JPS6321280A - Method for controlling diameter of single crystal - Google Patents

Method for controlling diameter of single crystal

Info

Publication number
JPS6321280A
JPS6321280A JP16269386A JP16269386A JPS6321280A JP S6321280 A JPS6321280 A JP S6321280A JP 16269386 A JP16269386 A JP 16269386A JP 16269386 A JP16269386 A JP 16269386A JP S6321280 A JPS6321280 A JP S6321280A
Authority
JP
Japan
Prior art keywords
diameter
tail
pulling
single crystal
tail part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16269386A
Other languages
Japanese (ja)
Other versions
JPH0416436B2 (en
Inventor
Hideo Makino
秀男 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU DENSHI KINZOKU KK
Osaka Titanium Co Ltd
Original Assignee
KYUSHU DENSHI KINZOKU KK
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU DENSHI KINZOKU KK, Osaka Titanium Co Ltd filed Critical KYUSHU DENSHI KINZOKU KK
Priority to JP16269386A priority Critical patent/JPS6321280A/en
Publication of JPS6321280A publication Critical patent/JPS6321280A/en
Publication of JPH0416436B2 publication Critical patent/JPH0416436B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To precisely control the diameter of the tail part of a columnar product by deviating the optical axis of an optical means for a pulling-up axis in such a position that the observation of a fusion ring at the tail part of the columnar product is made possible. CONSTITUTION:A columnar single crystalline product 18 is pulled up by a CZ method and the position on a line A is monitored till the pulling thereof is finished, and the diameter of a fusion ring 20 is directly measured from the position enhanced in a brightness and the pulling velocity of single crystal is adjusted so that this diameter is regulated to the objective diameter. In a squeezing stage of a tail part, when the tail part 19 is positioned at the shadow of the product 18 and the ring 20 disappears from the range of a field of view for a camera, and the optical axis of the camera is deviated to a position B to make the ring 20 photometrical and the pulling up velocity of single crystal is adjusted while measuring the diameter of the tail part 19. In case the ring 20 is made small, the optical axis of the camera is deviated at a position C and furthermore the optical axis of the camera is returned on the line A in such a stage that the contraction of the tail part has progressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はCZ法(チョクラルスキー法)により単結晶
をルツボから引上げる際に、その直径を制御する方法に
関し、なかでも特に円柱状の製品部を引上げた後のテー
ル絞り工程において、テール部を精度よく直径制御する
方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a method for controlling the diameter of a single crystal when pulling it from a crucible using the CZ method (Czochralski method), and in particular, relates to a method for controlling the diameter of a single crystal when pulling it from a crucible using the CZ method (Czochralski method). The present invention relates to a method for accurately controlling the diameter of a tail part in a tail drawing process after pulling up a product part.

〔従来の技術〕[Conventional technology]

IC,LSI等の製造に使用されるシリコン等の単結晶
の製造方法とし°ζ、CZ法がよく知られている。この
方法は、第5図の模式図に示すように、回転するルツボ
(2)に収容したシリコン等の結晶融液(4)を、ワイ
ヤ(8)によりルツボ(2)に対して回転させながら引
上げ凝固させて、柱状の単結晶00を製造するものであ
る。製造された単結晶は円柱状のインゴットに仕上げら
れるが、その際の歩留りを上げるため、引上げ中の単結
晶0υは各部分で同じ直径にすることが要求される。
BACKGROUND ART The °ζ and CZ methods are well known as methods for manufacturing single crystals of silicon or the like used in the manufacture of ICs, LSIs, and the like. As shown in the schematic diagram in Fig. 5, this method involves rotating a crystalline melt (4) of silicon or the like contained in a rotating crucible (2) with respect to the crucible (2) using a wire (8). A columnar single crystal 00 is produced by pulling and solidifying it. The manufactured single crystal is finished into a cylindrical ingot, but in order to increase the yield at that time, it is required that the single crystal 0υ being pulled has the same diameter in each part.

