JPS63210632A - Dynamical quantity detection element - Google Patents

Dynamical quantity detection element

Info

Publication number
JPS63210632A
JPS63210632A JP4147987A JP4147987A JPS63210632A JP S63210632 A JPS63210632 A JP S63210632A JP 4147987 A JP4147987 A JP 4147987A JP 4147987 A JP4147987 A JP 4147987A JP S63210632 A JPS63210632 A JP S63210632A
Authority
JP
Japan
Prior art keywords
coating
stress
ribbon
amorphous magnetic
magnetic alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4147987A
Other languages
Japanese (ja)
Other versions
JPH0781920B2 (en
Inventor
Naomasa Kimura
直正 木村
Minoru Noguchi
実 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP4147987A priority Critical patent/JPH0781920B2/en
Publication of JPS63210632A publication Critical patent/JPS63210632A/en
Publication of JPH0781920B2 publication Critical patent/JPH0781920B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve linearity and to expand a dynamical quantity detectable range, by applying coating generating tensile stress to the surface of a thin strip formed of a non-amorphous magnetic alloy having positive magnetostriction and preliminarily imparting compression strain to a part of the thin strip. CONSTITUTION:Coating 4 having a tendency to generate tensile stress by coating is applied to the surface of a thin strip formed of a non-amorphous magnetic alloy having positive magnetostriction. Compression strain is preliminarily applied to at least a part of the thin strip 2 by the coating relation of said coating 4. As the coating 4, a metal such as copper, an organic material or the like are used and the coating 4 is applied by a gaseous phase plating method, an electroplating method or coating.

Description

【発明の詳細な説明】[Detailed description of the invention]

五1Δ上」L鎖立 本発明は、非晶質磁性合金(アモルファス磁性合金)の
応力−磁気効果を利用する力学全検出素子に関するもの
である。
The present invention relates to a dynamic all-detection element that utilizes the stress-magnetic effect of an amorphous magnetic alloy.

