JPS63209303A - Nondirectional antenna within horizontal plane - Google Patents

Nondirectional antenna within horizontal plane

Info

Publication number
JPS63209303A
JPS63209303A JP4146387A JP4146387A JPS63209303A JP S63209303 A JPS63209303 A JP S63209303A JP 4146387 A JP4146387 A JP 4146387A JP 4146387 A JP4146387 A JP 4146387A JP S63209303 A JPS63209303 A JP S63209303A
Authority
JP
Japan
Prior art keywords
revolution
reflecting mirror
paraboloid
conical
horizontal plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4146387A
Other languages
Japanese (ja)
Inventor
Masahiko Asano
浅野 賢彦
Hiroshi Kurihara
宏 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4146387A priority Critical patent/JPS63209303A/en
Publication of JPS63209303A publication Critical patent/JPS63209303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To facilitate the control of the directivity within a perpendicular plane by reflecting a radiated radio wave from a primary radiator in a sub-reflecting mirror having an annular hyperboloid or ellipsoid of revolution and making the radio wave incident in a main reflecting mirror having a conical paraboloid of revolution. CONSTITUTION:In constituting the sub-reflecting mirror 2 by an ellipsoid of revolution, one focus 5 of two foci 4, 5 is made coincident with the center of phase of a primary radiator 3 and the other focus 4 is made coincident with a focus of a conical paraboloid of revolution main reflecting mirror 1, then a spherical wave radiated from the radiator 3 is reflected in the annular paraboloid of revolution subrelecting mirror plane 2 and made incident in the conical paraboloid of revolution main reflecting mirror 1, which is equivalent to the radiation of a radio wave from the focus of the main reflecting mirror 1, then the radio wave is radiated horizontally as a plane wave with an equal phase from the aperture of the antenna. Thus, the directivity in the horizontal plane is nondirectional in the horizontal plane, the directivity in the vertical plane is maximum in the horizontal direction and the direction is varied vartically with respect to the horizontal plane by varying the position (shape) of the main reflecting mirror 1.

Description

【発明の詳細な説明】 〔概要〕 中央局と、その周辺に散在する多数の固定子局或いは水
平面内で移動する移動子局との間で通信を行う為の水平
面内無指向性アンテナに於いて、円錐形回転放物面反射
鏡を主反射鏡とし、−次放射器から水平面内に一様に放
射した電波を円環形状の回転双曲面又は回転楕円面を反
射面とした副反射鏡で反射させて主反射鏡に入射させる
ものであり、垂直面内の指向性の制御が容易となるもの
である。
[Detailed Description of the Invention] [Summary] An omnidirectional antenna in a horizontal plane for communicating between a central station and a large number of stator stations scattered around the central station or mobile stations moving in a horizontal plane. The main reflector is a conical paraboloid of revolution, and the secondary reflector has a toric hyperboloid of revolution or ellipsoid of revolution as a reflection surface to reflect the radio waves uniformly radiated from the -order radiator in the horizontal plane. The beam is reflected by the beam and made incident on the main reflecting mirror, making it easy to control the directivity in the vertical plane.

〔産業上の利用分野〕[Industrial application field]

本発明は、中央局と、多数の固定子局或いは移動子局と
の間で通信を行う為の水平面内無指向性アンテナに関す
るものである。
The present invention relates to a horizontal omnidirectional antenna for communicating between a central station and a large number of stator stations or mobile stations.

中央局と、その周辺に散在する多数の固定子局或いはそ
の周辺に移動する子局との間で通信を行うシステムに於
いては、中央局に、子局対応のアンテナを設ける代わり
に、1個の水平面内無指向性アンテナを設けるのが好適
である。
In a system that communicates between a central station and a large number of stator stations scattered around the central station or slave stations that move around the central station, instead of providing the central station with an antenna for the slave stations, one It is preferable to provide two non-directional antennas in the horizontal plane.

