JPS63210605A - Apparatus for measuring configuration of optical surface - Google Patents

Apparatus for measuring configuration of optical surface

Info

Publication number
JPS63210605A
JPS63210605A JP4265287A JP4265287A JPS63210605A JP S63210605 A JPS63210605 A JP S63210605A JP 4265287 A JP4265287 A JP 4265287A JP 4265287 A JP4265287 A JP 4265287A JP S63210605 A JPS63210605 A JP S63210605A
Authority
JP
Japan
Prior art keywords
light
mirror
reflected
measured
fringe scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4265287A
Other languages
Japanese (ja)
Inventor
Shunichi Akiba
俊一 秋葉
Seiichiro Terajima
寺島 精一郎
Yoichiro Arai
荒井 洋一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4265287A priority Critical patent/JPS63210605A/en
Publication of JPS63210605A publication Critical patent/JPS63210605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To perform measurement with good accuracy, by changing over an interference system by opening and closing a plurality of the shutters in a beam path when the non-spherical degree of the surface of an object to be measured is large and when the non-spherical degree is small or said surface is flat and spherical. CONSTITUTION:When a lens 58 has a non-spherical surface, only a shutter 58 is closed and a shearing interferometer is constituted. The reflected beam emitted from a laser beam source 1 to irradiate the lens 58 is split into two beams by a splitter 59 through a splitter 53, and the measuring beam and the reference beam respectively pass through mirrors 62, 61 to reach a TV camera 67 through a lens 66. The mirror 62 is minutely vibrated by a means 64 to perform fringe scanning. When the lens 58 has a spherical surface only a shutter 57 is closed and a fringe scanning Twyman-Green interferometer is constituted. The reflected beam split by the splitter 53 is reflected by a mirror 69 to become reference beam and transmitted beam is reflected by the lens 58 to become data beam; both beams reach the TV camera 67. The mirror 69 is minutely displaced by an electrostriction element 70 to perform fringe scanning. By this method, measuring accuracy is enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は軟質の光学表面形状、例えば非球面プラスチッ
クレンズなどの表面形状を、干渉測定により非接触で高
速・高精度で測定することが可能である光学表面の形状
測定装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention enables non-contact, high-speed, high-precision measurement of soft optical surface shapes, such as those of aspherical plastic lenses, by interferometric measurement. This invention relates to an optical surface shape measuring device.

〔従来の技術〕[Conventional technology]

従来方式として、被測定物の非球面の表面形状を高精度
に測定できる縞走査シェアリング干渉方式が提案されて
いる(例えば、日経メカニカル、1983年2月28日
号、第34頁以下)、本方式は被測定物からの反射光で
ある形状を測定すべき測定波面と、この波面を光の進行
方向に対して横にずらした参照波面とを作り、一方の波
面を作る光の光路長を変化させて、両波面の干渉領域の
各点における位相差を測定し、この位相差を加算して、
測定表面の形状を特定する測定方式である。
As a conventional method, a fringe scanning shearing interference method has been proposed that can measure the surface shape of an aspherical surface of an object with high precision (for example, Nikkei Mechanical, February 28, 1983 issue, pp. 34 et seq.). This method creates a measurement wavefront whose shape is to be measured, which is the reflected light from the object to be measured, and a reference wavefront, which is shifted horizontally with respect to the traveling direction of the light, and the optical path length of the light that makes one wavefront. , measure the phase difference at each point in the interference region of both wavefronts, and add this phase difference,
This is a measurement method that specifies the shape of the measurement surface.

第7図は、上記縞走査シェアリング干渉方式を利用した
1表面形状測定装置として、提案されたものの1例を示
している。以下、この装置例に即して表面形状測定方式
の概要を簡単に説明し、あわせで、本発明により解決し
ようとする問題点につき説明する。
FIG. 7 shows an example of a proposed surface shape measuring device using the fringe scanning shearing interference method. Hereinafter, the outline of the surface shape measuring method will be briefly explained using this example of the apparatus, and the problems to be solved by the present invention will also be explained.

第7図において、符号1はレーザー発振器、2はビーム
・エキスパンダー、3,4はビーム・スプリッター、6
は平面鏡、5は対物レンズ、7は圧電素子、8は平行プ
レート、9はビーム・スプリッター、10は結像レンズ
、11はエリアセンサー、12は被測定物体をそれぞれ
示す。
In FIG. 7, reference numeral 1 is a laser oscillator, 2 is a beam expander, 3 and 4 are beam splitters, and 6 is a beam splitter.
1 is a plane mirror, 5 is an objective lens, 7 is a piezoelectric element, 8 is a parallel plate, 9 is a beam splitter, 10 is an imaging lens, 11 is an area sensor, and 12 is an object to be measured.

レーザー発振器1から放射されたレーザー光は、ビーム
・エキスパンダー2により平行光束となり、ビーム・ス
プリッター3,4を透過したのち、対物レンズ5を透過
し、一旦集光したのち発散性の光束となって、被測定物
体12の形状測定面に入射し、反射される。上記被測定
面からの反射光は形状を測定されるべき表面の情報を含
んでいるので情報光と称する。
The laser beam emitted from the laser oscillator 1 becomes a parallel beam of light by the beam expander 2, passes through the beam splitters 3 and 4, and then passes through the objective lens 5, where it is once condensed and then becomes a divergent beam of light. , enters the shape measurement surface of the object to be measured 12 and is reflected. The reflected light from the surface to be measured is called information light because it contains information about the surface whose shape is to be measured.

