JPS63209837A - High-temperature heat-insulating structure material - Google Patents

High-temperature heat-insulating structure material

Info

Publication number
JPS63209837A
JPS63209837A JP62043917A JP4391787A JPS63209837A JP S63209837 A JPS63209837 A JP S63209837A JP 62043917 A JP62043917 A JP 62043917A JP 4391787 A JP4391787 A JP 4391787A JP S63209837 A JPS63209837 A JP S63209837A
Authority
JP
Japan
Prior art keywords
carbon
foam
resin
fibers
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62043917A
Other languages
Japanese (ja)
Other versions
JPH0659726B2 (en
Inventor
修 江波戸
茂 高野
庸夫 金城
和広 長谷川
槌谷 暢男
中井 通夫
好二 伊藤
清重 正典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Steel Corp filed Critical Kawasaki Heavy Industries Ltd
Priority to JP62043917A priority Critical patent/JPH0659726B2/en
Publication of JPS63209837A publication Critical patent/JPS63209837A/en
Publication of JPH0659726B2 publication Critical patent/JPH0659726B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、炭素繊維強化炭素板と発泡体で構成された新
規な高温断熱構造材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a novel high-temperature heat insulating structural material composed of a carbon fiber-reinforced carbon plate and a foam.

「従来の技術」 従来、この種の高温断熱構造材料としては、炭化率の向
上と収縮率の低下をはかった、炭素微小中空体を発泡可
能な樹脂と混合し発泡させて得られたフオームを焼成し
てカーボンまたはグラファイトフオームを製造する方法
が、例えば特公昭51−5836号公報に開示されてい
る。
``Prior Art'' Conventionally, this type of high-temperature heat insulating structural material has been made of foam obtained by mixing micro hollow carbon bodies with foamable resin and foaming them, with the aim of improving the carbonization rate and decreasing the shrinkage rate. A method of producing carbon or graphite foam by firing is disclosed, for example, in Japanese Patent Publication No. 5836/1983.

このカーボンまたはグラファイトフオームは、圧縮強度
の向上は認められるが、曲げ強度は十分なものが得られ
ず構造材として使用に耐えうるものではなかった。
Although this carbon or graphite foam was recognized to have improved compressive strength, it did not have sufficient bending strength and could not be used as a structural material.

これに対して、曲げ強度に優れた高温用断熱材料として
、炭素微小中空体と、ガラス質の微小中空体と、熱硬化
樹脂あるいはピッチとからなるカーボンフオームに、炭
素または黒鉛質からなる板状の材料を積層し、一体化し
たカーボンフオーム断熱材が、例えば特開昭50−14
746号公報に開示されている。
On the other hand, as a high-temperature insulation material with excellent bending strength, carbon foam consisting of carbon micro hollow bodies, glassy micro hollow bodies, thermosetting resin or pitch, and plate-shaped carbon or graphite For example, a carbon foam insulation material made by laminating and integrating materials of
It is disclosed in Japanese Patent No. 746.

このカーボンフオーム断熱材は、強度に優れ、かつ低通
気性および耐摩耗性を付与した効果は認められるものの
、構造材として使用に耐えられる堅牢性を得るには至っ
ていない。
Although this carbon foam heat insulating material has excellent strength, low air permeability, and abrasion resistance, it has not yet achieved sufficient robustness to be used as a structural material.

さらに、熱伝導性が低く、優れた堅牢性を有する高温断
熱材として、少なくとも部分的に熱分解炭素で形成した
マトリックス中に保持された断熱鉱物繊維からなる断熱
材が、例えば特開昭56−22694号公報に開示され
ている。
Furthermore, as high-temperature insulating materials with low thermal conductivity and excellent robustness, insulating materials consisting of insulating mineral fibers held in a matrix formed at least partially of pyrolytic carbon have been proposed, e.g. It is disclosed in Japanese Patent No. 22694.

「発明が解決しようとする問題点」 前記特開昭56−22694号公報に開示された断熱材
は、鉱物繊維に熱硬化性4H脂を含浸させ、樹脂を硬化
させたのち、600℃以上の温度で熱分解するという方
法で製造されるが、鉱物繊維とマトリックスとの収縮率
が異なるため熱分解処理の過程で均一に空隙を生じさせ
ることが困難であり、鉱物繊維とマトリックスの界面に
空隙が集中してしまうという問題がある。
"Problems to be Solved by the Invention" The heat insulating material disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 56-22694 is made by impregnating mineral fibers with thermosetting 4H resin and curing the resin. Although it is produced by pyrolysis at high temperature, it is difficult to uniformly create voids during the pyrolysis process because the shrinkage rates of mineral fibers and matrix are different, and voids are created at the interface between mineral fibers and matrix. The problem is that it becomes concentrated.