〔従来の技術〕[Conventional technology]

水平面内無指向性アンテナとして、例えば、特開昭53
−65045号公報に示されている。この公報に示され
ているアンテナは、第7図及び第8図に示す構成を有す
るものであり、第7図に於いては、回転放物面を有する
ほぼ円錐形状の反射鏡31と、円錐状−次放射器32と
、給電用円形導波管33とから構成され、−次放射器3
2から放射された電波は、反射鏡31により反射されて
水平方向に放射され、水平面内では無指向性となると説
明されている。
As an omnidirectional antenna in the horizontal plane, for example,
It is shown in the publication No.-65045. The antenna shown in this publication has the configuration shown in FIGS. 7 and 8, and in FIG. Consisting of a -order radiator 32 and a circular waveguide 33 for power feeding, the -order radiator 3
It is explained that the radio waves radiated from 2 are reflected by the reflecting mirror 31 and radiated in the horizontal direction, and are non-directional in the horizontal plane.

又第8図に於いては、回転双曲面を有するほぼ円錐形状
の主反射鏡34と、回転放物面を有する副反射鏡35と
、円錐状−次放射器36と、給電用円形導波管37とか
ら構成されており、−次放射器36から放射された電波
は、副反射鏡35で反射されて主反射鏡34に入射され
、この主反射鏡34から水平方向に放射され、水平面内
では無指向性となると説明されている。
Further, in FIG. 8, a main reflecting mirror 34 having a substantially conical shape having a hyperboloid of rotation, a sub-reflecting mirror 35 having a paraboloid of revolution, a conical-order radiator 36, and a circular waveguide for power feeding are shown. The radio waves emitted from the -order radiator 36 are reflected by the sub-reflector 35 and incident on the main reflector 34, and are radiated from the main reflector 34 in the horizontal direction. It is explained that it is non-directional.

又他の水平面内無指向性アンテナとしては、ダイポール
アンテナやバイコニカルアンテナ等が知られている。
Also, dipole antennas, biconical antennas, and the like are known as other non-directional antennas in the horizontal plane.

〔発明が解決しようとする問題点〕 数GHz以上の周波数を用いて、中央局とその周辺に散
在する多数の固定子局との間、或いは、中央局とその周
辺を移動する移動子局との間で通信を行う場合、半波長
のダイポールアンテナは、寸法的に小さくなり過ぎるか
ら、実用的でないものとなる。又バイコニカルアンテナ
は、反射鏡を有しない放射形アンテナであるから、励振
源とアンテナ系とのインタフェースが高い周波数帯域で
困難となり、且つ垂直面内に於ける指向性の制御が困難
である等の欠点がある。
[Problems to be solved by the invention] Using frequencies of several GHz or more, communication between a central station and a large number of stator stations scattered around the central station, or between a central station and mobile stations moving around the central station. When communicating between Furthermore, since the biconical antenna is a radiating antenna that does not have a reflecting mirror, it is difficult to interface between the excitation source and the antenna system in high frequency bands, and it is difficult to control the directivity in the vertical plane. There are drawbacks.

又第7図に示す従来例のアンテナは、反射鏡が1個であ
るから、アンテナ開口面の電磁界分布を制御することが
容易でない欠点があり、又第8図に示す従来例のアンテ
ナは、主反射鏡と副反射鏡とを用いているが、主反射鏡
34を回転双曲面としていることから、垂直面内に於け
る指向性を制御することが困難である欠点がある。
Furthermore, since the conventional antenna shown in FIG. 7 has only one reflecting mirror, it is difficult to control the electromagnetic field distribution on the antenna aperture, and the conventional antenna shown in FIG. Although a main reflecting mirror and a sub-reflecting mirror are used, since the main reflecting mirror 34 is a hyperboloid of rotation, there is a drawback that it is difficult to control the directivity in a vertical plane.

本発明は、水平面内を無指向性とすると共に、垂直面内
に於ける指向性の制御を容易にすることを目的とするも
のである。
An object of the present invention is to provide non-directivity in the horizontal plane and to facilitate control of directivity in the vertical plane.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の水平面内無指向性アンテナは、−次放射器と副
反射鏡と主反射鏡とを有するもので、第1図を参照して
説明する。
The omnidirectional antenna in the horizontal plane of the present invention has a -order radiator, a sub-reflector, and a main reflector, and will be described with reference to FIG. 1.