被測定物体12の被測定面に入射するときの球面波の波
面をWO(X)*被測定面をWt(x)とすれば、上記
情報光の波面W (x)に対しW(x)Wo (X)= 2(Wz (x)We (x))    −(1)とな
る。Wo(x)は光学系の設定条件に応じて知る事が出
来るから、情報光の被測定面における波面形状W(x)
を知ることにより、被測定面の形状Wz(x)を知るこ
とができる。
If the wavefront of the spherical wave when it is incident on the surface to be measured of the object to be measured 12 is WO(X)*the surface to be measured is Wt(x), then W(x) for the wavefront W(x) of the information light mentioned above. Wo(X)=2(Wz(x)We(x))−(1). Since Wo(x) can be known according to the setting conditions of the optical system, the wavefront shape W(x) of the information light on the measured surface
By knowing, the shape Wz(x) of the surface to be measured can be known.

Wl (X)=    (W(X)+WQ  (X))
  −(2)さて、情報光はビーム・スプリッター4に
より2光束すなわち測定光と参照光に分離される。いず
れを測定光と呼び参照光と呼ぶかは任意であるが、ここ
では便宜的にビーム・スプリッター4を透過し、ビーム
・スプリッター3,9.結像レンズ10を経てエリアセ
ンサー11にいたる光を測定光と呼び、ビーム・スプリ
ッター4を反射し、平面鏡6.平行プレート8.ビーム
・スプリッター9.結像レンズ10を経てエリアセンサ
ー11にいたる光を参照光と呼ぶことにする。参照光は
平行プレート8を透過することにより、その進行方向が
横方向へ微小距離ずれる。従って測定光と参照光とはエ
リアセンサー11の受光域上で互いにずれて重なり合い
、重なり合った部分では干渉による干渉縞があられれる
。エリアセンサー11上で測定光と参照光が微小距離ず
れる量Sをシェア量という、そこで、エリアセンサー1
1の受光域で測定光により再現される波面をW(x)と
すれば、参照光により再現される波面は、W(x+S)
であり1両波面の位相差ΔW(x)はとなる、従って、
ΔW (x )が判ると、W (x)はfΔW(x)d
 x=s−W (x)       ・・(4)W(x
)=  −fΔW(x)d x      ・・(5)
なる演算によって求めることができる。
Wl (X)= (W(X)+WQ (X))
-(2) Now, the information light is separated by the beam splitter 4 into two light beams, that is, a measurement light and a reference light. Which one is called the measurement light and which one is called the reference light is arbitrary, but here, for convenience, it is transmitted through the beam splitter 4, and the beam splitters 3, 9, . The light that reaches the area sensor 11 via the imaging lens 10 is called measurement light, is reflected by the beam splitter 4, and is reflected by the plane mirror 6. Parallel plate8. Beam splitter9. The light that reaches the area sensor 11 via the imaging lens 10 will be referred to as reference light. When the reference light passes through the parallel plate 8, its traveling direction is shifted by a small distance in the lateral direction. Therefore, the measurement light and the reference light are shifted from each other and overlap each other on the light receiving area of the area sensor 11, and interference fringes are formed due to interference in the overlapped portion. The amount S by which the measuring light and the reference light deviate by a small distance on the area sensor 11 is called the share amount.
If the wavefront reproduced by the measurement light in the light receiving area of 1 is W(x), the wavefront reproduced by the reference light is W(x+S)
The phase difference ΔW(x) between the two wavefronts is therefore,
When ΔW (x) is known, W (x) becomes fΔW(x)d
x=s-W (x) ... (4) W(x
)=-fΔW(x)dx...(5)
It can be obtained by the following calculation.

さて、測定光、参照光はコヒーレントであるから、前述
した様にエリアセンサー11上で互いに干渉による干渉
縞が生ずる。この干渉縞を利用して、上記位相差ΔW 
(x )を知ることができる。すなわち圧電素子7に印
加する電圧を変えることにより参照光光路長をλ/N(
λはレーザー光の波長)きざみで、N段階変化させる。
Now, since the measurement light and the reference light are coherent, interference fringes are generated by interference with each other on the area sensor 11 as described above. Using this interference fringe, the above phase difference ΔW
(x) can be known. That is, by changing the voltage applied to the piezoelectric element 7, the optical path length of the reference light can be changed to λ/N(
λ is the wavelength of the laser beam) and is changed in N steps.

このように参照光の光路長を変化させると、それにとも
なって。
When the optical path length of the reference light is changed in this way, the optical path length of the reference light is changed accordingly.

エリアセンサー11上の干渉縞のパターンが変化する。The pattern of interference fringes on the area sensor 11 changes.

そこで、光路長が1段階変化するごとに、エリアセンサ
ー11上の各点の干渉縞の光強度IJ(x)(J=1〜
N)を測定し1次式によって、位相差ΔW(x)を知る
のである。
Therefore, each time the optical path length changes by one step, the light intensity IJ(x) of the interference fringe at each point on the area sensor 11 (J=1~
The phase difference ΔW(x) is determined by measuring the phase difference ΔW(x) using a linear equation.