つまり、鉱物繊維とマトリックスの界面に集中した空隙
は、圧縮強度や曲げ強度を低下させてしまい、これらの
空隙にコールタール、クールピッチ、樹脂などの炭化可
能な物質を再付着させ、ついで再度焼成、炭化する緻密
化処理を十分に行なって空隙を埋めなければ、構造材と
しての強度を得ることがでなかった。
In other words, voids concentrated at the interface between mineral fibers and matrix reduce compressive and flexural strength, and carbonizable materials such as coal tar, cool pitch, and resin are redeposited into these voids and then fired again. However, it was not possible to obtain the strength as a structural material unless the voids were filled by a sufficient densification process such as carbonization.

さらに、この緻密化処理は、熱伝導率を高める作用があ
るため、断熱材としての性能には悪影習を及ぼすもので
あり、従って、構造材としての強度をもち、かつ低熱伝
導性を維持することは非常に困難なことであった。
Furthermore, since this densification treatment has the effect of increasing thermal conductivity, it has a negative effect on its performance as a heat insulating material. Therefore, it has the strength as a structural material and maintains low thermal conductivity. It was a very difficult thing to do.

本発明は、かくの如き従来の問題を解決することを目的
とする。
The present invention aims to solve such conventional problems.

「問題点を解決するための手段」 本発明は、繊維長さが3f1以上である炭素繊維が30
〜80重量%になるように前記炭素繊維に炭化可能な樹
脂を含浸させて硬化し、焼成し、炭化して得た炭素繊維
強化炭素板と発泡体とを!lINし、一体化したことを
特徴とする高温断熱構造材料である。
"Means for Solving the Problems" The present invention provides carbon fibers having a fiber length of 3f1 or more.
A carbon fiber-reinforced carbon plate and a foam obtained by impregnating the carbon fibers with a carbonizable resin to a concentration of ~80% by weight, curing, firing, and carbonizing the carbon fibers! It is a high-temperature heat insulating structural material characterized by being integrated with lIN.

本発明において使用する炭素繊維強化炭素板は、3龍以
上の長さの炭素繊維または黒鉛繊維(以下単に炭素繊維
という)を、例えば抄紙して得た炭素繊維布または炭素
繊維フィラメントを並べたものに、炭化または黒鉛化(
以下単に炭化という)可能な樹脂を含浸し、得られたシ
ートを必要に応じて積層し硬化させたのち、焼成、炭化
することによって製造される炭素板または黒鉛板(以下
単に炭素板という)である、前記炭R&lll維の長さ
が3エル滴のものは、十分な機械的補強機能を果すこと
ができない。
The carbon fiber-reinforced carbon board used in the present invention is one in which carbon fiber cloth or carbon fiber filament obtained by paper-making carbon fibers or graphite fibers (hereinafter simply referred to as carbon fibers) having a length of three or more lengths are arranged. In addition, carbonization or graphitization (
A carbon or graphite plate (hereinafter simply referred to as a carbon plate) manufactured by impregnating a resin that can be carbonized (hereinafter simply referred to as carbonization), laminating the obtained sheets as necessary, curing them, and then firing and carbonizing them. Some of the charcoal R&llll fibers having a length of 3 L droplets cannot perform a sufficient mechanical reinforcing function.

また、繊維長さの上限はなく、連続長繊維炭素繊維織物
からなる炭素板は引張強度と曲げ強度が、短繊維からな
る炭素板より優れている。
Further, there is no upper limit to the fiber length, and a carbon plate made of continuous long fiber carbon fiber fabric has tensile strength and bending strength superior to a carbon plate made of short fibers.

さらに、連続長繊維炭素繊維の3次元物からなる炭素板
は、眉間のせん断強度が特に優れている。
Furthermore, a carbon plate made of a three-dimensional continuous long-fiber carbon fiber has particularly excellent glabella shear strength.

前記炭素繊維の配列は限定されず任意であってよい。The arrangement of the carbon fibers is not limited and may be arbitrary.