【敦及呈 力、トルクなどを計測する力学量センサにおいて、非晶
質磁性合金の応力−磁気効果を利用するセンサが、近年
注目されつつあり、この力学帛センサによれば、■力の
非接触検出が可能である、■力の電気0への変換を直接
的に行うことができる。■センサとしての装置構造が簡
単で、小型化が達成される。■非晶質磁性合金は高強度
、高靭性材であって、耐食性にはれるとともに、完全弾
性体でもあるため、耐環境性に優れ、広範囲の使用条件
に耐え得る等の利点が得られる。 その−例として、応力−磁気効果が敏感な正の磁歪を右
する非晶質磁性合金の薄帯(リボン)01を回転軸02
に巻き付け、トルクTによって回転軸02に生ずる゛捩
りひずみ″を薄帯01に導入せしめ、応力−磁気効果に
よる薄帯01の磁気特性の変化を検出し、もって1−ル
クTを検出するトルクセンサが知られている(第1図参
照)。磁歪が正の非晶質磁性合金では、引張り応力を与
えると、引張り方向の磁気弾性エネル・ギーが低下し、
その方向で磁化が容易になる現象があり、この現象を応
力−磁気効果と称しているが、前記トルクセンサにおい
ては、該応力−磁気効果を利用して、薄帯01の全面に
、周方向03に対する傾斜角α(α〉45°)の方向に
一様な磁化容易軸(−軸磁気異方性)Kuを与えている
。しかるに、回転軸02にトルクTが作用すると、第2
図図示の如く、回転軸02の軸心線方向に対して角度±
45°の方向に式σ=  16  、T(ただし、dは
回転@02の外径でπd3 ある)で表わされる応力σが生じ、応力−磁気効果によ
り、+σの方向にも−@磁気異方性が誘導され、結果と
して合成された磁化容易軸Ku’が与えられる。 しかして、一般に磁性体の透磁率は、磁界り向に対する
磁化容易軸の方向によって変化することから、前記磁化
容易軸の変化(Ku−+ Ku’ )を透磁率の変化と
して捉え、トルクTの大ぎさを検出することができる。 そこで、例えば励磁コイル(−次コイル)、検出コイル
(二次コイル)を用いて、透磁率〈または磁束密度)の
変化を電圧変化として検出すると、第3図図示の如きト
ルク−出力曲線が得られる。 ロ ゛し つと(n ところが、通常使用されている非晶質磁性合金では、直
線性(リニアリティ)が恕く、力学量検出可能範囲Iが
狭いために、低トルク範囲の検出素子として利用される
に留まっており、また該非晶¥i磁性合金の応力−出力
曲線は第4図図示の如くであり、応力−Oの近傍で曲線
の勾配が大きいために、その部分で感度が非常に高く、
第1図において、回転ll1I102の表面に薄帯01
を接着剤接合する際の接着力によって薄帯01に生ずる
応力分布が均一でないことともあいまって、回転軸02
に作用する1〜ルクが零である場合に、本来零になるは
ずの検出出力が、該回転@02の停止角度の違いによっ
て比較的大きな値で検出されてしまう。 1□   −を  電    だ  の本発明の目的は
、応力−磁気特性曲線の直線性が良好で、力学量検出可
能範囲が拡大され、広範囲の力学量変化を検知すること
が可能であって、応カーO近傍における該特性曲線の勾
配がゆるやかなる力学量検出素子を提供する点にある。 この目的は、正の磁歪を有する非晶質磁性合金で形成さ
れた薄帯の表面に被着によって引張り応力が生ずる傾向
のある被覆を施し、該被覆の被着関係により薄帯の少な
くとも一部に予め圧縮ひずみを与えることによって達成
される。 例えば、高速回転する銅ドラム上に溶融合金を連続供給
して、これを超急冷し、薄帯形状で提供される非晶質磁
性合金は、その組織中に結晶粒界が存在せず、従来の結
晶質合金に比して機械的。 化学的、電磁気的に優れた強磁性材であって、特に鉄を
主成分とする非晶質磁性合金は、応力−磁気特性におい
て優れた直線性(リニアリティ)を示す。 ところで、前記非晶質磁性合金は、液体構造を凍結する
ことによって得た材料であるから、その原子分布状態が
液相状態に類似し、結晶体(結晶合金)に比して低密度
であって、原子間引力は結晶体に比して大きいものと想
定される。この想定に従うならば、第4図に示した特性
曲線aにおける応力−〇は見掛は上の値であって、例え
ば第5図図示の如く、特性曲線aに連なる曲線すが潜在
すると考えることができ、この潜在曲線す部分を応力≧
Oの範囲に持ち来たし、第6図図示の特性曲線Cを得る
ことができるならば、応力−磁気特性が著しく向上する
。 本発明者等は、斯かる想定のrで実験を行なった結果、
正の磁歪を有する非晶質磁性合金製薄帯に予め圧縮ひず
み(圧縮応力)を与えることによって前記特性面I!i
lCを実現できることを確認した。 圧縮ひずみを与えるには、非晶質磁性合金で形成された
薄帯の表面に、被着によって引張り応力が生ずる傾向の
ある金属、有機質材料の被覆を施すのが簡単である。具
体的には、気相メッキ法(スパッタリング法、真空蒸着
法)、電気メッキ法によって薄帯表面に合成被覆を形成
するか、融液状(または粘液状)の樹脂材(好ましくは
樹脂接着剤)を薄帯表面に塗作後硬化させ、薄帯に対す
る被覆の被着関係によって薄帯に圧縮ひずみを与える。 得られた力学足検出素子は、これを測定対象物に貼着し
て使用できる他、単体として、荷重検出装置、圧縮検出
装置等で好適にこれを使用することができる。 気相メッキ法、電気メツキ法によって基体表面に被覆を
施した場合、該被覆には大なり小なり内部応力が生じる
。 電気メツキ法においては、光沢剤によって内部応力を調
整し得ることが知られている。例えば、ニッケルメッキ
浴における一次光沢剤はMu応力減少剤としての機能を
有し、被覆に圧縮応力を与え(基体には引張り応力が作
用する)、これに二次光沢剤を添加すると引張り応力(
基体には圧縮応力が作用する)の方へ電着応力が増加す
る。 また、非晶質磁性合金と熱膨張(収縮)特性の異なる樹
脂液1fll晶質磁性合金製薄帯の表面に付し、その被
着関係により相対的に薄帯の熱変形を封じて該薄帯に圧
縮ひずみを付与することができる。 例えば、硬化温度93℃の熱硬化性樹脂膜を塗布するこ
とによって該非晶質磁性合金製薄帯の少なくとも一部に
圧縮ひずみを付与するのは好適であり、熱硬化性樹脂膜
を塗布した薄帯を、力学徂検出素子の使用温度範囲(通
常の力学m検出素子は常温25℃で使用されており、そ
れ故使用温度とは、常温を基準として、それ以上または
それ以下の温度を指す)を越える該樹脂硬化温度に加熱
して硬化させ、得られた被膜付き薄帯を、力学量検出素
子として使用する場合の使用温度に戻せば良い。 薄帯に付す被覆は、そのn分厚が増すほど内部応力が増
大するのであるから、薄帯に大きな圧縮ひずみを与える
には被覆厚さを大ぎくするのが有効である。ただし、そ
の厚さが成る程度太きく4蒙ると基体である薄帯から剥
離し易くなることに留意すべきである。この観点から、
金属メッキ被覆の膜厚は、これを10μ辺未満に抑える
ことがJet奨される。 人1五] ■F e 会+ Bn、vS 、Lq、q C2の薄帯
1.2.3 (寸法:厚さ25μm、長さ10r:m、
幅25s)を用意した。 ■薄帯1には被覆をllff1さず、薄帯2.3の両面
にはスパッタリング法によりそれぞれ銅被覆4゜5を諭
した(第7図)。被覆4の膜厚は500A 。 被覆5の膜厚は800Aであった。スパッタリング条件
は下記の通りである。 ■薄帯1.2.3を試片として、第8図に示J装置を用
いて応力−磁気特性を調べた。その結果を、応力−比透
磁率曲線として第9図に示す。 第8図において、6は、試片の上片を全幅に亘って把持
する懸吊具を示し、試片の下辺には、その全幅に亘って
把持具7が取着され、鉤8に係止される重錘9によって
試片に対して可変な引張り力が印加される。 また、試片の両側には、コイル(0,19mmφのフォ
ルマル銅線80T ) 10を設置し、1 K11z 
、  1.IVの正弦波交流を与え、インダクタンスを
インピーダンス・アナライザーで求め、これを比透磁率
に変換することにより得た。 この比透磁率は前述の如く、薄帯1,2.3に与えられ
る引張り応力の大小によって変化する。 それ故、逆に誘起電圧を測定することにより、引張り力
の大きさく重錘9の荷重)を知ることができる。 第9図の応力−比透磁率曲線は、薄帯1,2゜3につき
、重!!9の荷重を変化させ、荷重の大きさを比透磁率
の変化として捉えたものである。 く試験結果の評価〉 ■幼帯1の特性曲線と、薄帯2.3の特性曲線とを対比
すれば、a帯表面にスパッタリング法にJ:る銅被覆を
施すのが有効であることが判る。すなわち、第6図の曲
線Cと同様に、直線範囲の拡大された曲線が得られる。 ■薄帯2,3の特性曲線を対比すると、銅被覆の膜厚は
大きい方が効果的であり、I11厚が増大すると曲線が
右方へ移動し、応力検出範囲工が増大する(I2 <I
3)ことが判る。銅被覆の膜厚が増大すると、それ自身
の内部応力が増大することは明らかであって、この内部
応力が薄帯の圧縮ひずみ缶を増大せしめ、(銅被覆には
引張り応力が生じることに留意すべきである)特性曲線
の右方への移動を招来するものと考えられる。 なお、特性曲線の直線性が優れていることは、演算用補
助機器が不要になることを意味している。 W燵■ユ ■単ロール法によりアライド社製Hetglas260