J=I              N・・・(6) このようにして、位相差ΔW (x )が知れれば、こ
れを積分することにより、波面W(x)を知ることがで
き、この波面形状から被測定物の表面形状を(2)式に
より求めることができる。なお実際には、X方向のシェ
アリングによる測定と、X方向に直交するY方向へのシ
ェアリングによる測定とを行ない1両測定結果から総合
的に被測定物の表面形状を特定するのである。以上が縞
走査シェアリング干渉方式による表面形状測定のあらま
しである。
J=IN...(6) In this way, if the phase difference ΔW (x) is known, by integrating this, the wavefront W(x) can be found, and from this wavefront shape, the The surface shape of an object can be determined using equation (2). In practice, measurements are performed by shearing in the X direction and by shearing in the Y direction perpendicular to the X direction, and the surface shape of the object to be measured is comprehensively specified from the results of the single measurement. The above is an overview of surface shape measurement using the fringe scanning shearing interferometry method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は一方の光路にシェア用の平行プレート8
を入れであるので、この平行プレート8の屈折率一様性
や複屈折による波面の乱れが悪影響を及ぼし測定精度が
低下するという問題があった。又、被測定物の表面形状
が平面2球面、あるいは非試面であっても測定は可能で
あるが、この測定方式は第1次測定値として得られるの
が、測定対象の微分情報であって、これを積分して初め
て測定すべき表面形状の情報が得られる。このため測定
すべき表面形状が平面もしくは球面の場合や、非球面の
度合が小さい場合には、これらを直接的に測定できる干
渉測定方式1例えばフィゾー型や、トワイマン型の干渉
測定方式に比して、縞走査シェアリング干渉測定方式は
若干精度が劣るという問題があった。
The above conventional technology has a parallel plate 8 for sharing in one optical path.
Therefore, there was a problem in that the uniformity of the refractive index of the parallel plate 8 and disturbance of the wavefront due to birefringence adversely affected the measurement accuracy. Furthermore, although measurement is possible even if the surface shape of the object to be measured is a plane, two spheres, or a non-test surface, this measurement method obtains differential information of the object as the primary measurement value. Information on the surface shape to be measured can only be obtained by integrating this. For this reason, when the surface shape to be measured is flat or spherical, or when the degree of asphericity is small, interferometric measurement methods that can directly measure these are compared to, for example, Fizeau type or Twyman type interferometric measurement methods. However, the fringe scanning shearing interferometry method has a problem of slightly inferior accuracy.

本発明の目的は、上述したところに鑑み、波面の乱れに
よる精度低下の防止と、非球面の度合が大きい場合の測
定には縞走査シェアリング干渉方式で測定し、平面、球
面や非球面の度合いが小さい場合の測定には縞走査トワ
イマン干渉方式で測定しうる新規な、光学表面の形状測
定装置を提供することにある。
In view of the above, an object of the present invention is to prevent a decrease in accuracy due to wavefront disturbances, and to use a fringe scanning shearing interference method to measure highly aspherical surfaces, and to measure flat, spherical, and aspherical surfaces. It is an object of the present invention to provide a novel optical surface shape measuring device that can perform measurement using a fringe scanning Twyman interference method when measuring a small degree.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、シェア用の平行プレート8を除いて、ミラ
ー6を光軸方向に移動させる事によってシェアリングを
発生させ、ミラー6を移動した事によって生じる光軸に
対する傾斜誤差は、新たに設ける基準面からの反射光に
よる平面波を干渉させる事によって無くシ、波面の乱れ
による測定精度の低下を防止する。又、縞走査シェアリ
ング干渉方式と縞走査トワイマン干渉方式をワンタッチ
で切り換える2枚の光路切り換え用シャッターを〔作用
〕 シェア用ミラーが移動する事によって生ずる傾斜誤差は
、基準面からの反射光を干渉させ、傾斜誤差を補正する
様に、シェア用ミラーを動作する。
The above purpose is to generate shearing by moving the mirror 6 in the optical axis direction, excluding the parallel plate 8 for shearing, and to eliminate the tilt error with respect to the optical axis caused by moving the mirror 6 as a new standard. By interfering with the plane waves caused by the reflected light from the surface, it is possible to prevent a decrease in measurement accuracy due to disturbance of the wavefront. In addition, there are two optical path switching shutters that switch between the fringe scanning shearing interference method and the fringe scanning Twyman interference method with a single touch.[Function] The tilt error caused by the movement of the shearing mirror interferes with the reflected light from the reference surface. and operate the shearing mirror to correct the tilt error.

それによって、シェア用ミラーの動作は波面の乱れを生
じさせないので高精度となる。
As a result, the operation of the shearing mirror does not cause disturbance of the wavefront, resulting in high precision.

光路切り換え用シャッターは、縞走査シェアリング干渉
方式と縞測定トワイマン干渉方式をワンタッチで切り換
える様に動作する。それによって、非球面形状測定時に
は縞走査シェアリング干渉方式で測定でき、平面形状、
球面形状測定時には縞走査トワイマン干渉方式で測定で
きるので、測定すべき表面形状に応じて、精度良く測定
を行うことができる。
The optical path switching shutter operates to switch between the fringe scanning shearing interference method and the fringe measurement Twyman interference method with a single touch. As a result, aspherical shapes can be measured using the fringe scanning shearing interferometry method, and flat shapes,
Since the spherical shape can be measured using the fringe scanning Twyman interference method, it is possible to perform measurements with high accuracy depending on the surface shape to be measured.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。まず
全体構成を説明する。51はレーザ光を発するレーザ発
振器、52はレーザ発振器51からのレーザ光を拡げる
ビームエクスパンダ−53゜59.60はビームスプリ
ッタ−155,513゜57はレーザ光を必要に応じて
遮断するシャッター、54は対物レンズ、58は被測定
物である非球面レンズ、61.62はミラー、63はミ
ラー62を微動傾斜させる微調式ミラーホルダー、64
はレーザ光をシェアリング(横ずらし)する為の微動機
構、65は縞走査する為にミラー62を微動する電歪素
子、66は干渉縞をTVカメラ67の撮像面に結像させ
るレンズ、68は画像処理プロセッサである。
An embodiment of the present invention will be described below with reference to FIG. First, the overall configuration will be explained. 51 is a laser oscillator that emits a laser beam; 52 is a beam expander that expands the laser beam from the laser oscillator 51; 53° and 59.60 are beam splitters; 155 and 513° are shutters that block the laser beam as necessary; 54 is an objective lens, 58 is an aspherical lens to be measured, 61.62 is a mirror, 63 is a finely adjustable mirror holder for tilting the mirror 62, 64
65 is an electrostrictive element that finely moves the mirror 62 to scan the fringe; 66 is a lens that forms an image of interference fringes on the imaging surface of the TV camera 67; 68 is an image processing processor.