すなわち、必ずしも配向性を必要とせず、繊維が乱雑に
存在していても、整然としていてもよく、羽目状または
その他の市販の形状であってもよい。
That is, the fibers do not necessarily require orientation, and the fibers may be present in a disorderly manner or in an orderly manner, and may be in the form of a clapboard or other commercially available shapes.

前記炭化可能な樹脂としては、比較的残炭率の高いフェ
ノール系やフラン系樹脂等を用いることができるが、こ
れ以外の樹脂であっても例えばタールピッチなど炭化可
能なものであれば使用可能である。
As the carbonizable resin, phenol-based or furan-based resins having a relatively high residual carbon content can be used, but other resins can also be used as long as they can be carbonized, such as tar pitch. It is.

なお、前記炭素繊維強化炭素板全量に対する炭素繊維の
配合割合は、30〜80重量%とする。
The blending ratio of carbon fibers to the total amount of the carbon fiber-reinforced carbon plate is 30 to 80% by weight.

前記炭素繊維の配合割合が、30重量%未満では補強効
果が得られず、80重量%を越えると得られる炭素板が
もろいものになる。
If the blending ratio of the carbon fibers is less than 30% by weight, no reinforcing effect can be obtained, and if it exceeds 80% by weight, the obtained carbon plate becomes brittle.

また、炭素繊維に炭化可能な樹脂を含浸して得られるシ
ートに適度の柔軟性、接着性を付与し硬化までの作業性
を改善するために、適量のエポキシ樹脂を加えることが
できる。
Furthermore, an appropriate amount of epoxy resin can be added to the sheet obtained by impregnating carbon fibers with a carbonizable resin in order to impart appropriate flexibility and adhesion to the sheet and improve workability until curing.

さらに、炭素繊維強化炭素板に酸化性を付与するため、
その表面に酸化ケ仁り炭化ケイ素、アルミナ、ボロン等
をコーテーイングしたりあるいはこれらを充填させる処
理を行なってもよい。
Furthermore, in order to impart oxidizing properties to the carbon fiber reinforced carbon plate,
The surface may be coated with oxidized silicon carbide, alumina, boron, etc., or may be filled with these materials.

また、前記シートを硬化させたのち、炭化するための焼
成温度は800℃以上が好ましい。
Furthermore, after curing the sheet, the firing temperature for carbonizing the sheet is preferably 800° C. or higher.

焼成温度が800℃未満では、炭化処理が不十分であり
高強度の炭素繊維強化炭素板を得ることが難かしく、さ
らに1000℃以上の高温で使用した場合、ガスの発生
が起こり炭素繊維強化炭素板とカーボンフオームとの接
着強度が低下してしまう。
If the firing temperature is less than 800°C, the carbonization process will be insufficient and it will be difficult to obtain a high-strength carbon fiber-reinforced carbon plate.Furthermore, if the firing temperature is lower than 800°C, gas will be generated and the carbon fiber-reinforced carbon plate will be difficult to obtain. The adhesive strength between the plate and the carbon foam is reduced.

本発明において使用する発泡体としてはカーボンフォー
ムおよびセラミック等の無機質からなる発泡体であって
も1000℃以上の温度で優れた寸法安定性をもつもの
であれば如何なる発泡体であっても使用可能である 前記カーボンフオームとしては、炭化可能な樹脂を発泡
、硬化して得られた樹脂フオームを焼成、炭化する方法
、炭化可能な樹脂と炭素微小中空体とを混合し、発泡、
硬化して得られた樹脂フオームを焼成、炭化する方法、
炭化可能な樹脂と炭化可能な樹脂からなる微小中空体と
を混合し、発泡、硬化して得られた樹脂フオームを焼成
、炭化する方法、その他如何なる方法によるものであっ
ても、炭素質または黒鉛質の発泡体であればすべて含ま
れる。
As the foam used in the present invention, any foam can be used as long as it has excellent dimensional stability at temperatures of 1000°C or higher, including foams made of inorganic materials such as carbon foam and ceramics. The carbon foam can be produced by foaming and curing carbonizable resin, firing and carbonizing the resulting resin foam, mixing carbonizable resin and carbon micro hollow bodies, foaming,
A method of firing and carbonizing a resin foam obtained by hardening,
Carbonizable resin and micro hollow bodies made of carbonizable resin are mixed, foamed and hardened, and the resin foam obtained is fired and carbonized, or any other method is used to produce carbonaceous or graphite. All high quality foams are included.