5SC(商品名)で形成した非晶質磁性合金製薄帯(寸
法400履X7#X25μm)を用意した。 ■該薄帯の片面全面に、チバガイギー社製エポキシ系樹
脂接着剤アラルダイトX N 1244 (商品名)(
熱膨張係数10X 10−5 /’C) ヲtl布し、
温度150℃の恒温槽中に装入して樹脂接着剤を硬化さ
せた後、これを恒温槽から取り出して放冷した。 ■次に、第3図図示の場合と同様にして、得られた試験
片の応力−磁気特性(応力−出力(電圧V))を調べた
。その結果を第10図に示す。 く試験結果の評価〉 第10図の曲線形状は、第6図に示した曲線Cとほぼ一
致してJ3す、曲線a(第4図参照)と対比するならば
圧縮ひずみの付与が極めて有効であることが判る。 l匪り豆】 以上の説明から明らかな様に、正の磁歪を有する非晶質
磁性合金で形成された薄帯の表面に被着によって引張り
応力が生ずる傾向のある被覆を施し、該被覆の被着関係
により薄帯の少なくとも一部に予め圧縮ひずみを付与し
てなる力学■検出素子が提案された。 本発明の力学m検出素子は、予め圧縮ひずみが付与され
ていない非晶質磁性合金部片(力学量検出素子)に比し
て応力−磁気特性が改善され、力学量検出可能範囲が拡
大されているため、応用範囲が広い。 また、本発明の力学m検出素子は、薄帯の表面に被覆を
施したものであるから、特に該被覆材が銅、金2合成樹
脂である場合に耐蝕性の向上を期待できる。 さらに、本発明の力学m検出素子においては、薄帯の片
面だけでなく両面に被覆を施すことにより、a9帯に付
与する圧縮ひずみmを増大させることができ、用途に応
じた特性を有する力学m検出素子を提供し得る。
[For mechanical quantity sensors that measure force, torque, etc., sensors that utilize the stress-magnetic effect of amorphous magnetic alloys have been attracting attention in recent years.According to this dynamic sensor, Contact detection is possible. (2) Force can be directly converted to zero electricity. ■The device structure as a sensor is simple and miniaturization is achieved. ■Amorphous magnetic alloys are high-strength, high-toughness materials that are corrosion-resistant and completely elastic, so they have advantages such as excellent environmental resistance and the ability to withstand a wide range of usage conditions. As an example, a ribbon 01 of an amorphous magnetic alloy with positive magnetostriction that is sensitive to the stress-magnetic effect is rotated around the rotation axis 02.
A torque sensor that detects changes in the magnetic properties of the ribbon 01 due to the stress-magnetic effect by winding it around the ribbon 01 and introducing "torsional strain" generated on the rotating shaft 02 due to the torque T into the ribbon 01, thereby detecting 1-luke T. (See Figure 1).In an amorphous magnetic alloy with positive magnetostriction, when tensile stress is applied, the magnetoelastic energy in the tensile direction decreases,
There is a phenomenon in which magnetization becomes easier in that direction, and this phenomenon is called the stress-magnetic effect. In the torque sensor, this stress-magnetic effect is used to apply magnetization to the entire surface of the ribbon 01 in the circumferential direction. A uniform easy axis of magnetization (-axis magnetic anisotropy) Ku is given in the direction of the inclination angle α (α>45°) with respect to 03. However, when torque T acts on the rotating shaft 02, the second
As shown in the figure, the angle ± with respect to the axial direction of the rotating shaft 02
A stress σ expressed by the formula σ = 16, T (however, d is the outer diameter of rotation @02 and πd3) is generated in the 45° direction, and due to the stress-magnetic effect, −@magnetic anisotropy is also generated in the +σ direction. As a result, a synthesized easy axis Ku' is given. Generally, the magnetic permeability of a magnetic material changes depending on the direction of the axis of easy magnetization with respect to the direction of the magnetic field, so the change in the axis of easy magnetization (Ku-+Ku') is regarded as a change in magnetic permeability, and the torque T Largeness can be detected. Therefore, if a change in magnetic permeability (or magnetic flux density) is detected as a voltage change using, for example, an excitation coil (-primary coil) and a detection coil (secondary coil), a torque-output curve as shown in Figure 3 can be obtained. It will be done. However, the normally used amorphous magnetic alloys have poor linearity and a narrow mechanical quantity detectable range I, so they are used as detection elements in the low torque range. The stress-output curve of the amorphous magnetic alloy is as shown in Figure 4, and the slope of the curve is large near the stress -O, so the sensitivity is very high in that part.
In Fig. 1, the thin strip 01 is on the surface of the rotation ll1I102.