次に上述した全体構成の動作についてシェアリング干渉
計の動作から説明する。被測定物58が非球面レンズの
場合は、例えば第1図に示す様なシェアリング干渉計の
構成とする。すなわちシャッター55.56.57のう
ち55のみを閉じ、56.57は光路上から退避させて
おくのである。
Next, the operation of the above-mentioned overall configuration will be explained starting with the operation of the shearing interferometer. When the object to be measured 58 is an aspherical lens, a shearing interferometer configuration as shown in FIG. 1 is used, for example. That is, only 55 of the shutters 55, 56, and 57 are closed, and shutters 56 and 57 are retracted from the optical path.

被測定物58を図の如くセットし、レーザ発振器51か
らレーザ光を放射させる。この光はビームエクスパンダ
−52により、レーザ光の光束径が拡大され、所定の光
束径の平行光束となりビームスプリッタ−53に入射す
る。ここで反射光成分と透過光成分に別れる0反射光成
分はシャッター55により遮られ、以後の動作に関係し
ない。透過光成分は対物レンズ54により一旦集光した
のち発散性の光束となって被測定物 58の形状測定面に入射し、同形状測定面で反射される
。この反射光はレンズ54を透過し、ビームスプリッタ
−53を反射し、ビームスプリッタ−59により、2光
束に分離する。分離した光束の一方(これを測定光と称
す)はミラー62で反射、ビームスプリッタ−60を透
過し、結像レンズ66でTV左カメラ7の撮像管面にい
たる。分離した光束の他方(これを参照光と称す)はミ
ラー61.ビームスプリッタ−60を反射し、結像レン
ズ66でTV左カメラ7の撮像面にいたる。
The object to be measured 58 is set as shown in the figure, and the laser oscillator 51 emits a laser beam. The diameter of this laser beam is expanded by the beam expander 52, and the beam becomes a parallel beam having a predetermined beam diameter and enters the beam splitter 53. Here, the zero reflected light component, which is divided into a reflected light component and a transmitted light component, is blocked by the shutter 55 and is not related to subsequent operations. The transmitted light component is once condensed by the objective lens 54, becomes a divergent light beam, enters the shape measurement surface of the object to be measured 58, and is reflected by the shape measurement surface. This reflected light passes through the lens 54, is reflected by the beam splitter 53, and is separated into two beams by the beam splitter 59. One of the separated light beams (referred to as measurement light) is reflected by a mirror 62, transmitted through a beam splitter 60, and reaches the imaging tube surface of the TV left camera 7 through an imaging lens 66. The other of the separated light beams (this will be referred to as the reference light) is sent to the mirror 61. The beam is reflected by the beam splitter 60 and reaches the imaging surface of the TV left camera 7 through the imaging lens 66.

受光域における各光束の波面形状は、被測定物58の形
状測定面と相似形となる。対物レンズ54と結像レンズ
66からなる結像系の倍率が、被測定物58の形状測定
面と上記波面形状の大きさの比を与えるので上記波面形
状を測定することにより、被測定物58の形状を特定す
ることができる。実際の形状測定は次の様にする。参照
先の波面と測定光の波面をミラー62の位置を微動機構
64により光軸に直交する方向へ微小距離ずらし、TV
左カメラ7の撮像面で両光束が重なり合う部分に干渉縞
が生ずる。電歪素子65により測定光光路長を極微小距
離ずつ変化させて縞走査を行ない、TV左カメラ7から
の干渉縞画像を画像処理プロセッサ68で干渉領域にお
ける各点の光強度を測定し、その測定値に所定の演算(
(6))式を施して位相差ΔW(x)を得、これを(5
)式に従って積分することにより被測定物58の表面形
状を特定する。
The wavefront shape of each light beam in the light receiving area is similar to the shape measurement surface of the object to be measured 58 . The magnification of the imaging system consisting of the objective lens 54 and the imaging lens 66 gives a ratio of the size of the shape measurement surface of the object to be measured 58 and the wavefront shape, so by measuring the wavefront shape, the object to be measured 58 The shape of can be specified. The actual shape measurement is performed as follows. The position of the mirror 62 is shifted by a minute distance in the direction orthogonal to the optical axis by the fine movement mechanism 64, and the wavefront of the reference target and the wavefront of the measurement light are shifted by a small distance to the TV.
Interference fringes are generated on the imaging surface of the left camera 7 where the two light beams overlap. The electrostrictive element 65 performs fringe scanning by changing the optical path length of the measurement light by very small distances, and the image processing processor 68 measures the light intensity of each point in the interference region using the interference fringe image from the TV left camera 7. Perform predetermined calculations on the measured values (
(6)) to obtain the phase difference ΔW(x), which is converted into (5
) The surface shape of the object to be measured 58 is specified by integrating according to the equation.