第1図に於いては、軸6を中心として回転対称形で、断
面の左側を示しており、ほぼ円錐形状の回転放物面又は
これに補正を加えた回転面の外側を反射面とした円錐形
回転放物面主反射鏡1と、ほぼ円環形状の回転双曲面又
は回転楕円面又はこれらに補正を加えた回転面を反射面
とし、その反射面を円錐形回転放物面主反射鏡1の反射
面と対向して配置した副反射鏡2と、この副反射鏡2の
反射面に電波を放射して円錐形回転放物面主反射鏡1の
反射面から水平方向に放射させる一次放射器3とから構
成されている。
In Figure 1, it is rotationally symmetrical with respect to the axis 6, and the left side of the cross section is shown, and the outer side of the approximately conical paraboloid of revolution or a surface of revolution that has been corrected is the reflective surface. A conical paraboloid of revolution main reflecting mirror 1, a substantially toric hyperboloid of revolution or an ellipsoid of revolution, or a surface of revolution obtained by making corrections thereto is used as a reflecting surface, and the reflecting surface is a conical paraboloid of revolution main reflecting mirror. A sub-reflector 2 is placed opposite to the reflecting surface of the mirror 1, and radio waves are radiated to the reflecting surface of the sub-reflector 2 and radiated horizontally from the reflecting surface of the conical paraboloid of revolution main reflector 1. It is composed of a primary radiator 3.

〔作用〕[Effect]

一次放射器3は、バイコニカルアンテナやダイポールア
ンテナ等により構成され、水平面内に於いて無指向性で
副反射鏡2に電波が放射される。
The primary radiator 3 is composed of a biconical antenna, a dipole antenna, or the like, and radiates radio waves to the sub-reflector 2 nondirectionally in a horizontal plane.

この電波は副反射鏡2で反射されて円錐形回転数物面主
反射鏡1に入射され、水平方向へ放射される。
This radio wave is reflected by the sub-reflector 2, enters the conical rotational speed object plane main reflector 1, and is emitted in the horizontal direction.

この時、副反射鏡2を第1図に示すように、回転楕円面
で構成したとすると、二つの焦点4.5のうちの一方の
焦点5を、−次放射器3の位相中心と一致させ、他方の
焦点4を円錐形回転放物面主反射鏡1の焦点と一致させ
ると、−次放射器3から放射された球面波は、この−次
放射器3を囲むような円環形状の副反射鏡2により反射
されて円錐形回転放物面主反射鏡1へ入射され、恰も焦
点4から円錐形回転放物面主反射鏡1へ入射されたよう
になる。主反射鏡1の焦点から電波が放射されたのと等
価となるから、アンテナの開口面から等位相の平面波と
して水平方向に放射されることになる。
At this time, if the sub-reflector 2 is constructed of a spheroidal ellipsoid as shown in FIG. When the other focal point 4 is made to coincide with the focal point of the conical paraboloid of revolution main reflecting mirror 1, the spherical wave emitted from the -order radiator 3 forms an annular shape surrounding the -order radiator 3. The light is reflected by the sub-reflecting mirror 2 and is incident on the conical paraboloid of revolution main reflecting mirror 1, as if it were incident on the conical paraboloid of revolution main reflecting mirror 1 from the focal point 4. This is equivalent to a radio wave being radiated from the focal point of the main reflecting mirror 1, so that it is radiated horizontally from the aperture of the antenna as a plane wave with the same phase.

従って、水平面内指向特性は第2図に示すように水平面
内無指向性となり、垂直面内指向特性は第3図に示すよ
うに水平方向に最大となる。この垂直面内指向特性は、
主反射鏡1の位置く形状)を変えることにより、水平面
に対して上下方向に変えることができる。
Therefore, the directivity in the horizontal plane becomes omnidirectional in the horizontal plane as shown in FIG. 2, and the directivity in the vertical plane becomes maximum in the horizontal direction as shown in FIG. This vertical plane directivity characteristic is
By changing the position and shape of the main reflecting mirror 1, it can be changed vertically with respect to the horizontal plane.

〔実施例〕〔Example〕

以下図面を参照して本発明の実施例について詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第4図は本発明の一実施例の説明図であり、概略断面を
示すものである。同図に於いて、11はほぼ円錐形状の
回転放物面又はこれに補正を加えた回転面を反射面11
aとした円錐形回転放物面主反射鏡、12は円環形状の
回転双曲面又は回転楕円面又はこれらの面に補正を加え
た回転面を反射面12aとした副反射鏡、13はバイコ
ニカルアンテナ等の一次放射器、14は給電用導波管、
15は金属又は誘電体からなる支柱或いは円筒であり、
副反射鏡12は、回転双曲面を用いた場合を示している
FIG. 4 is an explanatory diagram of one embodiment of the present invention, and shows a schematic cross section. In the same figure, reference numeral 11 indicates a substantially conical paraboloid of revolution or a surface of revolution obtained by adding correction to the reflecting surface 11.
a is a conical paraboloid of revolution main reflecting mirror, 12 is a sub-reflecting mirror whose reflecting surface is a toric hyperboloid of revolution or an ellipsoid of revolution, or a surface of revolution obtained by correcting these surfaces, and 13 is a bi-directional mirror. A primary radiator such as a conical antenna, 14 a feeding waveguide,
15 is a support or cylinder made of metal or dielectric,
A case is shown in which the sub-reflector 12 uses a hyperboloid of rotation.