従来から、この単結晶αυの直径を制御する方法の一つ
として、第5図に併示するように、単結晶αυの成長部
(結晶融液(4)との境界部)に環状に生じるフュージ
ョンリング(20)の直径を光学的手段θりで測定し、
その値から単結晶ODの直径を推定し、推定された直径
が目標値に−・致するよう、結晶融液(4)の温度や単
結晶01)の引」−げ速度を調整する方法が採られてい
る。
Conventionally, as one method for controlling the diameter of this single crystal αυ, as shown in Fig. Measuring the diameter of the fusion ring (20) by optical means θ;
There is a method of estimating the diameter of the single crystal OD from that value and adjusting the temperature of the crystal melt (4) and the drawing speed of the single crystal 01) so that the estimated diameter matches the target value. It is taken.

この場合光学的手段02)(例えはドrv、CCDカメ
ラ等)は、付帯設備との関係や、ルツボ(2)の底面近
くまで覗き込まなければならない関係上、斜め上方から
フュージョンリングを測光するように設置され、鉛直線
に対する光軸の角度θは大略30’程度となっている。
In this case, the optical means 02) (e.g., RV, CCD camera, etc.) measures the fusion ring from diagonally above due to the relationship with the incidental equipment and the need to look close to the bottom of the crucible (2). The angle θ of the optical axis with respect to the vertical line is about 30'.

一方、単結晶00の引上げを終了するにあたっては、熱
歪による有位転化を防く意味から、第6図(al〜(C
1に示すように、結晶径を漸次減少させて行(、テール
絞りと呼ばれる工程が必要とされるが、このテール絞り
工程においては、光学的手段02)から見て、テール部
091が製品部08)の陰になり、フュージョンリング
の測光か不可能となる。このため、テール絞りの際の直
径制御については、フィードハック制御が行えないので
、普通は作業者が目視で結晶径を監視しながら操作を行
ったり、プログラムによるフィートフォアート制御を行
ったりしている。
On the other hand, when finishing the pulling of the single crystal 00, it is necessary to prevent dislocation due to thermal strain as shown in Figure 6 (al~(C
As shown in Fig. 1, the tail part 091 is the product part when viewed from the optical means 02, which requires a step called tail drawing to gradually reduce the crystal diameter. 08), making photometry of the fusion ring impossible. For this reason, feed hack control cannot be used to control the diameter during tail drawing, so the operator usually performs the operation while visually monitoring the crystal diameter, or performs foot fort control using a program. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上述したテール絞り工程においては、ルツボ
(2)内の結晶融液(4)の使用効率を高める意味から
、テール絞りが終了した時点でルツボ(2)を空にする
ことが求められる。また、テール部0鴫に過大な体積を
持たせることも回避されなければならない。したがって
、テール部0ωに対しては厳密な直径制御が必要となる
By the way, in the above-mentioned tail squeezing step, the crucible (2) is required to be emptied when the tail squeezing is completed in order to increase the usage efficiency of the crystal melt (4) in the crucible (2). Furthermore, it is also necessary to avoid giving the tail portion an excessive volume. Therefore, strict diameter control is required for the tail portion 0ω.

第7図は、前述の目視操作でテール部を直径制御したと
きのテール部形状を示したものである。
FIG. 7 shows the shape of the tail portion when the diameter of the tail portion is controlled by the aforementioned visual operation.

結晶径を変えるには、融液温度か引上げ速度を変化させ
ればよいが、引上げ速度は製品品質に大きな影響を与え
るので、目視操作の場合は融液温度を変えることにより
結晶径を調整する。その場合、融液温度を高くすれば結
晶径が小さくなるが、時間が経過すると温度と直径の間
で平衡状態を生じそれ以下に結晶が細ることはない。し
たがって、更に結晶径を小さくしようとするなら、再度
、融液温度を上昇させることが必要となる。このような
ことから、テール部09)は図示のように階段状に仕上
がる。この形状自体は特に問題というわけではないが、
その作業は極めて複雑で、高度のμ)練を要し、非能率
的である。
The crystal diameter can be changed by changing the melt temperature or the pulling speed, but since the pulling speed has a large effect on product quality, when performing visual operations, the crystal diameter should be adjusted by changing the melt temperature. . In that case, increasing the melt temperature will reduce the crystal diameter, but over time an equilibrium will be reached between the temperature and the diameter, and the crystal will not become thinner than that. Therefore, in order to further reduce the crystal diameter, it is necessary to raise the melt temperature again. For this reason, the tail portion 09) is finished in a stepped shape as shown in the figure. This shape itself is not a particular problem, but
The work is extremely complex, requires a high degree of skill, and is inefficient.