次にミラー62を微動機構64によって移動した事によ
って生じる光軸に対する傾斜誤差の補正方法について第
2図、3図、4図を用いて述べる。
Next, a method for correcting a tilt error with respect to the optical axis caused by moving the mirror 62 by the fine movement mechanism 64 will be described with reference to FIGS. 2, 3, and 4.

測定光光路長と参照光光路長が等しい位置から、ミラー
62を微動機構64によって移動し、任意のシェアを与
えた後、第1図に示す構成からシャッター56を閉じ、
シャッター55を開放にし、第2図に示す構成とする。
After moving the mirror 62 by the fine movement mechanism 64 from a position where the optical path length of the measurement light and the optical path length of the reference light are equal to give an arbitrary share, the shutter 56 is closed from the configuration shown in FIG.
The shutter 55 is opened to create the configuration shown in FIG. 2.

即ち、被測定物58への入射光を遮断し、ビーム・スプ
リッター53で反射した光をミラー69に入射し、その
反射光を用いて光学系の補正を行う、被測定物58の反
射光光軸と、ミラー69の反射光光軸は合っているもの
とする。ミラー69に入射した光は反射し、ビームスプ
リッタ−53を透過し、ビーム・スプリッター59で反
射光成分と透過光成分に分れ。
That is, the light reflected from the object to be measured 58 is blocked, the light reflected by the beam splitter 53 is made incident on the mirror 69, and the reflected light is used to correct the optical system. It is assumed that the axis and the optical axis of the reflected light of the mirror 69 are aligned. The light incident on the mirror 69 is reflected, passes through the beam splitter 53, and is split into a reflected light component and a transmitted light component by the beam splitter 59.

反射光成分はミラー61.ビームスプリッタ−60、結
像レンズ66を経てTV左カメラ7の撮像面に達する。
The reflected light component is reflected by the mirror 61. The beam passes through a beam splitter 60 and an imaging lens 66 to reach the imaging surface of the TV left camera 7.

透過光成分はミラー62.ビームスプリンター60.結
像レンズ66を経てTV左カメラ7の撮像面に達する。
The transmitted light component is transmitted through the mirror 62. beam splinter 60. It passes through the imaging lens 66 and reaches the imaging surface of the TV left camera 7.

撮像面に達した両光束は干渉を起す。第1図に示すシェ
アリング干渉の構成でミラー62を微動機構64で移動
した後。
Both light fluxes that reach the imaging surface cause interference. After the mirror 62 is moved by the fine movement mechanism 64 in the sharing interference configuration shown in FIG.

シャッター5:z 56を移動させ、第2図に示す補正
を行う構成に光路を切り替える。この時第3図に示す干
渉縞パターンが5i!察されたとすると、ミラー62を
微動機構64で移動した事によってミラー62が光軸に
対し傾斜した事になる。これはミラー62が光軸に合っ
ていた時と、合っていない時では光路長に差が生じ、形
状測定値に誤差が生じる要因となる。そこでミラー62
が取り付けである微調式ミラーホルダー63で微動:I
[を行ない、第4図に示す干渉縞パターンになる様にし
傾斜の補正を行うのである。
Shutter 5: Move the z 56 and switch the optical path to the configuration for performing the correction shown in FIG. At this time, the interference fringe pattern shown in FIG. 3 is 5i! If this is detected, the movement of the mirror 62 by the fine movement mechanism 64 means that the mirror 62 is tilted with respect to the optical axis. This causes a difference in the optical path length between when the mirror 62 is aligned with the optical axis and when it is not aligned, which causes an error in the shape measurement value. So mirror 62
Fine movement with the fine adjustment mirror holder 63 that is attached: I
Then, the inclination is corrected so that the interference fringe pattern shown in FIG. 4 is obtained.

次に、被測定物58の表面形状が球面であるときの測定
について説明する。この場合は、シャッター57を閉ざ
し、第5図に示す構成に配備する。
Next, measurement when the surface shape of the object to be measured 58 is spherical will be explained. In this case, the shutter 57 is closed and the configuration shown in FIG. 5 is arranged.

このようにすると、光学系は全体として縞走査トワイマ
ン・グリーン型干渉装置となる。レーザ発振器51から
の光は、ビームエクスパンダ−52により、光束径が拡
大されビームスプリッタ−53に入射する。ここで反射
光成分と透過光成分に別れる。反射光成分はミラー69
で反射し、ビームスプリッタ−53を透過し、ビームス
プリッタ−59,ミラー61.ビームスプリッタ−60
を反射し、結像レンズ66を介してTV左カメラ7の撮
像面に入射する。ミラー69で反射した光はトワイマン
・グリーン型干渉測定方式における参照用の光となり、
その波面は平面である。一方、透過光成分は対物レンズ
54により一旦集光したのち発散性の光束となって被測
定物58の形状測定面に入射する。このとき対物レンズ
54による集光点と上記被測定面の曲率中心を一致させ
ておく、被測定物58からの反射光は情報光となって対
物レンズ54を逆向きに透過し、さらに、ビームスプリ
ッタ−53で反射して、前述の参照用の光と全く同一の
光路をだどり、TVカメラ67の撮像面にいたる。撮像
面上で、情報光と参照用の光とが干渉するので、電歪素
子70によりミラー69を光軸方向へ高精度に微小変位
させて縞走査を行ない、被測定物58の表面形状の球面
塵を測定する。
In this way, the optical system as a whole becomes a fringe-scanning Twyman-Green type interference device. The beam diameter of the light from the laser oscillator 51 is expanded by the beam expander 52 and enters the beam splitter 53. Here, the light is separated into a reflected light component and a transmitted light component. The reflected light component is mirror 69
It is reflected by the beam splitter 53, transmitted through the beam splitter 59, the mirror 61 . Beam splitter-60
is reflected and enters the imaging surface of the TV left camera 7 via the imaging lens 66. The light reflected by the mirror 69 becomes the reference light in the Twyman-Green type interference measurement method.
The wavefront is a plane. On the other hand, the transmitted light component is once condensed by the objective lens 54 and then becomes a diverging light beam and is incident on the shape measurement surface of the object to be measured 58 . At this time, the focal point of the objective lens 54 and the center of curvature of the surface to be measured are made to coincide.The reflected light from the object to be measured 58 becomes information light and passes through the objective lens 54 in the opposite direction. The light is reflected by the splitter 53 and travels along the same optical path as the reference light described above, reaching the imaging surface of the TV camera 67. Since the information light and the reference light interfere on the imaging surface, the electrostrictive element 70 moves the mirror 69 minutely in the optical axis direction with high precision to perform fringe scanning, thereby determining the surface shape of the object to be measured 58. Measure spherical dust.