Coupled with the fact that the stress distribution generated in the ribbon 01 is not uniform due to the adhesive force when joining the
When the 1 to 1 torque acting on the rotation is zero, the detection output, which should originally be zero, is detected as a relatively large value due to the difference in the stopping angle of the rotation @02. The object of the present invention is to provide good linearity of the stress-magnetic characteristic curve, expand the range in which mechanical quantities can be detected, and make it possible to detect changes in a wide range of mechanical quantities. The object of the present invention is to provide a mechanical quantity detection element in which the slope of the characteristic curve near the car O is gentle. The purpose of this is to apply a coating that tends to generate tensile stress when deposited on the surface of a ribbon made of an amorphous magnetic alloy having positive magnetostriction, and to This is achieved by applying compressive strain in advance. For example, an amorphous magnetic alloy that is provided in the form of a thin ribbon by continuously supplying molten alloy onto a high-speed rotating copper drum and ultra-quenching it is produced without grain boundaries in its structure, and mechanically compared to crystalline alloys. Amorphous magnetic alloys, which are chemically and electromagnetically excellent ferromagnetic materials, and in particular, whose main component is iron, exhibit excellent linearity in stress-magnetic characteristics. By the way, since the amorphous magnetic alloy is a material obtained by freezing a liquid structure, its atomic distribution state is similar to a liquid phase state and has a lower density than a crystalline body (crystalline alloy). Therefore, the attraction between atoms is assumed to be larger than that of a crystalline body. If this assumption is followed, the stress -〇 in the characteristic curve a shown in Fig. 4 will appear to be an upper value, and for example, as shown in Fig. 5, it can be considered that the curve connected to the characteristic curve a is latent. The stress ≥
If the characteristic curve C shown in FIG. 6 can be obtained, the stress-magnetic characteristics will be significantly improved. As a result of conducting experiments with such assumed r, the present inventors found that
By applying compressive strain (compressive stress) in advance to an amorphous magnetic alloy ribbon having positive magnetostriction, the characteristic surface I! i
It was confirmed that IC could be achieved. To impart compressive strain, it is easy to coat the surface of a ribbon made of an amorphous magnetic alloy with a metal or organic material that tends to produce tensile stress when deposited. Specifically, a synthetic coating is formed on the surface of the ribbon using a vapor phase plating method (sputtering method, vacuum evaporation method) or an electroplating method, or a resin material in the form of a melt (or slime) (preferably a resin adhesive) is formed. After being applied to the surface of the ribbon, it is cured, and compressive strain is applied to the ribbon depending on the adhesion of the coating to the ribbon. The obtained mechanical foot detection element can be used by attaching it to an object to be measured, and can also be suitably used as a single unit in a load detection device, a compression detection device, etc. When a coating is applied to the surface of a substrate by a vapor phase plating method or an electroplating method, internal stress is generated to a greater or lesser extent in the coating. In the electroplating method, it is known that internal stress can be adjusted using a brightening agent. For example, the primary brightener in a nickel plating bath functions as a Mu stress reducer, imparting compressive stress to the coating (tensile stress acts on the substrate), and adding a secondary brightener to this causes tensile stress (