これに対し、プロクラム制御τ11は能率的ではあるが
、残部液量、ルツボ位置等の条件が変わった場合、全(
対処できない問題があり、更に外乱によってテール部0
!!の形状が大きく変わるという問題もある。第8図(
イ)(ロ)はテール部09)の形状変化の様子を示した
もので、(イ)はテール部(I’11が短過ぎる場合、
(ロ)は長過ぎる場合である。
On the other hand, program control τ11 is efficient, but if conditions such as remaining liquid amount and crucible position change, all (
There is a problem that cannot be solved, and furthermore, the tail part is 0 due to disturbance.
! ! There is also the problem that the shape of the material changes significantly. Figure 8 (
(a) and (b) show how the shape of the tail part 09) changes, and (a) shows that when the tail part (I'11) is too short,
(b) is a case where the length is too long.

テール部09)が短過ぎる場合は、引上げ終了後もルツ
ボ(2)内に結晶融液(4)が残り、原料の使用効率が
低下する。逆に長過ぎる場合は、テール部09)に過剰
な材料が付与され、短過ぎる場合と同様に原料の使用効
率が低下するのみならず、引上げ終了までにルツボ(2
)内の結晶融液(4)が消費され、テール部(I’ll
の下端がルツボ(2)の底に接着し、その取外しの際に
クラックが製品部0(至)に入る危険が生じる。
If the tail portion 09) is too short, the crystal melt (4) remains in the crucible (2) even after the pulling is finished, reducing the efficiency of raw material use. On the other hand, if it is too long, excess material will be applied to the tail part 09), which will not only reduce the raw material usage efficiency as in the case where it is too short, but also cause the crucible (2
) is consumed, and the tail part (I'll
The lower end of the crucible (2) will adhere to the bottom of the crucible (2), and when it is removed there is a risk that a crack will enter the product part 0 (end).

このような問題は、前述した目視操作においてミスを犯
した場合にも当然起こり得るものである。
Such a problem can naturally occur if a mistake is made in the visual operation described above.

これに加えて、本発明者らの最近の研究によれば、テー
ル部aωの長さが製品部0ωの品質に影響を与えること
が明らかとなった。すなわち、詳しい理由は定かではな
いが、テール部09)の長さが長いほど、製品部081
に生じる品質欠陥がテール部0つに吸収され、製品部0
0の品質が向上するのである。
In addition, recent research by the present inventors has revealed that the length of the tail portion aω affects the quality of the product portion 0ω. In other words, although the detailed reason is not clear, the longer the length of the tail part 09), the longer the product part 081
The quality defects that occur in the tail part are absorbed by the tail part, and the product part
The quality of 0 is improved.

しかしながら、単純にテール部Q91を長くしたのでは
、命運したように、原料の使用効率が低下するとともに
、テール部09)がルツボ(2)の底番こ接着する危険
が増す。そこで例えばルツボ(2)内の融液残量を考慮
しつつ、結晶径を出来るだけ細くしながらテール部0ω
を長くするといった、極めて高度な直径制御が必要とな
る。
However, if the tail portion Q91 is simply made longer, as fate would have it, the raw material usage efficiency will decrease and the risk of the tail portion 09) adhering to the bottom of the crucible (2) will increase. Therefore, for example, while considering the remaining amount of melt in the crucible (2), the crystal diameter is made as thin as possible and the tail part is 0ω.
Extremely sophisticated diameter control is required, such as increasing the length of the diameter.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、既存設備を利用した簡単な手段で、このよう
な高度の要求にも十分応え得る合理的で高精度なテール
部の直径制御方法を提供するもので、その特徴とすると
ころは、第1図の模式側面図に例示するように、円柱状
の製品部α匂を引上げたあとテール絞りを行う際に、テ
ール部09)のフュージョンリングが測光できる位置ま
で光学的手段0りの光軸(0)を引−ヒげ軸(0゛)に
対して偏位させ、テール部09)に対しても引き続きフ
ュージョンリングの測光データに基づいて直径側?11
1を行う点にある。
The present invention provides a rational and highly accurate method for controlling the diameter of the tail portion by a simple means using existing equipment, which can fully meet such high-level demands.The present invention is characterized by the following: As illustrated in the schematic side view of Fig. 1, when performing tail aperture after pulling up the cylindrical product part α, the fusion ring of the tail part 09) allows light to be measured by optical means. The axis (0) is deviated from the pull axis (0゛), and the tail portion 09) is also determined on the diametrical side based on the photometric data of the fusion ring. 11
The point is to do 1.