円錐形回転放物面主反射鏡11は、点線で示す放物線1
6の頂点と焦点との間の所定の位置の軸17を中心とし
て回転させて形成された円錐形状の曲面を反射面11a
としたものであり、又副反射鏡12は、双曲線又は楕円
を軸17を中心としく7) て回転させて形成された曲面の一部を、−次放射器13
を囲むような円環形状とした反射面12aを有し、その
反射面12aの焦点と主反射鏡11の反射面11aの焦
点とを一致させて配置する。
The conical paraboloid of revolution main reflecting mirror 11 has a parabola 1 indicated by a dotted line.
The reflecting surface 11a is a conical curved surface formed by rotating around an axis 17 at a predetermined position between the apex of 6 and the focal point.
In addition, the sub-reflector 12 has a part of a curved surface formed by rotating a hyperbola or an ellipse around an axis 17 as a -order radiator 13.
The main reflecting mirror 11 has a reflecting surface 12a having an annular shape surrounding the main reflecting mirror 11, and is arranged so that the focal point of the reflecting surface 12a and the focal point of the reflecting surface 11a of the main reflecting mirror 11 coincide with each other.

従って、導波管14を介して給電され、−次放射器13
から放射された球面波は、副反射鏡12の反射面12a
で反射されて、主反射鏡11の反射面11aに入射され
、副反射鏡12と主反射鏡11との焦点が同じ位置であ
るから、その焦点から主反射鏡11に電波が入射された
場合と等価となり、開口面から等位相の平面波として水
平方向に放射される。
Therefore, it is fed through the waveguide 14 and the -order radiator 13
The spherical wave radiated from the reflection surface 12a of the sub-reflector 12
The radio wave is reflected by the main reflecting mirror 11 and is incident on the reflecting surface 11a of the main reflecting mirror 11, and since the focal points of the sub-reflecting mirror 12 and the main reflecting mirror 11 are at the same position, when the radio wave is incident on the main reflecting mirror 11 from that focal point. is equivalent to , and is radiated horizontally from the aperture surface as a plane wave with the same phase.

又円筒15を誘電体により構成して、主反射鏡11と副
反射鏡12との間を固定し、開口面から内部へ雨滴等が
浸入しないように密閉構造とすることもできる。
Alternatively, the cylinder 15 may be made of a dielectric material to fix the space between the main reflecting mirror 11 and the sub-reflecting mirror 12, and to have a sealed structure so that raindrops and the like do not enter into the interior through the opening surface.

第5図は本発明の他の実施例の説明図であり、第4図と
同一符号は同一部分を示す。この実施例は、第4図に示
す実施例に対して、主反射鏡11と副反射鏡12との上
下位置を反対にしたものであり、水平面内無指向性で電
波を放射できる点は前述の実施例と同様である。
FIG. 5 is an explanatory diagram of another embodiment of the present invention, and the same reference numerals as in FIG. 4 indicate the same parts. In this embodiment, the vertical positions of the main reflecting mirror 11 and the sub-reflecting mirror 12 are reversed with respect to the embodiment shown in FIG. This is similar to the embodiment.