(compressive stress acts on the substrate), the electrodeposition stress increases. In addition, 1 fll of a resin liquid having thermal expansion (contraction) characteristics different from those of the amorphous magnetic alloy is applied to the surface of the crystalline magnetic alloy ribbon, and the adhesion relationship relatively seals the thermal deformation of the ribbon. Compressive strain can be applied to the strip. For example, it is preferable to impart compressive strain to at least a portion of the amorphous magnetic alloy ribbon by applying a thermosetting resin film with a curing temperature of 93°C; The band is the operating temperature range of the dynamics detection element (normal dynamics detection elements are used at room temperature of 25°C, so the operating temperature refers to temperatures above or below normal temperature). The coated thin ribbon obtained by heating the resin to a curing temperature exceeding 100 mL may be returned to the operating temperature when used as a mechanical quantity detecting element. Since the internal stress of the coating applied to the ribbon increases as the thickness increases by n, it is effective to increase the thickness of the coating in order to impart a large compressive strain to the ribbon. However, it should be noted that if the thickness is increased to a certain extent, it will be easy to peel off from the thin ribbon that is the base. From this point of view,
It is recommended that the thickness of the metal plating coating be kept below 10 μm. Person 15] ■F e meeting + Bn, vS, Lq, q C2 thin strip 1.2.3 (Dimensions: thickness 25 μm, length 10r: m,
A width of 25 seconds was prepared. (2) Thin strip 1 was not coated with any coating, and both sides of thin strips 2 and 3 were each coated with copper by 4.5 degrees by sputtering (Fig. 7). The thickness of coating 4 is 500A. The film thickness of coating 5 was 800A. The sputtering conditions are as follows. (2) The stress-magnetic properties of ribbons 1.2.3 were examined using the J apparatus shown in FIG. 8 as specimens. The results are shown in FIG. 9 as a stress-relative permeability curve. In FIG. 8, reference numeral 6 indicates a hanging tool that grips the upper part of the specimen over its entire width, and a gripping tool 7 is attached to the lower side of the specimen over its entire width, and is attached to a hook 8. A variable tensile force is applied to the specimen by the stopped weight 9. In addition, coils (0.19 mmφ formal copper wire 80T) 10 were installed on both sides of the specimen, and 1 K11z
, 1. The inductance was obtained by applying an IV sine wave alternating current, determining the inductance with an impedance analyzer, and converting this into relative permeability. As described above, this relative magnetic permeability changes depending on the magnitude of the tensile stress applied to the ribbons 1, 2.3. Therefore, by measuring the induced voltage, the magnitude of the tensile force (the load on the weight 9) can be determined. The stress-relative permeability curve in Figure 9 shows the weight of the ribbon 1.2°3. ! 9 is changed, and the magnitude of the load is taken as a change in relative magnetic permeability. Evaluation of test results> ■ Comparing the characteristic curves of Young Strip 1 and Thin Strip 2.3, it can be seen that it is effective to apply a copper coating using the sputtering method to the surface of the A-band. I understand. That is, similar to curve C in FIG. 6, a curve with an expanded linear range is obtained. ■Comparing the characteristic curves of thin strips 2 and 3, the larger the thickness of the copper coating, the more effective it is, and as the I11 thickness increases, the curve shifts to the right, and the stress detection range increases (I2 < I