光軸(0)を偏位させる具体的手段として代表的なもの
は、第1図にXでボずように、フュージョンリングのと
ころを中心として光学的手段α2)を外側に旋回移動さ
せる手段、第1図にYで示すように、光学的手段0りを
その狙い角を変えることなく外側にスライドさせて光軸
(0)を平行移動させる手段の2つである。
Typical concrete means for deflecting the optical axis (0) include means for pivoting the optical means α2) outward around the fusion ring, as indicated by X in FIG. As shown by Y in FIG. 1, there are two means for moving the optical axis (0) in parallel by sliding the optical means (0) outward without changing its aiming angle.

前者の旋回移動にあっては、狙い位置が変化しないので
、移動後もフュージョンリングから結晶径を直接判定で
きる利点がある。また、後者の平行移動にあっては、狙
い位置が変わり測光データから結晶径を直接判定できな
いものの、対象までの距離が不変であるので、結晶径の
算出が比較的容易であり、移動機構も簡易となる。
In the former turning movement, the target position does not change, so there is an advantage that the crystal diameter can be determined directly from the fusion ring even after movement. In addition, in the latter case of parallel movement, although the target position changes and the crystal diameter cannot be determined directly from the photometric data, the distance to the target remains unchanged, making it relatively easy to calculate the crystal diameter, and the movement mechanism also It becomes simple.

〔実施例〕〔Example〕

以下、平行移動について実施例を説明する。 Examples regarding parallel movement will be described below.

第2図において、(1)はチャンバーで、内部がA、等
の不活性ガス雰囲気に保持される。チャンバー(1)内
にはルツボ(2)がセントされ、その周囲をヒータ(3
)が取り囲んでルツボ(2)内の結晶融液(4)を所定
温度に管理する。(5)はルツボ回転用モータ、(6)
は同昇降用モータ、(7)は輻射温度計である。
In FIG. 2, (1) is a chamber, the interior of which is maintained in an inert gas atmosphere such as A. A crucible (2) is placed inside the chamber (1), and a heater (3) is placed around it.
) surrounds the crucible (2) to control the crystal melt (4) at a predetermined temperature. (5) is the crucible rotation motor, (6)
(7) is the lifting motor, and (7) is the radiation thermometer.

チャンバー(1)内には又、上方より引上げ用のワイヤ
(8)が垂下され、その回転用モータ(9)および引上
げ用モータ00)がチャンバー+1.1外に備わり、両
モータの駆動により単結晶θυがルツボ(2)に対して
逆回転しながら結晶融液(4)より引上げられる。
A pulling wire (8) is also suspended from above inside the chamber (1), and its rotation motor (9) and lifting motor 00) are provided outside the chamber +1. The crystal θυ is pulled out of the crystal melt (4) while rotating in the opposite direction with respect to the crucible (2).

光学的手段としてのCCDカメラ0旧よ、チャンバー(
1)外よりその窓(1゛)を通してフュージョンリング
を監視できるよう、チャンバー(1)の斜め上方にあっ
て、かつ引上げ軸に対して外側および内側にモータa蜀
により平行移動できるように構成されている。
CCD camera as an optical meansOld, chamber (
1) It is located diagonally above the chamber (1) so that the fusion ring can be monitored from the outside through the window (1), and is configured so that it can be moved in parallel to the outside and inside with respect to the pulling shaft by a motor. ing.

CCDカメラQ2+の出力は、処理装置Oaに人力され
て単結晶0υの直径が算出され、これと目標直径設定装
置α5)からの出力とが比較装置Q61に人力され、両
人力の差を演算装置07)に入力して両人力の差が0と
なる単結晶01)引上げ速度を計嘗して単結晶0υの引
上げ用モータ00)に指令する。
The output of the CCD camera Q2+ is manually input to the processing device Oa to calculate the diameter of the single crystal 0υ, and this and the output from the target diameter setting device α5) are manually input to the comparator Q61, and the difference between the two inputs is calculated by the calculation device. 07) to measure the pulling speed of the single crystal 01) at which the difference in force between the two men becomes 0, and command the motor 00) for pulling the single crystal 0υ.