第6図は他の実施例で、第1図、2図、5図と同一符号
の物品は同一物品である。符号71は反射膜72付きオ
プチカルフラットで、符号73は中空円筒状の電歪素子
でオプチカルフラット71と一体となっている。電歪素
子73に印加される電圧を変えることにより、オプチカ
ルフラット71が光軸方向すなわち反射膜に直交する方
向へ高精度で変位させられる。オプチカルフラット71
と電歪素子73からなる光学系74は、図示していない
光学系移動手段により、実線で示す状態と破線で干す状
態の間を移動できるようになっている6光学系移動手段
は公知の任意の移動手段を適宜用いてよく、移動は手段
でも、自動でも良い、縞走査シェアリング干渉方式の測
定は光学系74を破線で示す状態に移動し、光路上から
退避させる。またシャッター57を開放する。この様な
構成にすると、第1図で説明した縞走査シェアリング干
渉方式と同一な構成となる。故に本構成によるシェアリ
ング干渉方式の動作説明は省略する。光学系74を実線
で示す状態にし、シャッター57を閉じると光学系は全
体として縞走査フィゾー型干渉測定装置になり、被測定
物58の表面形状が球面であるときの球面塵測定の構成
となる6レ一ザ発振器51からの光が光学系74に入射
すると、入射光の1部がオプチカルフラット71の反射
膜72で反射され、他は透過する。オプチカルフラット
71の反射膜72で反射した光はフィゾー型干渉測定方
式における参照用の光となり、その波面は平面である。
FIG. 6 shows another embodiment, and articles having the same reference numerals as those in FIGS. 1, 2, and 5 are the same articles. Reference numeral 71 denotes an optical flat with a reflective film 72, and reference numeral 73 denotes a hollow cylindrical electrostrictive element which is integrated with the optical flat 71. By changing the voltage applied to the electrostrictive element 73, the optical flat 71 can be displaced with high precision in the optical axis direction, that is, in the direction perpendicular to the reflective film. optical flat 71
An optical system 74 consisting of an electrostrictive element 73 and an electrostrictive element 73 can be moved between a state shown by a solid line and a drying state shown by a broken line by an optical system moving means (not shown). The moving means may be used as appropriate, and the movement may be manual or automatic.For measurement using the fringe scanning shearing interference method, the optical system 74 is moved to the state shown by the broken line and retreated from the optical path. Also, the shutter 57 is opened. With such a configuration, it becomes the same configuration as the fringe scanning sharing interference method described in FIG. 1. Therefore, a description of the operation of the sharing interference method according to this configuration will be omitted. When the optical system 74 is set to the state shown by the solid line and the shutter 57 is closed, the optical system as a whole becomes a fringe scanning Fizeau type interference measuring device, and has a configuration for measuring spherical dust when the surface shape of the object to be measured 58 is spherical. When light from the six-laser oscillator 51 enters the optical system 74, part of the incident light is reflected by the reflective film 72 of the optical flat 71, and the rest is transmitted. The light reflected by the reflective film 72 of the optical flat 71 becomes reference light in the Fizeau interference measurement method, and its wavefront is flat.

この参照用の光はビームスプリッタ−53,59、ミラ
ー61、ビームスプリッタ−60をへて対物レンズ66
を介してTVカメラ67の撮像面に入射する。一方、オ
プチカルフラット71を透過した光は対物レンズ54で
一旦集光したのち発散性の光束となって被測定物58の
形状測定面に入射する。このとき対物レンズ54による
集光点と上記被測定面の曲率中心を一致させておく、被
測定物58からの反射光は情報光となって対物レンズ5
4を逆向きに透過し、さらにビームスプリッタ−53で
反射して、前述の参照用の光と全く同一の光路をたどり
、TVカメラ67の撮像面にいたる、撮像面上で情報光
と参照用の光とが干渉するので、電歪素子73によって
オプチカルフラット71を光軸方向へ高精度に微小変位
させて縞走査を行ない、被測定物58の表面形状の球面
塵を測定する。
This reference light passes through the beam splitters 53 and 59, the mirror 61, and the beam splitter 60, and then passes through the objective lens 66.
The light enters the imaging surface of the TV camera 67 through the. On the other hand, the light transmitted through the optical flat 71 is once condensed by the objective lens 54 and then becomes a divergent light beam and enters the shape measurement surface of the object 58 to be measured. At this time, the light condensing point by the objective lens 54 and the center of curvature of the surface to be measured are made to coincide, and the reflected light from the object to be measured 58 becomes information light and is reflected by the objective lens 54.
4 is transmitted in the opposite direction, and is further reflected by the beam splitter 53, following the same optical path as the reference light mentioned above, and reaches the imaging surface of the TV camera 67, where the information light and the reference light are transmitted. Therefore, the optical flat 71 is minutely displaced in the optical axis direction by the electrostrictive element 73 to perform fringe scanning and measure the spherical dust on the surface shape of the object to be measured 58.