第6図は垂直面内指向性の制御説明図であり、第1図と
同様に軸26を中心した回転対称形で、その断面の左側
を示し、又副反射鏡22として回転楕円面の場合を示し
ている。この副反射鏡22の焦点24.25の一方の焦
点25を、−次放射器23の位相中心とし、他方の焦点
24を主反射鏡21の焦点と一致させると、前述のよう
に、−次放射器23の位相中心から球面波が放射されて
副反射鏡22に入射され、この副反射鏡22により反射
されて主反射鏡21に入射され、位相中心となる焦点2
5から放射された電波は、恰も焦点24から放射されて
主反射鏡21に入射されるものと等価となり、主反射鏡
21の反射面は、回転放物面であるから、アンテナ開口
面では等位相の平面波となる。
FIG. 6 is an explanatory diagram of the control of the directivity in the vertical plane, and the shape is rotationally symmetrical about the axis 26 as in FIG. 1, and the left side of the cross section is shown. It shows. If one focus 25 of the focal points 24 and 25 of this sub-reflector 22 is made the phase center of the -order radiator 23, and the other focus 24 is made coincident with the focus of the main reflector 21, the -order A spherical wave is emitted from the phase center of the radiator 23 and is incident on the sub-reflector 22, reflected by the sub-reflector 22, and incident on the main reflector 21, where it is focused at the focal point 2, which is the phase center.
The radio waves radiated from the antenna 5 are equivalent to those radiated from the focal point 24 and incident on the main reflecting mirror 21, and since the reflecting surface of the main reflecting mirror 21 is a paraboloid of revolution, the radio waves are equal on the antenna aperture plane. It becomes a phase plane wave.

そして、主反射鏡21と副反射鏡22との焦点24を一
致させた状態で、主反射鏡21の形状。
Then, the shape of the main reflecting mirror 21 is determined with the focal points 24 of the main reflecting mirror 21 and the sub-reflecting mirror 22 being aligned.

位置を変更することにより、図示のように、水平面に対
して下方にθの角度の垂直面内指向性を得ることができ
る。同様に、主反射鏡21の形状。
By changing the position, it is possible to obtain directivity in the vertical plane at an angle of θ downward with respect to the horizontal plane, as shown in the figure. Similarly, the shape of the main reflecting mirror 21.

位置を変更して、水平面に対して上方に任意の角度の垂
直面内指向性を得ることができる。
By changing the position, it is possible to obtain directivity in the vertical plane at any angle upward with respect to the horizontal plane.

又−次放射器は、バイコニカルアンテナ以外に水平面内
で無指向性のダイポールアンテナ等を用いることもでき
る。又2枚の反射鏡をそれぞれ変形し、開口面分布を制
御する鏡面修正技術を用いることもできる。
In addition to the biconical antenna, a non-directional dipole antenna in the horizontal plane can also be used as the second-order radiator. It is also possible to use a mirror surface modification technique in which the two reflecting mirrors are each deformed to control the aperture distribution.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、円錐形状の回転放物面
又はこれに補正を加えた回転面を反射面とした円錐形回
転放物面主反射鏡1と、−次放射器3を囲むような円環
形状の回転双曲面又は回転楕円面又はこれらに補正を加
えた回転面を反射面とした副反射鏡2を組合せているこ
とにより、主反射鏡1の位置、形状を変更して、開口面
に於ける振幅1位相分布等を任意に設定できるので、垂
直面内指向性の制御が容易で、且つ高効率化及び低サイ
ドローブ化等を図ることができる利点かある。
As explained above, the present invention includes a conical paraboloid of revolution main reflecting mirror 1 whose reflecting surface is a conical paraboloid of revolution or a surface of revolution obtained by adding correction to the conical paraboloid of revolution, and a -order radiator 3. The position and shape of the main reflecting mirror 1 can be changed by combining the sub-reflecting mirror 2 whose reflecting surface is a toric-shaped hyperboloid of revolution or ellipsoid of revolution, or a surface of revolution obtained by correcting these. Since the amplitude 1-phase distribution, etc. in the aperture plane can be set arbitrarily, the directivity in the vertical plane can be easily controlled, and there are advantages in that high efficiency and low side lobes can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、第2図は水平面内指向特
性説明図、第3図は垂直面内指向特性説明図、第4図は
本発明の一実施例の説明図、第5図は本発明の他の実施
例の説明図、第6図は垂直面内指向性の制御説明図、第
7図及び第8図は従来例の説明図である。 1.11.21は円錐形回転放物面主反射鏡、2.12
.22は副反射鏡、3,13.23は一次放射器、4,
5,24.25は焦点である。
Fig. 1 is an explanatory diagram of the principle of the present invention, Fig. 2 is an explanatory diagram of the directional characteristics in the horizontal plane, Fig. 3 is an explanatory diagram of the directional characteristics in the vertical plane, Fig. 4 is an explanatory diagram of an embodiment of the present invention, and Fig. 5 is an explanatory diagram of the directional characteristics in the vertical plane. FIG. 6 is an explanatory diagram of another embodiment of the present invention, FIG. 6 is an explanatory diagram of control of directivity in a vertical plane, and FIGS. 7 and 8 are explanatory diagrams of a conventional example. 1.11.21 is a conical paraboloid of revolution main reflector, 2.12
.. 22 is a sub-reflector, 3, 13.23 is a primary radiator, 4,
5, 24.25 is the focal point.