第3図(イ)〜(ハ)に(al〜(dlで段階的にポし
た図面は、第2図装置によるテール部の直径制御の手順
を具体的に例示したもので、(イ)は側面図、(ロ)は
カメラ位置から見た単結晶とそのフュージョンリングの
形状を表す斜視図、(ハ)はカメラの出力波形図である
。また、ta+はテール絞り開始時点、(blはテール
絞り工程の50%終r時点、(C)は同しく75%終了
時点、(diは同じり99%終r時点をそれぞれ表して
いる。
Figures 3 (a) to (c) (al to (dl) shown in stages are concrete examples of the procedure for controlling the diameter of the tail section using the device in Figure 2. (b) is a perspective view showing the shape of the single crystal and its fusion ring as seen from the camera position, (c) is the output waveform diagram of the camera.Ta+ is the start point of the tail aperture, (bl is the tail (C) represents the 50% end point of the drawing process, (C) also represents the 75% end point, and (di also represents the 99% end point r), respectively.

テール絞り開始まで、すなわち製品部08)の引上げ終
了まではカメラでA線上を監視し、輝度の増大個所より
フュージョンリングaO+の直径を直接とらえ、この直
径が目標直径になるよう単結晶01)の引上げ速度を調
節する。
Until the start of the tail aperture, that is, until the end of pulling the product part 08), the camera monitors the A line, directly captures the diameter of the fusion ring aO+ from the point of increase in brightness, and adjusts the diameter of the single crystal 01) so that this diameter becomes the target diameter. Adjust the pulling speed.

この状態のままテール絞り工程を迎えると、テール部0
91が製品部OIの陰になり、フュージョンリング(2
Qlがカメラθ乃の視野範囲から消えるので、テール絞
り開始時点でフュージョンリング(2111を測光でき
る位置までカメラ側を外側に平行移動する。
If the tail drawing process is carried out in this state, the tail part will be 0.
91 is in the shadow of the product department OI, and the fusion ring (2
Since Ql disappears from the field of view of the camera θ, at the start of tail aperture, move the fusion ring (2111) parallel to the outside to the position where it can measure light.

変更されたカメラQ2+の狙い位置をB線で表している
。この位置において、フュージョンリングQ旬を測光し
た場合、ソニージョンリングI2荀の弦の長さが観測さ
れるので、カメラα乃の移動距離をγとして、次式によ
りテール部09]の直径を計算することになる。
The changed aim position of camera Q2+ is shown by line B. When the Fusion Ring Q Shun is photometered at this position, the length of the Sony John Ring I2 Shun string is observed, so the diameter of the tail part 09 is calculated using the following formula, with the moving distance of the camera α as γ. I will do it.

φA:結晶径 φB:測定した弦の長さ γ:カメラの水平移動路#(結 晶中心から弦までの距M) このようにしてテール部0!1の直径を求めながら、そ
の直径が目標どおり漸減するよう、単結晶0υの引上げ
速度を調節する。
φA: Crystal diameter φB: Measured string length γ: Camera horizontal movement path # (distance M from the crystal center to the string) In this way, while determining the diameter of the tail part 0!1, make sure that the diameter matches the target. Adjust the pulling speed of the single crystal 0υ so that it gradually decreases.

テール絞りが進み、フュージョンリングt20)が小さ
くなると、B線上からフュージョンリング(20)が消
えるので、(C1に示すようにカメラ02)の狙い位置
をA線とB線との間のC線上に戻し、更にテール絞りが
進んだ段階においては、(d+に示すようにカメラ(ロ
)の狙い位置をA線上まで戻す。
As the tail aperture advances and the fusion ring (t20) becomes smaller, the fusion ring (20) disappears from line B, so move the aiming position of camera 02 (as shown in C1) onto line C between line A and line B. At the stage when the tail aperture has further advanced, the aiming position of the camera (b) is returned to the A line as shown in (d+).