3) It turns out. It is clear that as the thickness of the copper cladding increases, its own internal stress increases, and this internal stress increases the compressive strain capacity of the ribbon (note that tensile stress occurs in the copper cladding). This is thought to cause the characteristic curve to shift to the right. Note that the excellent linearity of the characteristic curve means that no auxiliary computing equipment is required. Hetglas 260 manufactured by Allied Co., Ltd. by single roll method
A thin ribbon made of an amorphous magnetic alloy made of 5SC (trade name) (dimensions: 400 mm x 7 # x 25 μm) was prepared. ■ Apply epoxy resin adhesive Araldite X N 1244 (trade name) manufactured by Ciba Geigy Co., Ltd.
Thermal expansion coefficient 10X 10-5/'C)
After the resin adhesive was put into a constant temperature bath at a temperature of 150° C. and cured, it was taken out from the constant temperature bath and allowed to cool. (2) Next, the stress-magnetic characteristics (stress-output (voltage V)) of the obtained test piece were investigated in the same manner as in the case shown in FIG. The results are shown in FIG. Evaluation of test results> The curve shape in Figure 10 almost coincides with curve C shown in Figure 6, and if compared with curve a (see Figure 4), it is extremely effective to apply compressive strain. It turns out that. As is clear from the above explanation, a coating that tends to generate tensile stress by adhesion is applied to the surface of a ribbon made of an amorphous magnetic alloy with positive magnetostriction, and A dynamic detection element has been proposed in which at least a portion of a thin ribbon is subjected to compressive strain in advance due to adhesion. The mechanical m-detecting element of the present invention has improved stress-magnetic characteristics and an expanded range of mechanical quantity detection compared to an amorphous magnetic alloy piece (mechanical quantity detecting element) to which no compressive strain has been applied in advance. Because of this, it has a wide range of applications. Furthermore, since the mechanical m-sensing element of the present invention is formed by coating the surface of a thin strip, it can be expected to improve corrosion resistance, especially when the coating material is copper or gold-2 synthetic resin. Furthermore, in the mechanical m-detecting element of the present invention, by coating not only one side but both sides of the ribbon, the compressive strain m applied to the A9 band can be increased, and the mechanical m detection elements may be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は非晶質磁性合金製薄帯を軸の周囲に接
合して、軸に与えられるトルクを検出する場合の原理を
説明する図、第3図は非晶質磁性合金製力学母検出素子
を用いたトルクセンサによる軸トルク測定例としてのト
ルク−出力曲線を示すグラフ、第4図は非晶質磁性合金
の応力−磁気特性を示すグラフ、第5図、第6図は本発
明の詳細な説明するための応力−磁気特性を示すグラフ
、第7図は被覆を施さない試験片としての非晶質磁性合
金製薄帯および被覆を施した試験片としての非品′j3
磁性合金製薄帯の要部断面図、第8図は力学量検出素子
の応力−磁気特性を調べるための装装置を示す図、第9
図は公知に係る力学m検出素子および本発明の力学量検
出素fの応力−比透磁率特性を示すグラフ、第10図は
圧縮ひずみを付与された前記非晶質磁性合金(アライド
社製Met(llas2605SC) [?帯の応力−
磁気特性を示すグラフである。 1.2.3・・・薄帯、4,5・・・銅被覆、6・・・
墾吊貝、7・・・把持具、8・・・鉤、9・・・重錘、
10・・・コイル。
Figures 1 and 2 are diagrams explaining the principle of detecting the torque applied to the shaft by joining a ribbon made of an amorphous magnetic alloy around the shaft, and Figure 3 is a diagram showing the principle of detecting the torque applied to the shaft. A graph showing a torque-output curve as an example of shaft torque measurement by a torque sensor using a mechanical base detection element, Fig. 4 is a graph showing stress-magnetic characteristics of an amorphous magnetic alloy, Figs. 5 and 6. 7 is a graph showing stress-magnetic characteristics for detailed explanation of the present invention, and FIG. j3
Figure 8 is a cross-sectional view of the main part of a magnetic alloy ribbon;
The figure is a graph showing the stress-relative permeability characteristics of a known mechanical quantity detecting element and a mechanical quantity detecting element f of the present invention. (llas2605SC) [?Stress in band-
It is a graph showing magnetic properties. 1.2.3...Thin strip, 4,5...Copper coating, 6...
Hanging shell, 7... Gripping tool, 8... Hook, 9... Weight,
10...Coil.