Claims (1)

【特許請求の範囲】 ほぼ円錐形状の回転放物面又はこれに補正を加えた回転
面を反射面とした円錐形回転放物面主反射鏡(1)と、 ほぼ円環形状の回転双曲面又は回転楕円面又はこれらの
面に補正を加えた回転面を反射面とし、該反射面を前記
円錐形回転放物面主反射鏡(1)の反射面と対向させた
副反射鏡(2)と、 該副反射鏡(2)の反射面に電波を放射して前記円錐形
回転放物面主反射鏡(1)の反射面からほぼ水平面内に
電波を放射させる為の一次放射器(3)とを備えた ことを特徴とする水平面内無指向性アンテナ。
[Claims] A conical paraboloid of revolution main reflecting mirror (1) whose reflecting surface is a substantially conical paraboloid of revolution or a surface of revolution obtained by adding correction to the paraboloid of revolution, and a substantially circular hyperboloid of revolution. Or a sub-reflector (2) in which the reflecting surface is an ellipsoid of revolution or a surface of rotation obtained by correcting these surfaces, and the reflecting surface is opposed to the reflecting surface of the conical paraboloid of revolution main reflecting mirror (1). and a primary radiator (3) for radiating radio waves onto the reflecting surface of the sub-reflector (2) and emitting radio waves from the reflecting surface of the conical paraboloid of revolution main reflector (1) in a substantially horizontal plane. ) An omnidirectional antenna in a horizontal plane.
JP4146387A 1987-02-26 1987-02-26 Nondirectional antenna within horizontal plane Pending JPS63209303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4146387A JPS63209303A (en) 1987-02-26 1987-02-26 Nondirectional antenna within horizontal plane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4146387A JPS63209303A (en) 1987-02-26 1987-02-26 Nondirectional antenna within horizontal plane

Publications (1)

Publication Number Publication Date
JPS63209303A true JPS63209303A (en) 1988-08-30

Family

ID=12609070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4146387A Pending JPS63209303A (en) 1987-02-26 1987-02-26 Nondirectional antenna within horizontal plane

Country Status (1)

Country Link
JP (1) JPS63209303A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365045A (en) * 1976-11-24 1978-06-10 Nippon Telegr & Teleph Corp <Ntt> Nondirectional antenna in horizontal surface

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365045A (en) * 1976-11-24 1978-06-10 Nippon Telegr & Teleph Corp <Ntt> Nondirectional antenna in horizontal surface

Similar Documents

Publication Publication Date Title
US3922682A (en) Aberration correcting subreflectors for toroidal reflector antennas
JP5877894B2 (en) antenna
EP0678930A2 (en) Broadband omnidirectional microwave antenna
JPS63209303A (en) Nondirectional antenna within horizontal plane
JP2686288B2 (en) Antenna device
JP2571378B2 (en) Omni-directional antenna in horizontal plane
JPH05114816A (en) Antenna system
JP3189050B2 (en) Mobile station antenna device
CN206628598U (en) Dual-frequency combination card Sai Gelun antenna feeds structure and Cassegrain antenna
TWI713252B (en) Toroidal compact antenna test range
JP3034262B2 (en) Aperture antenna device
JP2608412B2 (en) Omni-directional antenna in horizontal plane
JPS603211A (en) Antenna in common use for multi-frequency band
JPH04344705A (en) Omnidirectional antenna
JPS63144605A (en) Nondirectional antenna within horizontal plane
JP2003204218A (en) Antenna device
JPS5939104A (en) Shaped beam antenna
JPH04344706A (en) Fan beam antenna
JPH11317617A (en) Spherical mirror antenna device
CN112151949A (en) Luneberg lens antenna
JPS598406A (en) Scanning type antenna
JPS63283209A (en) Aperture plane antenna
JPS5884506A (en) Formed beam antenna
JPS6345904A (en) Refrection mirror antenna
JPS634361B2 (en)