以上のようにして、テール絞り工程の全期間にわたって
フュージョンリングの直径が実測でき、この実測値に基
づいてテール部をフィートハック制御により直径管理す
ることにより、任意の形状のテール部Q91が精度よく
成形できる。
As described above, the diameter of the fusion ring can be actually measured over the entire period of the tail drawing process, and by controlling the diameter of the tail part using foot hack control based on this measured value, the tail part Q91 of any shape can be formed with high precision. Can be molded.

上述の手順で直径6インチのシリコン単結晶を直径制御
したところ、製品部0ψにおいては±0.5龍、テール
部α匂においては±111に寸法誤差を抑えることがで
きた。第4図は本発明の方法により得た単結晶テール部
の形状を例示したものである。
When the diameter of a silicon single crystal with a diameter of 6 inches was controlled using the above-described procedure, the dimensional error could be suppressed to ±0.5 in the product part 0ψ and to ±111 in the tail part α. FIG. 4 illustrates the shape of a single crystal tail obtained by the method of the present invention.

この実施例ではカメラの狙い位置をA、B、Cの3段階
に変えているが、この段数は得ようとするテール部形状
、カメラの光軸の引上げ軸に対する角度、必要とする精
度等に基づいて適宜変更されるものである。
In this example, the aiming position of the camera is changed to three stages, A, B, and C, but the number of stages depends on the desired tail shape, the angle of the camera's optical axis with respect to the pulling axis, the required accuracy, etc. It will be changed as appropriate based on the above.

〔発明の効果〕〔Effect of the invention〕

本発明の直径制御方法によれば、テール絞り工程におい
ても製品部引上げ工程と同じ様にフュージョンリングか
ら連続的にテール部直径が実測でき、その実測値に基づ
いてフィードハック制御が可能となり、作業者の監視業
務が不要となって製造能率が上るのみならず、必要なテ
ール部形状を正確に実現でき、これにより引−ヒげ後に
ルツボに残存する融液を可及的に少なくするとともに、
テール部の不必要な肥大を抑え、原料の使用効率を大幅
に高める効果がある。
According to the diameter control method of the present invention, the tail diameter can be measured continuously from the fusion ring in the tail drawing process in the same way as in the product part pulling process, and feed hack control is possible based on the measured value, making it possible to This not only improves manufacturing efficiency by eliminating the need for human supervision, but also enables the required tail shape to be achieved accurately, thereby minimizing the amount of melt remaining in the crucible after pulling.
This has the effect of suppressing unnecessary enlargement of the tail and greatly increasing raw material usage efficiency.

更に、テール部を必要形状に仕上げ得ることがら、製品
部の欠陥をテール部に吸収させることも可能となり、製
品品質面でも大きな効果が得られるものである。
Furthermore, since the tail part can be finished into the required shape, it is also possible to absorb defects in the product part into the tail part, and a great effect can be obtained in terms of product quality.

また、テール絞り工程が安定化することから、工程所要
時間のばらつきを減少させ、炉の稼動スケジュールを安
定化させるという効果も期待できるものである。
Furthermore, since the tail drawing process is stabilized, it is expected that variations in the time required for the process will be reduced and the furnace operating schedule will be stabilized.