Claims (4)

【特許請求の範囲】[Claims] (1)正の磁歪を有する非晶質磁性合金の応力−磁気効
果を利用する力学量検出素子において、非晶質磁性合金
で形成された薄帯の表面に被着によって引張り応力が生
ずる傾向のある被覆を施してなり、該被覆の被着関係に
より薄帯の少なくとも一部に予め圧縮ひずみを付与して
いることを特徴とする力学量検出素子。
(1) In a mechanical quantity detecting element that utilizes the stress-magnetic effect of an amorphous magnetic alloy with positive magnetostriction, there is a tendency for tensile stress to occur due to adhesion on the surface of a ribbon made of an amorphous magnetic alloy. 1. A mechanical quantity detecting element characterized in that the ribbon is coated with a certain coating, and at least a portion of the ribbon is subjected to compressive strain in advance due to the adhesion of the coating.
(2)前記被覆を薄帯の両面に施してなる特許請求の範
囲第1項に記載された力学量検出素子。
(2) The mechanical quantity detecting element according to claim 1, wherein the coating is applied to both sides of the ribbon.
(3)前記被覆が、銅、金、その他の純金属膜、または
合金膜であることを特徴とする特許請求の範囲第1項に
記載された力学量検出素子。
(3) The mechanical quantity detection element according to claim 1, wherein the coating is a film of copper, gold, other pure metal, or an alloy film.
(4)前記被覆が、気相メッキ法によって形成された純
金属膜または合金膜であることを特徴とする特許請求の
範囲第1項に記載された力学量検出素子。
(4) The mechanical quantity detecting element according to claim 1, wherein the coating is a pure metal film or an alloy film formed by vapor phase plating.
JP4147987A 1987-02-26 1987-02-26 Physical quantity detection element Expired - Fee Related JPH0781920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4147987A JPH0781920B2 (en) 1987-02-26 1987-02-26 Physical quantity detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4147987A JPH0781920B2 (en) 1987-02-26 1987-02-26 Physical quantity detection element