なお、電歪素子65,70,73の駆動制御。Note that drive control of the electrostrictive elements 65, 70, and 73.

微動機構64.微調式ミラーホルダー63の駆動制御、
被測定物58の位置制御、取り付き姿勢制御、TVカメ
ラ67の出力に対する演算処理等はすべて、コンピュー
ターで行うことができる。
Fine movement mechanism 64. Drive control of the finely adjustable mirror holder 63,
Control of the position of the object to be measured 58, control of the attachment attitude, calculation processing for the output of the TV camera 67, etc. can all be performed by a computer.

以上、本実施例によれば、光路切り換え用シャッターを
切り換える事により、縞走差シェアリング干渉方式と縞
走差トワイマン干渉方式、あるいは縞走査シェアリング
干渉方式と縞走査フィゾー干渉方式を瞬時に切り換える
事ができる。それによって、非球面形状測定時には縞走
査シェアリング干渉方式で測定でき、平面形状、球面形
状測定時には縞走査トワイマン干渉方式、あるいは縞走
査フィゾー干渉方式で測定できるので、測定すべき表面
形状に応じて、精度良く測定を行うことができる。又、
縞走査シェアリング方式での測定において、シェアリン
グ時のシェア用ミラーの傾斜補正によって精度よく測定
を行うことができる。
As described above, according to this embodiment, by switching the optical path switching shutter, it is possible to instantly switch between the fringe scanning sharing interference method and the fringe scanning Twyman interference method, or between the fringe scanning sharing interference method and the fringe scanning Fizeau interference method. I can do things. As a result, when measuring aspherical surfaces, it is possible to measure using the fringe scanning shearing interferometry method, and when measuring planar and spherical surfaces, it can be measured using the fringe scanning Twyman interferometry method or the fringe scanning Fizeau interferometry method. , it is possible to perform measurements with high precision. or,
In measurements using the fringe scanning shearing method, accurate measurements can be made by correcting the inclination of the shearing mirror during shearing.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、新規な表面形状測定装置を提供できる
。この測定装置では縞走査シェアリング干渉方式と縞走
査トワイマン・グリーン干渉方式あるいは縞走査シェア
リング干渉方式と縞走査フィゾー干渉方式を瞬時に切り
換え、測定すべき表面形状が非球面であるときは縞走査
シェアリング干渉方式、平面、球面であるときは縞走査
トワイマン・グリーン干渉方式もしくは縞走査フィゾー
干渉方式で測定できるので、測定すべき表面形状に応じ
て、精度良く測定を行うことができる。又。
According to the present invention, a novel surface shape measuring device can be provided. This measurement device instantly switches between the fringe scanning shearing interference method and the fringe scanning Twyman-Green interference method, or the fringe scanning shearing interference method and the fringe scanning Fizeau interferometry method, and when the surface shape to be measured is aspheric, the fringe scanning method is used. If the surface is a flat or spherical surface, it can be measured using the shearing interference method, the fringe scanning Twyman-Green interference method, or the fringe scanning Fizeau interference method, so it is possible to perform measurements with high accuracy depending on the surface shape to be measured. or.

縞走査シェアリング方式での測定ではシエアリング時の
シェア用ミラーの傾斜補正を行うので精度良く測定を行
うことができる。
In the measurement using the fringe scanning shearing method, since the tilt of the shearing mirror is corrected during shearing, the measurement can be performed with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の非球面形状測定時の構成を
示す図、第2図はシェア用ミラーの傾斜補正を示す構成
図、第3図はシェア用ミラーの傾斜時における干渉縞パ
ターンを示す図、第4図はシェア用ミラーの補正後にお
ける干渉縞パターン、第5図は球面形状測定時の構成を
示す図、第6図は他の実施例の構成を示す図、第7図は
従来の縞走査シェアリング干渉方式の表面形状測定を説
明するための図である。 1.51・・・レーザ発振器、2,52・・・ビームエ
クスバンダー、3,4,9,53,59,60・・・ビ
ームスプリッタ−,5,54・・・対物レンズ、6゜6
1.62,69・・・ミラー、7,6.5,70゜73
・・・電歪素子、10.66・・・結像レンズ、11゜
67・TVカメラ、12.58−・・被測定物、55゜
56.57.・・・シャッター、63・・・微調式ミラ
ーホルダー、64・・・微動機構、68・・・画像処理
プロセッサ、71・・・オプチカルフラット、72・・
・反射第 1 図 第2図 (z ミラー 第B図 第3図 茅6図 募7F t2   3tLシ貝り足〈
Fig. 1 is a diagram showing the configuration of an embodiment of the present invention when measuring an aspherical surface shape, Fig. 2 is a configuration diagram showing tilt correction of the shearing mirror, and Fig. 3 is an interference pattern when the shearing mirror is tilted. 4 is a diagram showing the interference fringe pattern after correction of the shear mirror, FIG. 5 is a diagram showing the configuration when measuring the spherical shape, FIG. 6 is a diagram showing the configuration of another embodiment, and FIG. 7 is a diagram showing the configuration of another embodiment. The figure is a diagram for explaining surface shape measurement using the conventional fringe scanning shearing interference method. 1.51... Laser oscillator, 2,52... Beam expander, 3, 4, 9, 53, 59, 60... Beam splitter, 5, 54... Objective lens, 6°6
1.62,69...Mirror, 7,6.5,70°73
...Electrostrictive element, 10.66...Imaging lens, 11°67.TV camera, 12.58-.Object to be measured, 55°56.57. ...Shutter, 63...Fine adjustment type mirror holder, 64...Fine movement mechanism, 68...Image processing processor, 71...Optical flat, 72...
・Reflection Figure 1 Figure 2 (z Mirror Figure B Figure 3 Kaya 6 Figure 7F t2 3tL Shigairiashi

Claims (1)

【特許請求の範囲】[Claims] 1、被測定物の光学表面形状を、縞走査シェアリング干
渉方式で測定するための第1の光学系と、縞走査トワイ
マン・グリーン干渉方式あるいは縞走査フィゾー干渉方
式で測定するための第2の光学系と、上記第1の光学系
と第2の光学系を切り換えるためのシャッター及び光学
系移動手段と、縞走査シェアリング干渉方式におけるシ
ェア用ミラーの傾斜を補正する手段とを有する事を特徴
とする光学表面の形状測定装置。
1. A first optical system for measuring the optical surface shape of the object to be measured using the fringe scanning shearing interference method, and a second optical system for measuring the optical surface shape of the object using the fringe scanning Twyman-Green interference method or the fringe scanning Fizeau interference method. It is characterized by having an optical system, a shutter and optical system moving means for switching between the first optical system and the second optical system, and means for correcting the inclination of the shearing mirror in the fringe scanning shearing interference method. Optical surface shape measuring device.
JP4265287A 1987-02-27 1987-02-27 Apparatus for measuring configuration of optical surface Pending JPS63210605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4265287A JPS63210605A (en) 1987-02-27 1987-02-27 Apparatus for measuring configuration of optical surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4265287A JPS63210605A (en) 1987-02-27 1987-02-27 Apparatus for measuring configuration of optical surface

Publications (1)

Publication Number Publication Date
JPS63210605A true JPS63210605A (en) 1988-09-01

Family

ID=12641940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4265287A Pending JPS63210605A (en) 1987-02-27 1987-02-27 Apparatus for measuring configuration of optical surface

Country Status (1)

Country Link
JP (1) JPS63210605A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0751402A1 (en) * 1995-06-28 1997-01-02 Nippon Telegraph And Telephone Corporation Light scanner
JP2010539471A (en) * 2008-02-13 2010-12-16 エスエヌユー プレシジョン カンパニー,リミテッド Thickness measuring device
JP2010539481A (en) * 2007-09-17 2010-12-16 クオリティー ヴィジョン インターナショナル インコーポレイテッド Dual resolution, two distance sensor system and method
CN103196390A (en) * 2013-04-12 2013-07-10 中国科学院光电技术研究所 Method for eliminating circle symmetric phase type calculation holographic substrate fringe pattern distortion
KR20220095977A (en) * 2020-12-30 2022-07-07 서울과학기술대학교 산학협력단 Optical inspection system comprising interferometer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0751402A1 (en) * 1995-06-28 1997-01-02 Nippon Telegraph And Telephone Corporation Light scanner
JP2010539481A (en) * 2007-09-17 2010-12-16 クオリティー ヴィジョン インターナショナル インコーポレイテッド Dual resolution, two distance sensor system and method
JP2010539471A (en) * 2008-02-13 2010-12-16 エスエヌユー プレシジョン カンパニー,リミテッド Thickness measuring device
CN103196390A (en) * 2013-04-12 2013-07-10 中国科学院光电技术研究所 Method for eliminating circle symmetric phase type calculation holographic substrate fringe pattern distortion
KR20220095977A (en) * 2020-12-30 2022-07-07 서울과학기술대학교 산학협력단 Optical inspection system comprising interferometer

Similar Documents

Publication Publication Date Title
JP4880232B2 (en) System and method for obtaining location information
US5067817A (en) Method and device for noncontacting self-referencing measurement of surface curvature and profile
US5469259A (en) Inspection interferometer with scanning autofocus, and phase angle control features
US5956141A (en) Focus adjusting method and shape measuring device and interference microscope using said focus adjusting method
CN109269443B (en) A kind of laser differential confocal curvature radius measurement method and device
CN106092514B (en) Optical heterogeneity measuring device and method based on dual wavelength fizeau interferometer
US5432606A (en) Interferometer for the measurement of surface profile which introduces a spatial carrier by tilting the reference mirror
US4818108A (en) Phase modulated ronchi testing of aspheric surfaces
JPH0666537A (en) System error measuring method and shape measuring device using it
US10989524B2 (en) Asymmetric optical interference measurement method and apparatus
JPH01284704A (en) Method and device for measuring microstructure of surface
JPS63210605A (en) Apparatus for measuring configuration of optical surface
US4056323A (en) Interferometer optical system
US6972850B2 (en) Method and apparatus for measuring the shape of an optical surface using an interferometer
EP0189482A1 (en) Shape evaluating apparatus
JPH06288735A (en) Phase conjugate interferometer for parabolic mirror shape inspection measurement
Xu et al. A phase-shifting vectorial-shearing interferometer with wedge plate phase-shifter
RU2744847C1 (en) Interferometer with differential measurement function
JP2527176B2 (en) Fringe scanning shearing interferometer
JPH08233513A (en) Interference system
JPH03156305A (en) Aspherical-shape measuring apparatus
JPS6242327Y2 (en)
JPS60196612A (en) Surface shape measuring apparatus
JPS60211306A (en) Adjusting method of optical system of fringe scan shearing interference measuring instrument
JPH11287612A (en) Interferometer