更にまた、本発明の方法は既設の光学的手段がそのまま
利用できるとともに、光学的手段の増設置1 や他の計測手段(例えば結晶の重量計等)の設置を必要
とせず、全体として低コストでM、il、に実施できる
という大きな利得も有するものである。
Furthermore, the method of the present invention allows existing optical means to be used as is, and does not require the installation of additional optical means1 or other measuring means (such as a crystal weighing scale), resulting in an overall low cost. It also has the great advantage that it can be implemented on M,il.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本原理図、第2図は本発明の実施例
に係る装置構成図、第3図(イ)〜(ハ)は同実施例に
おける直径制御手順を段階的に示した説明図、第4図は
同実施例で得たテール部形状の説明図、第5図はCZ法
と同法における直径制御の一般的な方法を示す説明図、
第6図(a)〜(C)はテール絞り工程の説明図、第7
図は従来の目視操作で得たテール部形状の説明図、第8
図(イ)(ロ)は従来のプログラム制御で得たテール部
形状の説明図である。 1:チャンバー、2ニルツボ、3:ヒータ、8:ワイヤ
、10:引上げ用モータ、11:単結晶、12:光学的
手段(CCDカメラ)、18:製品部、19:テール部
、20:フュージョンリング。 第  2  図 15  1!* 。     17 演算  比軟  16   IQ 直14 B      12 諾雫、I、、製ごl′ (イ)cco光軸 カメラ斜動 第  3  図 (O)(ハ) 一43〇− 第  5 図 ”・   34、”B ci 、o。 l、、)   じJl 第  6  図 I
Fig. 1 is a diagram of the basic principle of the present invention, Fig. 2 is a diagram of a device configuration according to an embodiment of the present invention, and Figs. An explanatory diagram, FIG. 4 is an explanatory diagram of the tail shape obtained in the same example, and FIG. 5 is an explanatory diagram showing the CZ method and a general method of diameter control in the same method.
Figures 6(a) to (C) are explanatory diagrams of the tail drawing process;
The figure is an explanatory diagram of the tail shape obtained by conventional visual operation.
Figures (a) and (b) are explanatory diagrams of the tail shape obtained by conventional program control. 1: Chamber, 2 Nilpot, 3: Heater, 8: Wire, 10: Pulling motor, 11: Single crystal, 12: Optical means (CCD camera), 18: Product department, 19: Tail section, 20: Fusion ring . Figure 2 15 1! *. 17 Arithmetic Ratio Soft 16 IQ Straight 14 B 12 Nutoshizuku, I, 1' (a) CCO optical axis camera tilting Fig. 3 (O) (c) 1430 - Fig. 5 "・ 34," Bci, o. l,,) Jl Figure 6 I

Claims (2)

【特許請求の範囲】[Claims] (1)CZ法により円柱状に引上げる単結晶の成長部に
生じるフュージョンリングを光学的手段にて斜め上方よ
り測光し、その測光データに基づいて単結晶の直径を管
理制御する方法において、円柱状の製品部を引上げたあ
とテール絞りを行う際に、テール部のフュージョンリン
グが測光できる位置まで前記光学的手段の光軸を引上げ
軸に対して偏位させ、テール部に対してもフュージョン
リングの測光データに基づいて直径制御を行うことを特
徴とする単結晶の直径制御方法。
(1) In a method in which the fusion ring that is generated in the growth area of a single crystal that is pulled into a cylindrical shape by the CZ method is photometered diagonally from above using optical means, and the diameter of the single crystal is managed and controlled based on the photometric data. When performing tail aperture after pulling up a columnar product part, the optical axis of the optical means is deviated from the pulling axis to a position where the fusion ring in the tail part can perform photometry, and the fusion ring is also applied to the tail part. A method for controlling the diameter of a single crystal, characterized by controlling the diameter based on photometric data.
(2)光軸の偏位が引上げ軸外側への平行移動であるこ
とを特徴とする特許請求の範囲の範囲第1項に記載の単
結晶の直径制御方法。
(2) The method for controlling the diameter of a single crystal according to claim 1, wherein the deviation of the optical axis is a parallel movement outward from the pulling axis.
JP16269386A 1986-07-10 1986-07-10 Method for controlling diameter of single crystal Granted JPS6321280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16269386A JPS6321280A (en) 1986-07-10 1986-07-10 Method for controlling diameter of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16269386A JPS6321280A (en) 1986-07-10 1986-07-10 Method for controlling diameter of single crystal

Publications (2)

Publication Number Publication Date
JPS6321280A true JPS6321280A (en) 1988-01-28
JPH0416436B2 JPH0416436B2 (en) 1992-03-24

Family

ID=15759502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16269386A Granted JPS6321280A (en) 1986-07-10 1986-07-10 Method for controlling diameter of single crystal

Country Status (1)

Country Link
JP (1) JPS6321280A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172656B2 (en) * 2003-05-06 2007-02-06 Sumitomo Mitsubishi Silicon Corporation Device and method for measuring position of liquid surface or melt in single-crystal-growing apparatus
JP2010132489A (en) * 2008-12-04 2010-06-17 Shin Etsu Handotai Co Ltd Method for producing silicon single crystal
DE102013210687A1 (en) * 2013-06-07 2014-12-11 Siltronic Ag Method for controlling the diameter of a single crystal to a nominal diameter
DE19781967B3 (en) * 1996-08-30 2016-05-12 Sumitomo Mitsubishi Silicon Corp. Method and apparatus for pulling a single crystal
WO2017133930A1 (en) 2016-02-05 2017-08-10 Siltronic Ag Method for determining and regulating a diameter of a single crystal during pulling of the single crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949306A (en) * 1972-06-06 1974-05-13
JPS61132586A (en) * 1984-11-30 1986-06-20 ゼネラル シグナル コ−ポレ−シヨン Crystal diameter control device for crystal growth furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949306A (en) * 1972-06-06 1974-05-13
JPS61132586A (en) * 1984-11-30 1986-06-20 ゼネラル シグナル コ−ポレ−シヨン Crystal diameter control device for crystal growth furnace

