an embodiment of the emissivity correction method for a radiation thermometer according to the present invention. Figure 1 is a diagram showing the relationship between iron temperature and specific heat, and Figure 2 is a continuous graph. Schematic diagram of an annealing furnace. The third factor is an explanatory diagram for detecting the transformation point temperature from the relationship between heating time and steel plate temperature. Figure 4 is a schematic diagram of a radiation thermometer. The fifth factor is contact temperature. FIG. 2 is an explanatory diagram of a conventional emissivity correction method using a meter. DESCRIPTION OF SYMBOLS 11... Heating zone, 12... Soaking zone, 17... Object to be measured (for example, steel plate), 19... Radiation thermometer, 31
. . . Correction value setting section, 34 . . . Emissivity correction circuit. Applicant's Representative Patent Attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 予め測定対象物の変態点温度を知った後、実炉において
前記測定対象物を徐々に加熱して温度上昇速度の変化の
鈍化部分を見つけ、このときの温度と真値である前記変
態点温度から放射率補正値を得て測定温度の補正設定値
とすることを特徴とする放射温度計の放射率補正方法。
After knowing the transformation point temperature of the object to be measured in advance, the object to be measured is gradually heated in an actual furnace to find the part where the change in temperature increase rate slows down, and the temperature at this time and the transformation point temperature which is the true value are determined. An emissivity correction method for a radiation thermometer, characterized in that an emissivity correction value is obtained from the above and used as a correction set value for a measured temperature.
JP60013493A 1985-01-29 1985-01-29 Emissivity correction method of radiation thermometer Expired - Lifetime JPH0656327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60013493A JPH0656327B2 (en) 1985-01-29 1985-01-29 Emissivity correction method of radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60013493A JPH0656327B2 (en) 1985-01-29 1985-01-29 Emissivity correction method of radiation thermometer

Publications (2)

Publication Number Publication Date
JPS61173123A true JPS61173123A (en) 1986-08-04
JPH0656327B2 JPH0656327B2 (en) 1994-07-27

Family

ID=11834638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60013493A Expired - Lifetime JPH0656327B2 (en) 1985-01-29 1985-01-29 Emissivity correction method of radiation thermometer

Country Status (1)

Country Link
JP (1) JPH0656327B2 (en)

Also Published As

Publication number Publication date
JPH0656327B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
JP5293022B2 (en) Temperature control method in continuous annealing furnace and continuous annealing furnace
JPS61173123A (en) Correcting method of emissivity of radiation thermometer
JPS6240320A (en) Method for measuring thickness of oxide film in continuous annealing furnace
JP3058403B2 (en) Cooling control method for hot rolled steel sheet
JP2011084753A (en) Method for controlling sheet temperature in heating furnace of continuous annealing facility
JP2017057447A (en) Production facility and production method for high tensile strength steel plate
JP3380330B2 (en) Sheet temperature control method for continuous annealing furnace
JPH01219127A (en) Method for operating continuous annealing furnace
JPH0275409A (en) Method for controlling winding temperature of hot rolled steel sheet
JP4965031B2 (en) Temperature control method in high frequency heating
JP4258341B2 (en) Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet
JP2000297330A (en) Method for measuring strip temperature in strip continuous annealing furnace and instrument therefor
CN111347023B (en) Method for correcting influence of oxide layer on surface of continuous casting billet on radiation temperature measurement
SU800614A1 (en) Method of monitoring thickness of roll-drawn classband
JP2005076935A (en) Billet heating furnace and operation method thereof
SU1194899A1 (en) Method of controlling heat treatment of austenitic stainless steel in continuous furnace
KR200268284Y1 (en) Steel sheet vibration temperature measuring device
JPH04193913A (en) Method for controlling heating in continuous heating furnace
JPH04218654A (en) Manufacture of galvannealed steel sheet
JPS6316448B2 (en)
JPH046224A (en) Method for controlling temperature of continuous annealing furnace
KR101602874B1 (en) Apparatus and method for heating rolling material
JPH049450B2 (en)
KR100723168B1 (en) Method and system for compensating emissivity in continuous annealing process
JPH04354827A (en) Method for estimating temperature distribution in plate thickness direction in stopping cooling