Publications (2)

Publication Number Publication Date
JPS63210632A true JPS63210632A (en) 1988-09-01
JPH0781920B2 JPH0781920B2 (en) 1995-09-06

Family

ID=12609484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4147987A Expired - Fee Related JPH0781920B2 (en) 1987-02-26 1987-02-26 Physical quantity detection element

Country Status (1)

Country Link
JP (1) JPH0781920B2 (en)

Also Published As

Publication number Publication date
JPH0781920B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US3861206A (en) Method and device for measuring a stress employing magnetostriction
US4805466A (en) Device for the contactless indirect electrical measurement of the torque at a shaft
Praslicka et al. Possibilities of measuring stress and health monitoring in materials using contact-less sensor based on magnetic microwires
Wun-Fogle et al. Sensitive, wide frequency range magnetostrictive strain gage
US4823617A (en) Torque sensor
US5105667A (en) Strain measuring device employing magnetostriction and having a magnetic shielding layer
US11927499B2 (en) Load measuring arrangement, method for producing said arrangement and load measuring method which can be carried out with said arrangement
Flanders A vertical force alternating‐gradient magnetometer
Arai et al. A new hybrid device using magnetostrictive amorphous films and piezoelectric substrates
JPS63210632A (en) Dynamical quantity detection element
US4784003A (en) Mechanical quantity sensor element
JPS62184323A (en) Magneto-striction type torque sensor
Su et al. Young’s modulus of amorphous Terfenol‐D thin films
JPS63210735A (en) Mechanical quantity detecting element
JPS62206421A (en) Torque sensor
JPH081399B2 (en) Physical quantity detection element and manufacturing method thereof
JP5081353B2 (en) Torque transducer
Lee et al. Loading effect on ACPD of a crack in ferromagnetic material
Wun‐Fogle et al. Magnetoelastic effects in amorphous wires and amorphous ribbons with nonmagnetic thin‐film coatings
JPH0817255B2 (en) Method for manufacturing laminated structure mechanical quantity detection element
JPH0710010B2 (en) Method of fixing the physical quantity detection element
Uchiyama et al. Impedance strain gauge characteristics of glass covered amorphous magnetic wires
JPH0710009B2 (en) Method of fixing the physical quantity detection element
JPH0242417B2 (en)
JPH01210485A (en) Element for detecting mechanical quantity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees