JPS63210237A - Manufacture of non-oriented silicon steel sheet having high magnetic flux density - Google Patents

Manufacture of non-oriented silicon steel sheet having high magnetic flux density

Info

Publication number
JPS63210237A
JPS63210237A JP62043534A JP4353487A JPS63210237A JP S63210237 A JPS63210237 A JP S63210237A JP 62043534 A JP62043534 A JP 62043534A JP 4353487 A JP4353487 A JP 4353487A JP S63210237 A JPS63210237 A JP S63210237A
Authority
JP
Japan
Prior art keywords
flux density
magnetic flux
hot
temperature
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62043534A
Other languages
Japanese (ja)
Other versions
JPH0680169B2 (en
Inventor
Hiroyoshi Yashiki
裕義 屋鋪
Atsuki Okamoto
篤樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62043534A priority Critical patent/JPH0680169B2/en
Publication of JPS63210237A publication Critical patent/JPS63210237A/en
Publication of JPH0680169B2 publication Critical patent/JPH0680169B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a silicon steel sheet excellent in characteristic such as iron loss, magnetic flux density, etc., by hot-rolling a steel stock in which respective contents of C, Si, Mn, P, S and SolAl are specified under specific conditions, by winding the hot-rolled plate at low temp., and by applying descaling, coil rolling, and annealing to the above. CONSTITUTION:The steel stock consisting of <=0.005% C, 0.1-1.0% Si, <=0.20% Mn, 0.050-0.200% P, <=0.005% S, <0.003% SolAl, and the balance Fe with inevitable impurities is hot-rolled by regulating rolling-finishing temp. to a temp. at and above 700 deg.C and within a ferritic range. Successively, the hot-rolled plate is wound up at 600-680 deg.C, descaled, and then subjected to cold rolling and annealing. In this way, a highly homogeneous non-oriented silicon steel sheet reduced in iron loss, improved in magnetic flux density, and having magnetic properties stabilized in the longitudinal direction of the steel strip can be obtained. Further, in order to bring out effectiveness against iron loss and also to eliminate adverse effect of AlN, the additive quantity of SolAl is regulated to 0.150-1.0%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、磁気特性の優れた、とくに磁束密度の高い
無方向性電磁鋼板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a non-oriented electrical steel sheet with excellent magnetic properties, particularly a high magnetic flux density.

〔従来の技術〕[Conventional technology]

省エネルギーは分野を問わず重要な課題である。 Energy conservation is an important issue regardless of field.

電気機器分野においても近年、電力消費量の節減が叫ば
れ、機器特性の向上、機器の小型化等の要求がますます
高まってきている。
In recent years, in the field of electrical equipment, there has been a call for reducing power consumption, and there has been an increasing demand for improvements in equipment characteristics, miniaturization of equipment, etc.

無方向性電磁鋼板は、主に変圧器、安定器、電動機、発
電機等の鉄心材料として用いられるが、このような機器
の特性向上、小型化等の要求に対処するには、低鉄損で
かつ磁束密度の高い無方向性電磁鋼板が必要である。
Non-oriented electrical steel sheets are mainly used as core materials for transformers, ballasts, motors, generators, etc., but in order to meet the demands for improved characteristics and miniaturization of such equipment, it is necessary to A non-oriented electrical steel sheet with a high magnetic flux density is required.

ところで、無方向性電磁鋼板の製造方法としては、いわ
ゆる−回冷延法がよく知られている。これは熱間圧延鋼
帯を比較的大きな圧下率、具体的には70〜80%程度
の圧下率で一回冷間圧延し、次いで焼鈍を行うものであ
る。
By the way, the so-called -fold cold rolling method is well known as a method for manufacturing non-oriented electrical steel sheets. In this method, a hot rolled steel strip is cold rolled once at a relatively large reduction rate, specifically about 70 to 80%, and then annealed.

しかしながら征常の一回冷延法では、昨今の高度の要求
には到底応えられるものではない。
However, the conventional one-shot cold rolling method cannot meet the recent high demands.

なお、鉄損についてはSiあるいはAp2のような固有
抵抗を増加させる元素を添加して渦電流損を低下させる
対策があるが、Sl、Apは磁束密度を低下させる副作
用があり、このためこの種の対策でも低鉄損、高磁束密
度の高レベルでの両立は不可能である。
Regarding iron loss, there are countermeasures to reduce eddy current loss by adding elements that increase specific resistance such as Si or Ap2, but Sl and Ap have the side effect of reducing magnetic flux density, so this kind of Even with these measures, it is impossible to achieve both low iron loss and high magnetic flux density at a high level.

このようなことから、無方向性電磁鋼板については、従
来より低鉄損と高磁束密度の両立を図るべく種々研究が
進められ、その製造方法につき様々な提案が出されてい
る。例えば、特公昭57−52410号では、C0,0
5%以下、StまたはSiとApの合計量力月、5%以
下、Mn0.1−1%、2002%以下の素材を用いA
r、点の中央温度と750℃との間の温度で熱間圧延を
終了し、さらに680°C以上の温度で巻取りを行う方
法が提案され、また特公昭58−55210号では、S
i1.5%未満、So7!、ApO,0O10%未満、
Mn0.1−1.0%、9012%未満、30.010
%未満、NO,OO35%未満の素材を先の提案と同様
の温度条件で熱間圧延するという方法が提案されている
For this reason, various studies have been carried out on non-oriented electrical steel sheets in order to achieve both low iron loss and high magnetic flux density, and various proposals have been made regarding the manufacturing method thereof. For example, in Special Publication No. 57-52410, C0,0
5% or less, total amount of St or Si and Ap, 5% or less, Mn 0.1-1%, 2002% or less A
A method has been proposed in which hot rolling is completed at a temperature between the center temperature of point r and 750°C, and further winding is performed at a temperature of 680°C or higher.
i less than 1.5%, So7! , ApO,0O less than 10%,
Mn0.1-1.0%, less than 9012%, 30.010
A method has been proposed in which a material containing less than 35% NO and OO is hot rolled under the same temperature conditions as the previous proposal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前者の方法は680℃以上(望ましくは700℃以上)
という高温の条件下で巻取りを行うことが必要であり、
また後者についてもすぐれた磁気特性を得ようとすれば
、やはり上記同様の高温巻取りが必要となる。これらの
方法において高温巻取りは、熱延鋼板の結晶組織を完全
に再結晶させ、かつ粗大な結晶粒を得る上で必要とされ
るものである。
In the former method, the temperature is 680°C or higher (preferably 700°C or higher)
It is necessary to wind the material under high temperature conditions.
Furthermore, in order to obtain excellent magnetic properties for the latter, high-temperature winding similar to the above is also required. In these methods, high-temperature winding is required to completely recrystallize the crystal structure of the hot rolled steel sheet and obtain coarse grains.

ところがこのような高温巻取りを実施すると、スケール
の生成が多くなって熱延板の脱スケール性が悪くなり、
酸洗能率の低下が問題となる。また、高温巻取りをして
も、コイルの最内周部や最外周部はたちまち冷却され、
高温保持の時間がコイルのトップ部およびボトム部にお
いて非常に短くなる。その結果、コイルのトップ部およ
びボトム部では高温巻取りの効果が十分期待できず、そ
の部分の磁気特性はミドル部にくらべ著しく劣ったもの
となり、磁気特性の均一な成品が得られない。
However, when such high-temperature winding is carried out, a large amount of scale is generated and the descaling performance of the hot-rolled sheet becomes poor.
Decrease in pickling efficiency becomes a problem. In addition, even if the coil is wound at a high temperature, the innermost and outermost parts of the coil are quickly cooled down.
The high temperature holding time is very short at the top and bottom of the coil. As a result, the effect of high-temperature winding cannot be fully expected at the top and bottom parts of the coil, and the magnetic properties of these parts are significantly inferior to those of the middle part, making it impossible to obtain a product with uniform magnetic properties.

上記に鑑み本発明は、高温巻取りを行うことなく、鉄損
、磁束密度がともにすぐれかつこれらの特性が銅帯全長
にわたって安定した均質性の高い無方向性電磁鋼板を能
率よく製造することができる方法の提供を目的とする。
In view of the above, the present invention makes it possible to efficiently produce a highly homogeneous non-oriented electrical steel sheet with excellent iron loss and magnetic flux density, and with stable properties over the entire length of the copper strip, without performing high-temperature winding. The purpose is to provide a method that can be used.

〔問題点を解決するための手段〕[Means for solving problems]

一般に高温巻取りは、熱間圧延(熱延板)の段階で再結
晶を生しさせ結晶粒を粗大化させることになる。そして
、これは、例えば前出特公昭57−52410号の例に
みられるように磁気特性の改善に有効である。
Generally, high-temperature winding causes recrystallization to occur at the stage of hot rolling (hot-rolled sheet) and coarsens crystal grains. This is effective in improving the magnetic properties, as shown in the example of Japanese Patent Publication No. 57-52410 mentioned above, for example.

このことから、一般に無方向性電磁鋼板にあっては熱延
板の段階で再結晶および粒成長を住じさせるようにすれ
ば、焼鈍後の成品段階の結晶粒および集合組織に影響が
出て、磁気特性(鉄損、磁2 束密度)の改善がもたら
されることになると考えられる。
From this, in general, for non-oriented electrical steel sheets, if recrystallization and grain growth are allowed to occur in the hot-rolled sheet stage, the crystal grains and texture in the finished product after annealing will be affected. , it is thought that improvements in magnetic properties (iron loss, magnetic flux density) will be brought about.

そこで本発明者らは、熱延板の結晶組織に対し高温巻取
りと同様の効果が期待できる対策を見出すべく、とくに
素材鋼成分の面から種々実験、検討を行った結果、次の
ことを知見した。
Therefore, the inventors of the present invention conducted various experiments and studies, particularly from the viewpoint of the raw material steel composition, in order to find a countermeasure that can be expected to have the same effect as high-temperature coiling on the crystal structure of hot-rolled sheets. I found out.

○ 素材中のSとMnをそれぞれ特定量以下に制限すれ
ば、熱延板での再結晶および粒成長が早められ、比較的
低温の巻取りでも、熱延板段階において再結晶を十分に
進行させ結晶粒を効果的Gこ粗大化させることが可能と
なる。
○ By restricting S and Mn in the material to below specific amounts, recrystallization and grain growth in the hot-rolled sheet will be accelerated, and recrystallization will proceed sufficiently at the hot-rolled sheet stage even when the sheet is wound at a relatively low temperature. This makes it possible to effectively coarsen the crystal grains.

なお、この場合熱間圧延の圧延終了温度は、フェライト
領域温度することが条件となる。
In this case, the hot rolling finishing temperature must be the ferrite region temperature.

そして、このような方法を採用すれば、従来の高温巻取
りを適用した場合に比べ、とくに鋼帯トップ部およびボ
トム部の磁気特性が向上し、鋼帯全長にわたって良好な
磁気特性が実現される。また、熱延板の脱スケール性が
向上し、能率よく酸洗することが可能となる。
If such a method is adopted, the magnetic properties of the top and bottom parts of the steel strip will be particularly improved compared to when conventional high-temperature winding is applied, and good magnetic properties will be achieved over the entire length of the steel strip. . Moreover, the descaling properties of the hot rolled sheet are improved, and it becomes possible to pickle the hot rolled sheet efficiently.

本発明は以上の知見に基づくものであって、CO,00
5%以下、SiO,1〜1.0%、MrO,20%以下
、P0.050〜0.200%、s0. o o s%
以下、Sob、 Allは0.002%未満か0.15
0〜1.0%、残部Feおよび不可避的不純物よりなる
鋼素材を、圧延終了温度を700℃以上でかつフェライ
ト域内の温度として熱間圧延し、続いて600〜680
℃の温度で巻取りを行い、次いで脱スケール、冷間圧延
、焼鈍を実施することを特徴とする特許 造方法を要旨とする。
The present invention is based on the above findings, and is based on CO,00
5% or less, SiO, 1-1.0%, MrO, 20% or less, P0.050-0.200%, s0. o o s%
Below, Sob and All are less than 0.002% or 0.15
A steel material consisting of 0% to 1.0% Fe and unavoidable impurities is hot rolled at a rolling end temperature of 700°C or higher and within the ferrite range, and then heated to 600°C to 680°C.
The gist is a patented manufacturing method characterized by winding at a temperature of °C, followed by descaling, cold rolling, and annealing.

第1図は、低S下における鋼中Mn量と鉄損および磁束
密度との関係を示す実験データである。
FIG. 1 shows experimental data showing the relationship between the amount of Mn in steel, iron loss, and magnetic flux density under low S conditions.

これば、C0. 0 0 3%、340.5%、Po.
 0 8 5%、30.002%、Soj!..Al0
.230%とし、Mn量を0.05〜0.50%のレン
ジで種々に変化させた鋼素材をフェライト領域温度(8
20℃)を圧延終了温度として熱間圧延を行って板厚を
2。
This is C0. 0 0 3%, 340.5%, Po.
0 8 5%, 30.002%, Soj! .. .. Al0
.. ferrite region temperature (8
Hot rolling was carried out with the rolling end temperature set at 20℃) to obtain a plate thickness of 2.

3Nとし、その後650℃で巻取りを行い、次いで脱ス
ケール酸洗後0.5mmの板厚まで冷間圧延し、さらに
750℃×20秒の連続焼鈍を実施し、こうして得たも
のについて磁気特性(鋼帯ミドル部)を調査した結果で
ある。
3N, then coiled at 650°C, descaled by pickling, cold rolled to a thickness of 0.5 mm, and then continuously annealed at 750°C for 20 seconds. This is the result of investigating the middle part of the steel strip.

図において、磁束密度については鋼中Mn量が低くなる
と改善される傾向が認められ、とくにMnO.2%以下
においてその傾向が著しい。このMnO.2%以下にお
いて磁束密度は、従来の高温巻取り適用材(銅帯ミドル
部)と同等のレベルに達する。
In the figure, it is observed that the magnetic flux density tends to improve as the Mn content in the steel decreases, especially when the MnO content decreases. This tendency is remarkable at 2% or less. This MnO. At 2% or less, the magnetic flux density reaches a level equivalent to that of conventional high-temperature winding material (copper band middle part).

一方鉄損は、MnO. O O 5 〜0. 5 0%
の範囲においてMn量によらず一定の値を示している。
On the other hand, iron loss is MnO. O O 5 ~0. 50%
It shows a constant value in the range of , regardless of the Mn content.

この一定値のレベルは、通常の一回冷延材より低く、高
温巻取適用材(鋼帯ミドル部)のそれに匹敵するもので
ある。
This constant value level is lower than that of a normal once-cold-rolled material, and is comparable to that of a material to which high-temperature coiling is applied (steel strip middle section).

鉄損についてはこのように、低Sの条件下ではMn量が
本発明範囲(50.2%)をこえる令M域においてまで
良好なレベルを示すが、これは次のように考えられる。
As described above, under low S conditions, the iron loss shows a good level even in the low M range where the Mn content exceeds the range of the present invention (50.2%), but this can be considered as follows.

高Sの条件下ではMnS等の析出量が多《連続焼鈍で結
晶粒が微細化し鉄損は高い。しかし、低S化するとMn
Sの析出量も少なくなり連続焼鈍での結晶粒径も大きく
、またMnの増加は比抵抗増加に寄与し、結果として鉄
損は良好なレベルになる。
Under high S conditions, a large amount of MnS etc. precipitates (continuous annealing makes the crystal grains finer and the iron loss is higher). However, when reducing S, Mn
The amount of S precipitated is also reduced and the crystal grain size is large during continuous annealing, and the increase in Mn contributes to an increase in specific resistance, resulting in a good level of iron loss.

ただし、Mnの増加は磁束密度に関しては低下させる方
向である。
However, an increase in Mn tends to decrease the magnetic flux density.

何れにしても本発明の条件を満たす低S、低Mn化によ
り、低鉄損と高磁束密度の両立が実現でき、同時に鋼帯
全域について磁気特性の安定化が図られるのである。
In any case, by reducing S and Mn to satisfy the conditions of the present invention, it is possible to achieve both low iron loss and high magnetic flux density, and at the same time, stabilize the magnetic properties over the entire steel strip.

因みに従来においては、鋼中Mnは、Sによる鋼の熱間
脆性を抑制するために必要であり、更に鋼中介在物Mn
Sを粗大化して焼鈍時の粒成長性を改善し鉄損を低下さ
せるためにも必要であるとされ、少なくとも0.2%は
添加されるのが通例であった・ なお、熱間脆性については、低Sの条件の下ではMn量
を低下させても実際上問題とならないことを、本発明者
らは確認している。
Incidentally, conventionally, Mn in steel is necessary to suppress hot embrittlement of steel due to S, and Mn inclusions in steel are
It is said to be necessary to coarsen S, improve grain growth during annealing, and reduce iron loss, and it was customary to add at least 0.2%. Regarding hot embrittlement. The present inventors have confirmed that under low S conditions, even if the amount of Mn is reduced, there is no problem in practice.

以下、本発明の方法について更に詳しく説明する。The method of the present invention will be explained in more detail below.

O まず使用する鋼素材の成分限定理由は次のとおりで
ある。
O First, the reasons for limiting the composition of the steel material used are as follows.

C:Cは鉄損低下の観点から、少ない方がよい。C: From the viewpoint of reducing iron loss, it is better to have less C.

Cが0. 0 0 5%をこえると磁気時効による鉄損
増加がとくに顕著となることから、O. O O 5%
を上限とした。なお、下限についてはCは少ないほど好
ましいので、とくに限定しない。
C is 0. If it exceeds 0.05%, the increase in iron loss due to magnetic aging becomes particularly significant. O O 5%
was set as the upper limit. Note that the lower limit is not particularly limited because it is preferable to have less C.

Si :Siは固有抵抗を増加させ、鉄損低下に有効に
寄与する元素であるが、反面磁束密度の低下をもらたす
。1%をこえると、この磁束密度の低下が著しく、本発
明の目的である高磁束密度が達成不可能になる。また0
.1%未満では、鉄損の面で十分な効果が期待できない
。よって、0.1〜1。
Si: Si is an element that increases specific resistance and effectively contributes to reducing iron loss, but on the other hand, it causes a decrease in magnetic flux density. If it exceeds 1%, the magnetic flux density decreases significantly, making it impossible to achieve the high magnetic flux density that is the object of the present invention. 0 again
.. If it is less than 1%, a sufficient effect in terms of iron loss cannot be expected. Therefore, 0.1-1.

0%の範囲とした。The range was 0%.

Mn:本発明において最も重要な意味をもつ元素である
。先に述べたとおり従来はSによる熱間脆性の防止およ
び鉄損の観点から0.2%をこえて添加するのが普通で
あったが、本発明では0.2%以下にする。
Mn: This is the most important element in the present invention. As mentioned above, in the past, it was common to add more than 0.2% from the viewpoint of preventing hot embrittlement caused by S and iron loss, but in the present invention, the amount is reduced to 0.2% or less.

低Sの条件の下において、Mn量を0.2%以下にすれ
ば、前出第1図で説明したように高/AAS取り適用材
と同レベルのすくれた磁気特性(低鉄損、高磁束密度)
が実現されるのである。これは、熱延板での再結晶およ
び結晶粒の粗大化が促進されることによる。なお、低S
、低Mn化により再結晶、粒成長が加速される理由は、
未だ不明な点も多いが、固溶Mn、’MnSの量がとも
に著しく低くなることが関与しているものと考えられる
Under low S conditions, if the Mn content is 0.2% or less, as explained in Figure 1 above, the magnetic properties (low iron loss, low iron loss, high magnetic flux density)
will be realized. This is because recrystallization and coarsening of crystal grains in the hot rolled sheet are promoted. In addition, low S
The reason why recrystallization and grain growth are accelerated by lowering Mn is as follows.
Although there are many points that are still unclear, it is thought that the significantly lower amounts of both Mn and 'MnS in solid solution are involved.

なお、M憤0.2%ごえでは、第1図に明らかなように
とくに磁束密度が低下を来すことになる。
Incidentally, when the M intensities exceed 0.2%, the magnetic flux density particularly decreases, as is clear from FIG.

このようなことから本発明では、Mnの上限を0゜2%
としたのである。
For this reason, in the present invention, the upper limit of Mn is set to 0°2%.
That's what I did.

なお、下限については熱間脆性の観点からMn/Sで1
0以上が望ましいがとくに規定しない。
Note that the lower limit is 1 for Mn/S from the viewpoint of hot embrittlement.
It is desirable that it be 0 or more, but it is not particularly specified.

FDPはとくに磁束密度の向上に有効に寄与する。FDP particularly effectively contributes to improving magnetic flux density.

Pの効果を第2図に示す。このデータは、C01004
%、Si0.4%、Mn0.15%、s0.o。
The effect of P is shown in Figure 2. This data is C01004
%, Si0.4%, Mn0.15%, s0. o.

2%、S o R,AIL0.200%でPを0.01
5〜0、150%の間で変化させ磁気特性への影響をみ
たもので、供試材は熱間圧延を圧延終了温度830℃(
フェライト領域温度)で行って板厚2.1flとし、こ
れを640°Cで巻取り、次いで脱スケール後板厚0.
5酊まで冷間圧延し、780℃×10秒の連続焼鈍を実
施して得た。
2%, S o R, AIL 0.200% and P 0.01
The effect on the magnetic properties was examined by changing the temperature between 5% and 0.150%.The sample material was hot rolled at a rolling end temperature of 830℃ (
Ferrite region temperature) to give a plate thickness of 2.1 fl, which was wound at 640°C, and then descaled to a plate thickness of 0.
It was obtained by cold rolling to a temperature of 5 mm and continuous annealing at 780° C. for 10 seconds.

同図において、磁束密度はP量が0.05%以上の範囲
において高い値となっている。また鉄損についてもその
範囲で改善の傾向がみられる。
In the figure, the magnetic flux density has a high value in the range where the amount of P is 0.05% or more. There is also a tendency for improvement in iron loss within this range.

よってPの下限は、0.050%とした。Therefore, the lower limit of P was set to 0.050%.

また上限については、磁気特性の点からは必要ないが、
余り多くすると鋼板の脆化が避けられず、この意味から
0.200%を上限とした。
Regarding the upper limit, although it is not necessary from the point of view of magnetic properties,
If the content is too large, embrittlement of the steel plate is unavoidable, and for this reason, the upper limit was set at 0.200%.

S:Mnとの間でMnSを形成し、焼鈍時の粒成長を妨
げ、鉄損の低下を阻む方向に作用するとともに、多量に
存在すると熱間脆性を惹起する。また、熱延鋼板の再結
晶、粒成長の促進上、有害である。このような悪影響は
本発明が対象とするような低Mn鋼において特に著しく
、このことからSiの管理は特に厳しくすることが求め
られる。
S: Forms MnS with Mn, inhibits grain growth during annealing, acts in a direction that inhibits reduction in iron loss, and when present in a large amount causes hot embrittlement. Moreover, it is harmful in promoting recrystallization and grain growth of hot rolled steel sheets. Such adverse effects are particularly significant in low-Mn steels such as those targeted by the present invention, and therefore, it is required that Si be controlled particularly strictly.

このような観点からSは、O,OO5%以下とした。こ
の5O1005%以下は、現在の清浄鋼の溶製技術では
、十分に可能なレベルである。
From this point of view, S was set to 5% or less of O and OO. This 5O of 1005% or less is a level that is fully possible with current clean steel melting technology.

なおSについては、特性上下限の規定は不要である。た
だし実際には、製鋼技術、経済性の面から実施可能な範
囲は自ずと決まる。
Note that for S, it is not necessary to specify the upper and lower limits of the characteristic. However, in reality, the scope of implementation is determined by steelmaking technology and economic efficiency.

SoA、Aβ:AβはSlと同様固有抵抗を増加させ鉄
損低下に寄与する元素であるが、その一方でAINを形
成し焼鈍時の粒成長性を悪化させ鉄損を高める方向に作
用する。ただしこの好ましくない作用は、添加量を多く
してA4Nを粗大化してやれば取除かれる。鉄損に対す
る有効性を引き出しかつAnNによる悪影響を排除する
には、0゜150%以上の添加が必要である。しかし1
%をこえる添加は磁束密度の低下を来す。
SoA, Aβ: Like Sl, Aβ is an element that increases specific resistance and contributes to lowering iron loss, but on the other hand, it forms AIN, deteriorates grain growth during annealing, and acts in the direction of increasing iron loss. However, this undesirable effect can be eliminated by increasing the amount of A4N added and making the A4N coarser. In order to bring out the effectiveness against iron loss and eliminate the adverse effects of AnN, it is necessary to add 0°150% or more. But 1
If the addition exceeds %, the magnetic flux density will decrease.

また、Aβの添加は特性上必ずしも必要ではない。鉄損
に対する有効性を放棄するなら、/INによる悪影響を
取除くのに、AAiを低レベルに制限するのも一つの方
法であり、この場合は許容量を0.002%以下にすべ
きである。
Further, the addition of Aβ is not necessarily required due to the characteristics. If the effectiveness against iron loss is abandoned, one way to remove the negative effects of /IN is to limit AAi to a low level; in this case, the allowable amount should be 0.002% or less. be.

以上のことから、Sob、Aj!量は0.15〜1%ま
たはO,OO2%以下の範囲とした。
From the above, Sob, Aj! The amount was in the range of 0.15 to 1% or 2% or less of O,OO.

○ 次に、製造プロセスについて述べる。○ Next, we will discuss the manufacturing process.

上記のような成分の素材鋼は常法に従って転炉等で溶製
され、まず連続鋳造または造塊−分塊圧延を経てスラブ
とされる。
Material steel having the above-mentioned components is melted in a converter or the like according to a conventional method, and is first subjected to continuous casting or ingot-blowing rolling to form a slab.

次いでこのスラブを熱間圧延し、その後巻取りを行い、
次いで脱スケールを経て冷間圧延を施し、しかるのち焼
鈍を実施する。
This slab is then hot rolled and then rolled up.
Next, it is descaled, cold rolled, and then annealed.

熱間圧延以降の各工程について以下に詳述する。Each process after hot rolling will be explained in detail below.

■ 熱間圧延 この工程は、圧延終了温度を700℃以上のフェライト
領域温度とすることを条件とする。
(2) Hot rolling This step is conditioned on the condition that the rolling end temperature is a ferrite region temperature of 700° C. or higher.

本発明は既述したとおり、熱延板の段階で再結晶および
粒成長を促進させることにより磁気特性を向上させると
ころに大きな特徴がある。熱延板の再結晶′および粒成
長を十分に促進させるためには熱延終了時に十分な歪が
蓄積されていなければならない。熱間圧延は、このよう
な観点から、圧延終了温度をフェライト域内の温度とす
ることが必要である。
As described above, the present invention is characterized in that magnetic properties are improved by promoting recrystallization and grain growth at the hot-rolled sheet stage. In order to sufficiently promote recrystallization and grain growth in the hot rolled sheet, sufficient strain must be accumulated at the end of hot rolling. From this point of view, in hot rolling, it is necessary to set the rolling end temperature to a temperature within the ferrite range.

熱延板の再結晶および粒成長の意味からは圧延終了温度
はフェライト域内の温度とする上限規定だけで十分であ
るが、現実には圧延終了温度が700°Cを下延ると、
圧延負荷が大きくなりすぎ通常の圧延機では操業が困鮪
となる。
From the perspective of recrystallization and grain growth of hot-rolled sheets, it is sufficient to specify an upper limit for the rolling end temperature within the ferrite range, but in reality, if the rolling end temperature falls below 700°C,
The rolling load becomes too large, making it difficult to operate with a normal rolling mill.

以上のことから圧延終了温度は700℃以上でかつフェ
ライト域内の温度とした。
From the above, the rolling end temperature was set to be 700°C or higher and within the ferrite range.

■ 巻取り 巻取り温度を600〜680 ’Cの範囲とすることを
条件とする。
(2) Winding The winding temperature must be in the range of 600 to 680'C.

巻取りは、熱延板の再結晶、粒成長を期待する立場から
いえば高温巻取りを行うのが有利である。
From the standpoint of expecting recrystallization and grain growth of the hot-rolled sheet, it is advantageous to perform high-temperature winding.

具体的には680℃以上の温度で巻取るのが有効である
とされている。しかしながらこのよう高温での巻取りは
、脱スケール性の悪化、単位コイル内での特性値のバラ
ツキを招来することは先に述べたとおりである。
Specifically, it is said that winding at a temperature of 680° C. or higher is effective. However, as described above, winding at such a high temperature causes deterioration of descaling performance and variations in characteristic values within a unit coil.

本発明は、素材成分を適正化することにより、このよう
な高温巻取りを行うことなく熱延板の再結晶、粒成長を
保証するものである。
The present invention ensures recrystallization and grain growth of the hot-rolled sheet without performing such high-temperature winding by optimizing the raw material components.

スケールの生成を抑えて脱スケール性を良好に維持しか
つ特性バラツキを小さくする意味から、巻取温度は68
0℃以下とすべきである。
The winding temperature is set at 68°C in order to suppress scale formation, maintain good descaling performance, and reduce property variations.
The temperature should be below 0°C.

ただし600℃未満になると、再結晶、粒成長が十分に
進まず、良好な磁気特性が期待できないこととなる。
However, if the temperature is lower than 600°C, recrystallization and grain growth will not proceed sufficiently, and good magnetic properties cannot be expected.

以上の理由により、巻取温度は600〜680゛Cの範
囲に限定した。
For the above reasons, the winding temperature was limited to a range of 600 to 680°C.

■ 脱スケール、冷間圧延 何れも通常どおりでよい。脱スケールは酸洗いを実施す
る。本発明の場合、熱延板の脱スケール性が良好に維持
されるので、酸洗いは高能率で行い得る。
■ Both descaling and cold rolling can be carried out as usual. Descaling is carried out by pickling. In the case of the present invention, since the descaling properties of the hot rolled sheet are maintained well, pickling can be carried out with high efficiency.

冷間圧延は1回を原則とし、圧下率は70〜80%程度
が普通である。
In principle, cold rolling is carried out once, and the reduction rate is usually about 70 to 80%.

■ 冷延後の焼鈍 この焼鈍は、上記冷延後の加工組織を再結晶させるとと
もに、硬度調整等も目的とし、連続焼鈍が普通である。
(2) Annealing after cold rolling This annealing is carried out for the purpose of recrystallizing the processed structure after cold rolling, as well as adjusting the hardness, and is usually continuous annealing.

無方向性電磁鋼板には、所定の磁気特性を付与して出荷
されるフルプロセス品と、出荷後ユーザー側で打ち抜き
等の加工後に歪取焼鈍(750℃×2h程度)を施され
て所定の磁気特性を保有するに至るセミプロセス品とが
ある。
Non-oriented electrical steel sheets include full-process products that are shipped with predetermined magnetic properties, and non-oriented electrical steel sheets that are subjected to stress relief annealing (about 750°C x 2 hours) after being processed by the user after shipping, such as punching. There are semi-processed products that have magnetic properties.

なおフルプロセス品の場合も、当然ユーザー側において
歪取焼鈍が施されることもあるわけで、したがってフル
プロセス品としては、出荷時はもとより、ユーザー側で
の歪取焼鈍実施時にも規定の磁気特性を示すことが要求
される。
Note that even in the case of full-process products, strain relief annealing may naturally be performed on the user's side. Therefore, as full-process products, the specified magnetic Required to demonstrate characteristics.

本発明はこのようなフルプロセス品、セミプロセス品の
両方を対象とするものであるが、冷延後の焼鈍は一般に
、フルプロセス品では650〜b00〜860°cx5
秒以上程度とされ、本発明の場合にもこれに準する条件
としてよい。
The present invention is intended for both such full-processed products and semi-processed products, but the annealing after cold rolling is generally 650-b00-860°cx5 for full-processed products.
It is set to be about seconds or more, and the conditions corresponding to this may also be used in the case of the present invention.

なお、電磁鋼板を製造する場合、通常はさらに絶縁コー
ティングを付与する工程が入ってくるが、本発明の場合
にも、製造の最終工程としてコーティングの工程を追加
することは可能であり、本発明はこのようなケースをも
含むものとする。
Note that when producing electrical steel sheets, there is usually an additional process of applying an insulating coating, but even in the case of the present invention, it is possible to add a coating process as the final process of production, and the present invention shall also include such cases.

〔実施例〕〔Example〕

○ 実施例1 第1表に示す各成分組成の鋼を転炉で溶製し、これを連
続鋳造により鋳片となし、続いて熱間圧延を行って厚み
2.3 mとし、これをコイルに巻取った。熱間圧延の
圧延終了温度は全て820〜850℃の範囲とした。各
供試鋼のA r +変態点は900℃以上であり、全ケ
ースともフェライト域内の温度で圧延終了したわけであ
る。また巻取温度は640〜660℃とした。
○ Example 1 Steel having the respective compositions shown in Table 1 was melted in a converter, made into a slab by continuous casting, then hot rolled to a thickness of 2.3 m, and made into a coil. I wound it up. The finishing temperature of hot rolling was all in the range of 820 to 850°C. The A r + transformation point of each sample steel was 900° C. or higher, and rolling was completed at a temperature within the ferrite range in all cases. Moreover, the winding temperature was 640 to 660°C.

次いでこの熱延鋼帯に対し、酸洗−冷間圧延(2,3m
−0,5m)一連続焼鈍を施した。連続焼鈍条件は第1
表のとおりとした。
Next, this hot rolled steel strip was pickled and cold rolled (2.3 m
-0.5m) One continuous annealing was performed. Continuous annealing conditions are the first
As shown in the table.

こうして得た各供試鋼板について、30mnX280璽
lのエプスタイン試験片を銅帯ミドル部の圧延方向とこ
の直角方向から8枚ずつ採取して磁気特性を調査した。
For each test steel plate thus obtained, eight 30 mm x 280 square Epstein test pieces were taken from the rolling direction of the middle portion of the copper strip and from a direction perpendicular to this, and the magnetic properties were investigated.

結果を第1表の右欄に示す。The results are shown in the right column of Table 1.

本実施例は、製造プロセスを本発明範囲内の条件とした
上で、素材鋼成分を変化させたものである。
In this example, the manufacturing process was carried out under conditions within the scope of the present invention, and the raw material steel components were changed.

○ 阻1〜隔7は約0.5%Siの鋼種においてMn量
を変化させた例であるが、Mn量が0.2%以下の本発
明何階4〜階7は、Mn量が本発明範囲を上堰る阻1〜
階3に比べとくに磁束密度が高い値となっている。
○ Examples 1 to 7 are examples in which the amount of Mn is changed in a steel type with approximately 0.5% Si. Obstacles to surpassing the scope of invention 1~
The magnetic flux density is particularly high compared to floor 3.

○ 崩8〜尚12は約0.35%Sjの鋼種においてP
量を変化させた例であるが、Pffiが0.05%以上
の本発明例隔10〜隘12は、Piがそれ未満の階8.
9に対しとくに磁束密度が著しく向上している。
○ For steel grades 8 to 12, P is approximately 0.35% Sj.
This is an example in which the amount is changed, and the intervals 10 to 12 of the present invention where Pffi is 0.05% or more are the same as the floors 8. and 8. where Pi is less than that.
In particular, the magnetic flux density is significantly improved compared to 9.

○ 隘13〜階17は約0.7%SiO鋼種においてS
量を変化させたものであるが、30.005%以下の本
発明何階13〜N0.15は、S量がその範囲を上堰る
lt、16.17に比べ鉄損、磁束密度がともに良好な
値となっている。
○ Rooms 13 to 17 contain approximately 0.7% S in SiO steel type.
Although the S amount is changed, the present invention's floors 13 to N0.15, which are 30.005% or less, have both iron loss and magnetic flux density compared to lt and 16.17, where the S amount is above that range. It's a good value.

○ 漱18〜隅22は約0.5%SiO鋼種において3
on、Aff量を低A7!領域内で変化させた例酸洗ス
ピードという)を第2表に併せて示した。
○ Sho 18 to Sumi 22 are approximately 3 in the 0.5% SiO steel type.
on, Aff amount low A7! Table 2 also shows examples of changes within the range (referred to as pickling speed).

であるが、S o 1. Aj!0.002%未満の本
発明例18〜20は、Sol、All量がその範囲をこ
える魚21.22に比べより低鉄損、高磁束密度となっ
ている。
However, S o 1. Aj! Examples 18 to 20 of the present invention with less than 0.002% have lower iron loss and higher magnetic flux density than Fish 21.22 where the Sol and All amounts exceed the range.

〔実施例2〕 第2表に示す各成分組成の鋼を転炉で溶製し、これを連
続鋳造により鋳片となし、続いて熱間圧延を行って厚み
2.1龍とし、これをコイルに巻取った。熱間圧延終了
温度は全て800〜830°Cとし、巻取温度は第2表
に示す通りとした。供試鋼は何れもArl変態点が90
0℃以上であり、熱間圧延は全てフェライト域で終了し
た。
[Example 2] Steel having each component composition shown in Table 2 was melted in a converter, made into a slab by continuous casting, and then hot rolled to a thickness of 2.1 mm. wound into a coil. The hot rolling end temperature was 800 to 830°C in all cases, and the coiling temperature was as shown in Table 2. All of the sample steels had an Arl transformation point of 90.
The temperature was 0°C or higher, and all hot rolling was completed in the ferrite region.

次いでこれらの熱延鋼帯に対し、酸洗−冷間圧延(2,
1m1−冷延5n)一連続焼鈍(第2表)を施した。
Next, these hot rolled steel strips were subjected to pickling and cold rolling (2,
1 m1 - 5 n of cold rolling) was subjected to one continuous annealing (Table 2).

こうして得た供試鋼板について、熱延時のコイルトップ
、ミドル、ボトム部より実施例1と同様にエプスタイン
試験片を採取し磁気特性を調査した。この調査結果およ
び酸洗時完全な脱スケールが可能な最高の酸洗ラインス
ピード(以下、単に○ 漱1〜隔6は鋼成分条件が本発
明範囲内のものである。l!11.2は巻取温度が本発
明範囲より低目のもので、鉄損、磁束密度がともに劣っ
ている。また漱6は巻取温度が本発明範囲を高目に外れ
たもので、磁気特性については良好なものとなっている
が、酸洗での脱スケール性が悪化し、酸洗スピードが低
下している。
Regarding the thus obtained test steel sheet, Epstein test pieces were taken from the top, middle, and bottom parts of the coil during hot rolling in the same manner as in Example 1, and the magnetic properties were investigated. The results of this investigation and the highest pickling line speed that allows complete descaling during pickling (hereinafter simply ○) are steel composition conditions that are within the range of the present invention. l!11.2 is The winding temperature is lower than the range of the present invention, and both iron loss and magnetic flux density are inferior.Also, the winding temperature of Sake 6 is higher than the range of the present invention, and the magnetic properties are good. However, the descaling performance during pickling has deteriorated and the pickling speed has decreased.

これらに対し巻取温度を本発明範囲とした陽3〜5は、
磁気特性、酸洗スピードともに高レベルに達している。
On the other hand, positives 3 to 5 whose winding temperature is within the range of the present invention are as follows:
Both magnetic properties and pickling speed have reached a high level.

○ 11kL7.8は、鋼成分の面でMnとSが本発明
条件から外れたもので、このうち隘7は巻取温度は本発
明範囲内に入っているが、良好な磁気特性が得られてい
ない。また置8は、巻取温度が本発明範囲を上堰るもの
で、銅帯ミドル部では良好な磁気特性が得られているが
、トップ部およびボトム部での磁気特性が悪く、銅帯長
手方向での特性バラツキが大きなものとなっている。し
かも、酸洗スピードも低い。
○ 11kL7.8 has Mn and S outside the conditions of the present invention in terms of steel composition, and although the coiling temperature of No. 7 is within the range of the present invention, good magnetic properties were not obtained. Not yet. In addition, in case No. 8, the winding temperature is above the range of the present invention, and good magnetic properties are obtained in the middle part of the copper strip, but the magnetic properties are poor in the top and bottom parts, and the longitudinal part of the copper strip has good magnetic properties. Characteristic variations in the directions are large. Moreover, the pickling speed is also low.

〔実施例3〕 実施例1.2はエプスタイン試験片を切断採取後そのま
ま磁気測定を行った結果であるが、ここでは実施例1の
N0.2.5.12.13.16.19.21のものか
ら、採取したエプスタイン試験片に更に750X2hの
歪取焼鈍を施したのち、磁気特性を評価した。これはフ
ルプロセス品に歪取焼鈍が施されるケースをシミュレー
トしたものである。
[Example 3] Example 1.2 shows the results of magnetic measurements taken after cutting the Epstein test piece. The Epstein test pieces taken from the samples were further subjected to strain relief annealing at 750 x 2 h, and then their magnetic properties were evaluated. This simulates the case where strain relief annealing is applied to a full process product.

結果を第3表に示す。The results are shown in Table 3.

第  3  表 隘5.12.13.19が本発明例であるが、これらは
歪取焼鈍後においても、低鉄損、高磁束密度の良好な磁
気特性を示した。
Examples 5.12.13.19 of Table 3 are examples of the present invention, and these exhibited good magnetic properties of low iron loss and high magnetic flux density even after strain relief annealing.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明の方法によれば、
低鉄損で磁束密度が高く、かつ磁気特性が銅帯長手方向
について安定した均質性の高い無方向性電磁鋼板を製造
することが可能であり、しかも高aL巻取りを行わない
から熱延板の脱スケール性が良好に維持され脱スケール
処理としての酸洗を高能率にて遂行し得るものである。
As is clear from the above explanation, according to the method of the present invention,
It is possible to produce a highly homogeneous non-oriented electrical steel sheet with low iron loss, high magnetic flux density, and stable magnetic properties in the longitudinal direction of the copper strip.Moreover, since high aL winding is not performed, it is possible to produce a hot-rolled sheet. The descaling property of the descaling process is maintained well, and pickling as a descaling process can be carried out with high efficiency.

よって本発明は、無方向性電磁鋼板の性能向上ならびに
製造能率の改善に寄与するところがきわめて大きい。
Therefore, the present invention greatly contributes to improving the performance and manufacturing efficiency of non-oriented electrical steel sheets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は低S条件におけるM n 177と磁気特性と
の関係を示すプロット図、第2図はPの磁気特性に及ぼ
す効果を示すプロット図である。 第  1  図 第 2 図 0.050     0.100     0.150
手続主甫正書岨発) 昭和62年4月 8日 特許庁長官 黒 1)明 2# 殿 昭和62年特許願第 43534号 2、発明の名称 磁束密度の高い無方向性電磁鋼板の製造方法3、補正を
する者 事件との関係 特許出願人 住所 大阪市東区北浜5丁目15番地 名称(211)住友金属工業株式会社 代表者新宮康男 4、代理人 住所 大阪市東区瓦町5丁目44番地(大華ビル)昭和
  年  月  日 (書類発送の日付 昭和  年  月  日)/□− 6、補正の対象 明細書の「特許請求の範囲」の欄および「発明の詳細な
説明」の欄 7、補正の内容 (1)  明細書の特許請求の範囲を別紙の通り補正し
ます。 (2)明細書の第6頁末行にrMr0.20Jとあるの
をrMn0.20Jに補正しまず。 (別  紙) 特許請求の範囲 ft)  c0.005%以下、Si0.1〜1.0%
、y且0.20%以下、P0.050〜0.200%、
S0.005%以下、S o 12. Ai!0.00
2%未満残部ばFeおよび不可避的不純物よりなる鋼素
材を、圧延終了温度を700℃以上でかつフェライト域
内の温度として熱間圧延し、続いて600〜680℃の
温度で巻取りを行い、次いで脱スケール、冷間圧延、焼
鈍を実施することを特徴とする磁束密度の高い無方向性
電磁鋼板の製造方法。 (2)  C0,005%以下、Si0.1〜1.0%
、Mn0.20%以下、P0.05〜0.200%、s
0.o。 5%以下、Sob、.Al0.150〜1.0%、残部
はFeおよび不可避的不純物よりなる鋼素材を、圧延終
了温度を700°C以上でかつフェライト域内の温度と
して熱間圧延し、続いて600〜680°Cの温度で巻
取りを行い、次いで脱スケール、冷間圧延、焼鈍を実施
することを特徴とする磁束密度の高い無方向性電磁m板
の製造方法。 手続補正書(自釦 昭和62年6月80日 昭和62年特許願第 43534号 2、発明の名称 磁束密度の高い無方向性電磁鋼板の製造方法3、補正を
する者 事件との関係 特許出願人 住所 大阪市東区北浜5丁目15番地 名称(211)住友金属工業株式会社 代表者新宮康男 4、代理人 住所 大阪市東区瓦町5丁目44番地(大華ビル)昭和
  年  月  日 それ未満の陽9、隘10に対しとくに磁束密度6、補正
の対象 明細書の「発明の詳細な説明」の欄 7、補正の内容 (1)明細書の第18頁4行から5行にかけて1820
〜850’CJとあるを1750〜810℃」に、同頁
6行に「900°C」とあるを「850℃」に、それぞ
れ補正しまず。 (2)明細書第19真第1表を別紙の通り補正します。 (3)明細書の第20頁4行「○ 階1〜南7ば・・・
」から第21頁4行「・・・高磁束密度となっている。 」とあるまでを下記に補正しまず。 [ON0.1〜階8は約0.5%Siの鋼種においてM
n量を変化させた例であるが、Mn量が0.2%以下の
本発明例N0. 4〜歯8は、Mn量が本発明範囲を上
堰る階1〜患3に比べと< ニ磁束密度が高い値となっ
ている。 Om9〜南13は約0.35%Siの鋼種においてPg
を変化させた例であるが、P量が0.05%以上の本発
明例N0.11〜N0.13は、P量がが著しく向上し
ている。 ○ 隔14〜N0.19は約0.7%Siの鋼種におい
てS量を変化させた例であるが、S0.005%以下の
本発明何階14〜階17は、S量がその範囲を上堰るN
0.18、階19に比べ鉄損、磁束密度がともに良好な
値となっている。 ON1120〜11k125は約0.5%Siの鋼種に
おいてSol、Aβ量を低A j! 65域内で変化さ
せた例であるが、S o 12. A7!O,OO2%
未満の本発明例11b、204+、23は、So6.A
jl!量がその範囲をこえる隔24、N025に比べよ
り低鉄損、高磁束密度となっている。」 (4)明細書の第21頁11行に「900℃以上」とあ
るを「850°C」に補正します。 以上
FIG. 1 is a plot diagram showing the relationship between M n 177 and magnetic properties under low S conditions, and FIG. 2 is a plot diagram showing the effect of P on magnetic properties. Figure 1 Figure 2 0.050 0.100 0.150
April 8, 1985 Director General of the Patent Office Black 1) Ming 2# Patent Application No. 43534 of 1988 2 Title of Invention Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density 3. Relationship with the case of the person making the amendment Patent applicant address: 5-15 Kitahama, Higashi-ku, Osaka Name (211) Yasuo Shingu, Representative of Sumitomo Metal Industries Co., Ltd. Address of agent: 5-44 Kawaramachi, Higashi-ku, Osaka ( Daika Building) Showa year, month, day (Date of document shipment: Showa year, month, day) /□-6, "Claims" column and "Detailed description of the invention" column 7 of the specification subject to amendment, Contents (1) The scope of claims in the specification will be amended as shown in the attached sheet. (2) Correct the statement rMr0.20J on the last line of page 6 of the specification to rMn0.20J. (Attachment) Claims ft) c0.005% or less, Si0.1-1.0%
, y and 0.20% or less, P0.050 to 0.200%,
S0.005% or less, S o 12. Ai! 0.00
A steel material consisting of Fe and unavoidable impurities with a balance of less than 2% is hot rolled at a rolling end temperature of 700°C or higher and within the ferrite range, then coiled at a temperature of 600 to 680°C, and then A method for manufacturing a non-oriented electrical steel sheet with high magnetic flux density, which comprises performing descaling, cold rolling, and annealing. (2) C0,005% or less, Si0.1-1.0%
, Mn 0.20% or less, P 0.05-0.200%, s
0. o. 5% or less, Sob, . A steel material consisting of 0.150 to 1.0% Al and the remainder Fe and unavoidable impurities is hot rolled at a rolling end temperature of 700°C or higher and within the ferrite range, and then heated at 600 to 680°C. A method for manufacturing a non-directional electromagnetic m-plate with high magnetic flux density, which comprises winding at high temperature, followed by descaling, cold rolling, and annealing. Procedural Amendment (June 80, 1988 Patent Application No. 43534 2, Title of Invention Method for Manufacturing Non-oriented Electrical Steel Sheet with High Magnetic Flux Density 3, Relationship with the Person Making the Amendment Case Patent Application Person Address: 5-15 Kitahama, Higashi-ku, Osaka Name (211) Sumitomo Metal Industries Co., Ltd. Representative: Yasuo Shingu 4 Agent address: 5-44 Kawaramachi, Higashi-ku, Osaka (Daika Building) Showa Year, month, day, positive 9 , especially magnetic flux density 6 for column 10, "Detailed Description of the Invention" column 7 of the specification subject to amendment, contents of amendment (1) 1820 from line 4 to line 5 on page 18 of the specification.
~850'CJ was corrected to 1750-810°C, and on line 6 of the same page, ``900°C'' was corrected to 850°C. (2) Table 1 of Section 19 of the Specification will be amended as shown in the attached sheet. (3) Page 20 of the specification, line 4 “○ Floor 1-South 7...
'' to page 21, line 4, ``...high magnetic flux density.'' has been corrected as below. [ON0.1 to floor 8 is M in steel type with approximately 0.5% Si.
This is an example in which the n amount is changed, and inventive example No. 0.2 in which the Mn amount is 0.2% or less. The magnetic flux densities of teeth 4 to 8 are higher than those of floors 1 to 3, where the Mn content is above the range of the present invention. Om9 to Minami 13 are Pg in steel types with approximately 0.35% Si.
In the examples No. 0.11 to No. 13 of the present invention in which the amount of P is 0.05% or more, the amount of P is significantly improved. ○ Intervals 14 to N0.19 are examples in which the amount of S is changed in a steel type with approximately 0.7% Si, but in the case of floors 14 to 17 of the present invention, which have S of 0.005% or less, the amount of S exceeds that range. Kameiru N
0.18, both iron loss and magnetic flux density are better values than floor 19. ON1120 to 11k125 have low Sol and Aβ amounts in steel types with approximately 0.5% Si! This is an example in which the change was made within the 65 range, but S o 12. A7! O,OO2%
Inventive Examples 11b, 204+, and 23 below have So6. A
jl! It has lower core loss and higher magnetic flux density than N025 and 24, which exceeds this range. (4) On page 21, line 11 of the specification, the statement "900°C or higher" will be corrected to "850°C."that's all

Claims (2)

【特許請求の範囲】[Claims] (1)C0.005%以下、Si0.1〜1.0%、M
r0.20%以下、P0.050〜0.200%、S0
.005%以下、Sol.Al0.002%未満残部は
Feおよび不可避的不純物よりなる鋼素材を、圧延終了
温度を700℃以上でかつフェライト域内の温度として
熱間圧延し、続いて600〜680℃の温度で巻取りを
行い、次いで脱スケール、冷間圧延、焼鈍を実施するこ
とを特徴とする磁束密度の高い無方向性電磁鋼板の製造
方法。
(1) C0.005% or less, Si0.1-1.0%, M
r0.20% or less, P0.050-0.200%, S0
.. 005% or less, Sol. A steel material with less than 0.002% Al remaining Fe and unavoidable impurities is hot rolled at a rolling end temperature of 700°C or higher and within the ferrite range, and then coiled at a temperature of 600 to 680°C. , followed by descaling, cold rolling, and annealing. A method for producing a non-oriented electrical steel sheet with high magnetic flux density.
(2)C0.005%以下、Si0.1〜1.0%、M
n0.20%以下、P0.05〜0.200%、S0.
005%以下、Sol.Al0.150〜1.0%、残
部はFeおよび不可避的不純物よりなる鋼素材を、圧延
終了温度を700℃以上でかつフェライト域内の温度と
して熱間圧延し、続いて600〜680℃の温度で巻取
りを行い、次いで脱スケール、冷間圧延、焼鈍を実施す
ることを特徴とする磁束密度の高い無方向性電磁鋼板の
製造方法。
(2) C0.005% or less, Si0.1-1.0%, M
n0.20% or less, P0.05-0.200%, S0.
005% or less, Sol. A steel material consisting of 0.150 to 1.0% Al and the balance being Fe and unavoidable impurities is hot rolled at a rolling end temperature of 700°C or higher and within the ferrite range, and then at a temperature of 600 to 680°C. A method for producing a non-oriented electrical steel sheet with high magnetic flux density, which comprises winding, followed by descaling, cold rolling, and annealing.
JP62043534A 1987-02-25 1987-02-25 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density Expired - Lifetime JPH0680169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62043534A JPH0680169B2 (en) 1987-02-25 1987-02-25 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62043534A JPH0680169B2 (en) 1987-02-25 1987-02-25 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Publications (2)

Publication Number Publication Date
JPS63210237A true JPS63210237A (en) 1988-08-31
JPH0680169B2 JPH0680169B2 (en) 1994-10-12

Family

ID=12666404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62043534A Expired - Lifetime JPH0680169B2 (en) 1987-02-25 1987-02-25 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Country Status (1)

Country Link
JP (1) JPH0680169B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02310316A (en) * 1989-05-24 1990-12-26 Kobe Steel Ltd Production of nonoriented silicon steel sheet having developed (100)<uvw> aggregate structure
US5039359A (en) * 1989-04-17 1991-08-13 Nippon Steel Corporation Procees for producing grain-oriented electrical steel sheet having superior magnetic characteristic
JPH0463228A (en) * 1990-07-02 1992-02-28 Nippon Steel Corp Manufacture of nonoriented silicon steel sheet excellent in magnetic property before and after magnetic annealing
US5609696A (en) * 1994-04-26 1997-03-11 Ltv Steel Company, Inc. Process of making electrical steels
US6068708A (en) * 1998-03-10 2000-05-30 Ltv Steel Company, Inc. Process of making electrical steels having good cleanliness and magnetic properties
US6217673B1 (en) 1994-04-26 2001-04-17 Ltv Steel Company, Inc. Process of making electrical steels
EP2886667A4 (en) * 2012-08-17 2015-09-30 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet
WO2021167063A1 (en) 2020-02-20 2021-08-26 日本製鉄株式会社 Hot-rolled steel sheet for non-oriented electromagnetic steel sheets

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5995002B2 (en) 2013-08-20 2016-09-21 Jfeスチール株式会社 High magnetic flux density non-oriented electrical steel sheet and motor
JP5790953B2 (en) 2013-08-20 2015-10-07 Jfeスチール株式会社 Non-oriented electrical steel sheet and its hot-rolled steel sheet
JP6020863B2 (en) 2015-01-07 2016-11-02 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5162115A (en) * 1974-11-29 1976-05-29 Kawasaki Steel Co Tetsusonno hikuimuhokoseikeisokohan
JPS5855210A (en) * 1981-09-28 1983-04-01 Nitto Electric Ind Co Ltd Kneading method of resin powder material and kneader used thereof
JPS58171527A (en) * 1982-03-31 1983-10-08 Nippon Steel Corp Manufacture of low-grade electrical steel sheet
JPS61119652A (en) * 1984-11-15 1986-06-06 Kawasaki Steel Corp Nonoriented electrical steel sheet having small iron loss

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5162115A (en) * 1974-11-29 1976-05-29 Kawasaki Steel Co Tetsusonno hikuimuhokoseikeisokohan
JPS5855210A (en) * 1981-09-28 1983-04-01 Nitto Electric Ind Co Ltd Kneading method of resin powder material and kneader used thereof
JPS58171527A (en) * 1982-03-31 1983-10-08 Nippon Steel Corp Manufacture of low-grade electrical steel sheet
JPS61119652A (en) * 1984-11-15 1986-06-06 Kawasaki Steel Corp Nonoriented electrical steel sheet having small iron loss

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039359A (en) * 1989-04-17 1991-08-13 Nippon Steel Corporation Procees for producing grain-oriented electrical steel sheet having superior magnetic characteristic
JPH02310316A (en) * 1989-05-24 1990-12-26 Kobe Steel Ltd Production of nonoriented silicon steel sheet having developed (100)<uvw> aggregate structure
JPH0463228A (en) * 1990-07-02 1992-02-28 Nippon Steel Corp Manufacture of nonoriented silicon steel sheet excellent in magnetic property before and after magnetic annealing
JPH0742501B2 (en) * 1990-07-02 1995-05-10 新日本製鐵株式会社 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing
US5609696A (en) * 1994-04-26 1997-03-11 Ltv Steel Company, Inc. Process of making electrical steels
USRE35967E (en) * 1994-04-26 1998-11-24 Ltv Steel Company, Inc. Process of making electrical steels
US6217673B1 (en) 1994-04-26 2001-04-17 Ltv Steel Company, Inc. Process of making electrical steels
US6068708A (en) * 1998-03-10 2000-05-30 Ltv Steel Company, Inc. Process of making electrical steels having good cleanliness and magnetic properties
EP2886667A4 (en) * 2012-08-17 2015-09-30 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet
US9748027B2 (en) 2012-08-17 2017-08-29 Jfe Steel Corporation Method for manufacturing non-oriented electromagnetic steel sheet
WO2021167063A1 (en) 2020-02-20 2021-08-26 日本製鉄株式会社 Hot-rolled steel sheet for non-oriented electromagnetic steel sheets
KR20220106185A (en) 2020-02-20 2022-07-28 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet for non-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPH0680169B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
US7846271B2 (en) Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same
JPS63210237A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density
EP0490617B1 (en) Method for producing non-oriented electromagnetic steel strip having superior magnetic properties and appearance
JP2509018B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3239988B2 (en) High-strength non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same
JP3378934B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties and surface properties
JP4422220B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JPH06228645A (en) Production of silicon steel sheet for compact stationary device
JPH0443981B2 (en)
JP4016552B2 (en) Method for producing non-oriented electrical steel sheets with excellent magnetic properties and surface properties
JP3644039B2 (en) Method for producing non-oriented electrical steel sheet
JP3179986B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP3348811B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH0814015B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties and surface properties and method for producing the same
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
US5766375A (en) Non-oriented magnetic steel sheet having excellent bending workability
JPH0617548B2 (en) Non-oriented electrical steel sheet with excellent rust resistance
JPH0419295B2 (en)
JP3845887B2 (en) Manufacturing method of hot rolled electrical steel sheet with excellent magnetic properties
JP3379058B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2717009B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP3446452B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties and surface properties
JPH02104619A (en) Production of non-oriented magnetic steel sheet having excellent iron loss characteristic
JPH01139721A (en) Manufacture of semiprocessing non-oriented magnetic steel sheet having low iron loss and high magnetic permeability
JPH04136138A (en) Nonoriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term