前記カーボンフオームの中で、樹脂と炭素微小中空体か
らなるものは、容易に、かつ自在に発泡体の強度と熱伝
導率を関整でき、また容易に発泡体の空隙を均一に分散
でき性能的にもむらのないものを作ることができるので
歩留がよく好ましい。
Among the carbon foams mentioned above, those made of resin and carbon micro hollow bodies can easily and freely adjust the strength and thermal conductivity of the foam, and can easily disperse the voids in the foam uniformly, improving performance. It is preferable because the yield is good because it can produce products with no uniformity.

なお、前記樹脂フオームを炭化するための焼成温度は8
00℃以上が好ましい。
The firing temperature for carbonizing the resin foam was 8.
The temperature is preferably 00°C or higher.

焼成温度が800℃未満では、炭化処理が不十分で高強
度のカーボンフオームを得ることが難かしく、さらに1
000℃以上の高温で使用した場合、ガスの発生が起こ
り炭素繊維強化板とカーボンフオームとの接着強度が低
下してしまう。
If the firing temperature is less than 800°C, the carbonization process will be insufficient and it will be difficult to obtain a high-strength carbon foam.
When used at a high temperature of 000° C. or higher, gas is generated and the adhesive strength between the carbon fiber reinforced plate and the carbon foam is reduced.

つぎに、前記炭素繊維強化炭素板と前記発泡体とを積層
し一体化させ高温断熱構造材料とする。
Next, the carbon fiber-reinforced carbon plate and the foam are laminated and integrated to form a high-temperature heat insulating structural material.

積層構造をもたせる方法としては、如何なる方法を用い
てもよく、例えば炭素板と発泡体を別々に焼成、炭化し
たのち炭化可能な樹脂を用いて両者を接着、積層して硬
化、焼成、炭化する方法、炭素板と発泡体を別々に硬化
させ炭化しない段階で炭化可能な樹脂を用いて両者を接
着、Wi層して硬化、焼成、炭化する方法、あるいは炭
素板と発泡体のいずれか一方を炭化し他方は炭化しない
段階にしておいて炭化可能な樹脂を用いて両者を接着、
積層して硬化、焼成、炭化する方法等がある。
Any method may be used to create a laminated structure; for example, the carbon plate and the foam are fired and carbonized separately, then bonded together using a carbonizable resin, laminated, hardened, fired, and carbonized. A method is to cure the carbon plate and the foam separately and then bond them together using a resin that can be carbonized at a stage where they are not carbonized. One is carbonized and the other is left uncarbonized, and the two are bonded together using a carbonizable resin.
There are methods such as laminating, hardening, firing, and carbonizing.

また、前記積層の層数については、限定されず、発泡体
の片面あるいは両面に炭素板を接層したものや発泡体と
炭素板を交互に複数層に積層したもの等いずれを採用し
てもよい。
Furthermore, the number of laminated layers is not limited, and any method may be used, such as a carbon plate layered on one or both sides of a foam, or a plurality of layers of foam and carbon plates alternately laminated. good.

「実施例」 以下に、本発明の詳細な説明する。"Example" The present invention will be explained in detail below.

実施例1 長繊維炭素繊維(東邦ベスロン■製、ベスファイト、H
T A −6000) 60重量部に、アセトンにより
30重量%1度としたレゾールタイプのフェノール樹脂
(群栄化学工業(Ill製、P L−2211)40重
量部(不揮発成分)を含浸し、一方向へ引きそろえてシ
ートを作り、このシートを80℃で10分間乾燥して揮
発分を除いたのち、繊維方向をそろえて10枚を重ね合
わせる。
Example 1 Long fiber carbon fiber (manufactured by Toho Beslon ■, Besphite, H
TA-6000) was impregnated with 40 parts by weight (non-volatile component) of a resol type phenol resin (Gun-ei Chemical Industry Co., Ltd. (Ill), PL-2211) made 1% by weight to 30% by weight with acetone. A sheet is made by aligning the fibers in the same direction, and after drying this sheet at 80° C. for 10 minutes to remove volatile matter, 10 sheets are stacked with the fibers aligned in the same direction.