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19781967B3 (en) * 1996-08-30 2016-05-12 Sumitomo Mitsubishi Silicon Corp. Method and apparatus for pulling a single crystal
US7172656B2 (en) * 2003-05-06 2007-02-06 Sumitomo Mitsubishi Silicon Corporation Device and method for measuring position of liquid surface or melt in single-crystal-growing apparatus
JP2010132489A (en) * 2008-12-04 2010-06-17 Shin Etsu Handotai Co Ltd Method for producing silicon single crystal
DE102013210687A1 (en) * 2013-06-07 2014-12-11 Siltronic Ag Method for controlling the diameter of a single crystal to a nominal diameter
US9340897B2 (en) 2013-06-07 2016-05-17 Siltronic Ag Method for controlling the diameter of a single crystal to a set point diameter
DE102013210687B4 (en) 2013-06-07 2018-12-06 Siltronic Ag Method for controlling the diameter of a single crystal to a nominal diameter
WO2017133930A1 (en) 2016-02-05 2017-08-10 Siltronic Ag Method for determining and regulating a diameter of a single crystal during pulling of the single crystal
DE102016201778A1 (en) 2016-02-05 2017-08-10 Siltronic Ag Method of determining and controlling a diameter of a single crystal while pulling the single crystal
KR20180099853A (en) * 2016-02-05 2018-09-05 실트로닉 아게 Method for determining and controlling the diameter of a single crystal during pulling of a single crystal
CN108699723A (en) * 2016-02-05 2018-10-23 硅电子股份公司 The method for being determined during pulling single crystal and adjusting single crystal diameter
US10738392B2 (en) 2016-02-05 2020-08-11 Siltronic Ag Method for determining and regulating a diameter of a single crystal during pulling of the single crystal

Also Published As

Publication number Publication date
JPH0416436B2 (en) 1992-03-24

Similar Documents

Publication Publication Date Title
JP4602561B2 (en) Method and apparatus for controlling the diameter of a silicon crystal during the growth process
EP2128310B1 (en) Method for measuring distance between lower end surface of heat shielding member and material melt surface, and method for controlling the distance
JP2826589B2 (en) Single crystal silicon growing method
KR20080110865A (en) Method for measuring distance between reference reflector and melt surface, method for control the position of melt surface using same, and silicon single crystal producing apparatus
JPH03252388A (en) Automatic control of neck part growth of single crystal by cz method
JPS63242991A (en) Method for controlling crystal diameter
KR20180063124A (en) Single crystal manufacturing equipment and control method of melt surface position
KR101758980B1 (en) Ingot growing apparatus and growing method by it
JPS6321280A (en) Method for controlling diameter of single crystal
JP2001019588A (en) Method for controlling diameter of single crystal and device for growing crystal
KR20110086985A (en) Melt temperature controlling system and the control method of the same
JP5287591B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP2007308335A (en) Method for pulling single crystal
KR101758983B1 (en) Ingot growing apparatus and growing method by it
JP6665798B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP2579761B2 (en) Control method of single crystal diameter
JPH01212291A (en) Method and apparatus for growing crystal
JPH01313385A (en) Method for controlling diameter of semiconductor single crystal
JP2022092506A (en) Manufacturing method for semiconductor single crystal and manufacturing apparatus for semiconductor single crystal
JPS6283395A (en) Method for controlling diameter of single crystal pulling-up device
RU2128250C1 (en) Method and device for controlling growing monocrystals from melt
KR20170081562A (en) Ingot growth control device and control method of it
JPS60246294A (en) Method for growing single crystal
JPH01126295A (en) Apparatus for producing single crystal
JPH0388795A (en) Production of single crystal