この重ね合わせたものをオートクレーブにより150℃
で3時間、7kg/−の圧力で真空パック成形して硬化
させ、さらに200℃のオーブン中で後硬化したのち、
不活性雰囲気中で1000℃まで3℃/時間の昇温速度
で昇温しながら焼成し、厚さ約2fiの炭素繊維強化炭
素板を得た。
This layered material is autoclaved at 150°C.
After being vacuum-packed and cured at a pressure of 7 kg/- for 3 hours, and further post-cured in an oven at 200°C,
The product was fired in an inert atmosphere while increasing the temperature to 1000° C. at a rate of 3° C./hour to obtain a carbon fiber-reinforced carbon plate having a thickness of about 2 fi.

一方、別に炭素微小中空体(平均粒径200μm、高庄
ff10.12g /cd)  と、ノボラックヘキサ
タイプのフェノール樹脂(住友デュレス■製、P R−
50099)をit比で36:64の割合で配合し、ニ
ーダ−を用いて均一になるまで混合したのち、150f
lX 150mmX5Q龍の型に流し込み、150 ℃
、30分の条件でプレス成形して硬化させ、さらに20
0℃のオーブン中で後硬化したのち、不活性雰囲気中で
1000℃まで10℃/時間の昇温速度で昇温しながら
焼成してカーボンフオームを得た。
On the other hand, carbon micro hollow bodies (average particle size 200μm, Takasho ff10.12g/cd) and novolac hexatype phenolic resin (manufactured by Sumitomo Duress ■, PR-
50099) at an IT ratio of 36:64, mixed until homogeneous using a kneader, and then
Pour into a 150mm x 5Q dragon mold and heat to 150℃.
, press molded for 30 minutes, hardened, and further 20 minutes.
After post-curing in an oven at 0°C, it was fired in an inert atmosphere while increasing the temperature to 1000°C at a rate of 10°C/hour to obtain a carbon foam.

つぎに、このカーボンフオームの両面に前記炭素繊維強
化炭素板を市販のグラファイト系接着剤を用いて貼り合
わせ、不活性雰囲気中で1000℃で焼成した。
Next, the carbon fiber-reinforced carbon plates were bonded to both sides of this carbon foam using a commercially available graphite adhesive and fired at 1000° C. in an inert atmosphere.

得られた高温断熱構造材料の特性値は第1表のとおりで
ある。
The characteristic values of the obtained high temperature heat insulating structural material are shown in Table 1.

実施例2 短繊維炭素繊維(東し特製、トレカ、T−300)を1
0鶴の長さに切断したチッソプを不規則に並べたカーボ
ンフェルト60重量部に、アセトンにより30重量%濃
度としたレゾールタイプのフェノール樹脂(群栄化学工
業■製、P L−2211)40重N部(不揮発成分)
を含浸してシートを作り実施例1と同様に処理して厚さ
約2■1の炭素繊維強化炭素板を得た。
Example 2 1 short fiber carbon fiber (Toshi Special, Trading Card, T-300)
40 parts of resol type phenol resin (manufactured by Gunei Chemical Industry ■, PL-2211) made with acetone to a concentration of 30% by weight was added to 60 parts by weight of carbon felt made of chissop cut into lengths of cranes arranged irregularly. Part N (non-volatile components)
A sheet was prepared by impregnating the carbon fiber with a carbon fiber-reinforced carbon plate having a thickness of approximately 2×1.

つぎに、実施例1と同じカーボンフオームの両面に前記
炭素繊維強化炭素板を市販のグラファイト系接着剤を用
いて貼り合わせ、不活性雰囲気中で1000℃で焼成し
た。
Next, the carbon fiber-reinforced carbon plates were bonded to both sides of the same carbon foam as in Example 1 using a commercially available graphite adhesive, and fired at 1000° C. in an inert atmosphere.

得られた高温断熱構造材料の特性値は第1表のとおりで
ある。
The characteristic values of the obtained high temperature heat insulating structural material are shown in Table 1.

比較例1 実施例1および実施例2で用いたカーボンフオーム単体
について特性値を測定した結果は第1表のとおりであっ
た。
Comparative Example 1 Table 1 shows the results of measuring the characteristic values of the carbon foam used in Examples 1 and 2.

第1表 「発明の効果」 以上述べた如く、本発明によれば炭素繊維強化炭素板と
発泡体とが積層し一体化されているため、断熱材として
の低熱伝導性と構造材としての堅牢性を合わせもつ高温
断熱構造材料が得られる。
Table 1 "Effects of the Invention" As stated above, according to the present invention, the carbon fiber-reinforced carbon plate and the foam are laminated and integrated, resulting in low thermal conductivity as a heat insulating material and robustness as a structural material. A high-temperature heat-insulating structural material with both properties can be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)繊維長さが3mm以上である炭素繊維が30〜8
0重量%になるように前記炭素繊維に炭化可能な樹脂を
含浸させて硬化し、焼成し、炭化して得た炭素繊維強化
炭素板と発泡体とを積層し、一体化したことを特徴とす
る高温断熱構造材料。
(1) Carbon fibers with a fiber length of 3 mm or more are 30 to 8
The carbon fiber-reinforced carbon plate obtained by impregnating the carbon fibers with a carbonizable resin to a concentration of 0% by weight, curing, firing, and carbonizing the foam is laminated and integrated. High temperature insulation structural material.
(2)発泡体がカーボンフォームである特許請求の範囲
第1項記載の高温断熱構造材料。
(2) The high temperature heat insulating structural material according to claim 1, wherein the foam is a carbon foam.
JP62043917A 1987-02-25 1987-02-25 High temperature insulating structural material and method for producing the same Expired - Lifetime JPH0659726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62043917A JPH0659726B2 (en) 1987-02-25 1987-02-25 High temperature insulating structural material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62043917A JPH0659726B2 (en) 1987-02-25 1987-02-25 High temperature insulating structural material and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63209837A true JPS63209837A (en) 1988-08-31
JPH0659726B2 JPH0659726B2 (en) 1994-08-10

Family

ID=12677063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62043917A Expired - Lifetime JPH0659726B2 (en) 1987-02-25 1987-02-25 High temperature insulating structural material and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0659726B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07315952A (en) * 1989-04-04 1995-12-05 Dow Chem Co:The Flame-resistant foamed body
WO2003072526A1 (en) * 2002-02-25 2003-09-04 Ut-Battelle, Llc Energy converting c/c-composite and method of making the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029838A (en) * 1973-04-20 1975-03-25
JPS50141746A (en) * 1974-04-30 1975-11-14
JPS57100985A (en) * 1980-12-12 1982-06-23 Pilot Precision Carbon foam structure and manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029838A (en) * 1973-04-20 1975-03-25
JPS50141746A (en) * 1974-04-30 1975-11-14
JPS57100985A (en) * 1980-12-12 1982-06-23 Pilot Precision Carbon foam structure and manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07315952A (en) * 1989-04-04 1995-12-05 Dow Chem Co:The Flame-resistant foamed body
WO2003072526A1 (en) * 2002-02-25 2003-09-04 Ut-Battelle, Llc Energy converting c/c-composite and method of making the same

Also Published As

Publication number Publication date
JPH0659726B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
EP0335736B1 (en) Process for producing carbon/carbon composites
KR20130135360A (en) Method for producing a ceramic component composed of a plurality of preforms
KR100307509B1 (en) Ceramic-Containing Carbon / Carbon Composites and Manufacturing Method Thereof
JPH03150266A (en) Production of carbon/carbon composite material
JP5068218B2 (en) Carbon fiber reinforced silicon carbide composite material and method for producing the same
JPS63209837A (en) High-temperature heat-insulating structure material
JPH0517225A (en) Production of carbon fiber reinforced carbon composite material
JPH03248838A (en) Heat insulation material
US20020190409A1 (en) Method for reinforcing ceramic composites and ceramic composites including an improved reinforcement system
JP2687458B2 (en) Insulation material for heating furnace
JP3140701B2 (en) Method for producing long fiber reinforced silicon carbide composite material
JP2002255664A (en) C/c composite material and production method therefor
JP3288408B2 (en) Manufacturing method of general-purpose carbon fiber reinforced carbon material
JPH01133914A (en) Carbon fiber reinforced carbon composite material and production thereof
JPH0532457A (en) Carbon fiber-reinforced carbon composite material and its production
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPH0717449B2 (en) Method for producing impermeable carbon material
JPS60260469A (en) Manufacture of carbon material
JPS6126563A (en) Manufacture of oxidation-resistant carbon fiber reinforced carbon material
JPS63256586A (en) Manufacture of oxidation-resistant carbon composite material
JPH04284363A (en) Manufacture of carbon plate
JPS63265863A (en) Carbon fiber reinforced composite carbon material and its production
JP2022138515A (en) Carbon fiber-based heat insulation material and method of manufacturing the same
JP3220983B2 (en) Method for producing carbon fiber reinforced carbon material