JPH04344705A - Omnidirectional antenna - Google Patents

Omnidirectional antenna

Info

Publication number
JPH04344705A
JPH04344705A JP11617591A JP11617591A JPH04344705A JP H04344705 A JPH04344705 A JP H04344705A JP 11617591 A JP11617591 A JP 11617591A JP 11617591 A JP11617591 A JP 11617591A JP H04344705 A JPH04344705 A JP H04344705A
Authority
JP
Japan
Prior art keywords
axis
parabola
wave
reflected
circular cone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11617591A
Other languages
Japanese (ja)
Inventor
Hajime Ishimaru
石丸 元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROBOTEC KENKYUSHO KK
Original Assignee
ROBOTEC KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ROBOTEC KENKYUSHO KK filed Critical ROBOTEC KENKYUSHO KK
Priority to JP11617591A priority Critical patent/JPH04344705A/en
Publication of JPH04344705A publication Critical patent/JPH04344705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To warrant the ominidirectivity with respect to a circularly polarized wave, to eliminate a fragile mechanical part with a small size and a light weight and to attain ease of manufacture by providing two specific reflectors respectively to the antenna. CONSTITUTION:An axis of a parabola A and an axis of a right circular cone are made coincident to form a Z axis, an angle theta between the Z axis and a conical face B is selected to be 45 deg., the parabola A and the right conical face B are made opposite to each other, a feed horn F is placed at a focus of the parabola A. A radio wave W1 from the feed horn F is reflected in a point A1 of the parabola A and reflected in a pint B1 of a circular cone B in parallel with the Z axis and radiates through a path in a direction C1 perpendicular to the Z axis. Similarly, a radio wave W2 radiates through a path in a direction C2. Then transmission power as a circularly polarized wave radiates from he feed horn F, is reflected on a mirror surface of the parabola A whose radiation phase midpoint is used for a focus, and converted from a spherical wave into a plane wave. The plane wave is reflected by 90 deg. in the circular cone face B and an omnidirectional radio wave in the horizontal direction is obtained when the Z axis is provided in a vertical direction.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、水平面内無指向性(
以下「無指向性」という。)で且つ円偏波用で、波長の
短い電波(電磁波)に適するアンテナに関するものであ
る。
[Industrial Application Field] This invention is directed to non-directional in the horizontal plane (
Hereinafter referred to as "omnidirectional." ) and is for circularly polarized waves and is suitable for radio waves (electromagnetic waves) with short wavelengths.

【0002】0002

【従来の技術】水平面内無指向性でかつ円偏波特性を有
するアンテナとしては、バイコニカルアンテナがある。 このようなアンテナはマイクロ波帯で良く使われている
が、垂直面内のビーム幅を狭くしようとすると上下の円
錐形状の大きさが非常に大きくなり重量も大きくなる。 したがって、中央のスロット部が構造的に弱くなる。ま
た周波数帯域も狭い。中央のスロット部の幅は波長に比
べ非常に狭くする必要があり、例えば3GHzでは2m
m程度であるが、70GHz帯では0.1mm程度とな
る。したがって加工も非常に難しい。このような、大型
であること、重量が大きいこと、構造的に脆弱な部分が
あること、等のことは、移動体に搭載して振動・衝撃を
受けながら使用するのに適しない。
2. Description of the Related Art Biconical antennas are examples of antennas that are non-directional in the horizontal plane and have circularly polarized wave characteristics. Such antennas are often used in the microwave band, but if you try to narrow the beam width in the vertical plane, the size of the upper and lower conical shapes will become very large, and the weight will also increase. Therefore, the central slot portion becomes structurally weak. The frequency band is also narrow. The width of the central slot needs to be very narrow compared to the wavelength, for example 2m at 3GHz.
m, but in the 70 GHz band it is about 0.1 mm. Therefore, processing is also extremely difficult. Such factors such as large size, heavy weight, and structurally weak parts are not suitable for use while being mounted on a moving body and subject to vibrations and shocks.

【0003】0003

【発明の目的】この発明は、移動体に搭載するミリメー
トル波(以下「ミリ波」という。)もしくはサブミリメ
ートル波(以下「サブミリ波」という。)用の無指向性
アンテナを得ることを目的とするもので、この見地から
、重量が大きくないこと、形状が大きくないこと、構造
的に脆弱な部分がないこと、無指向性の完全さが損われ
ないこと、加工・製作が容易であること等の要請に応え
るものである。
[Purpose of the Invention] The purpose of the present invention is to obtain an omnidirectional antenna for millimeter waves (hereinafter referred to as "millimeter waves") or submillimeter waves (hereinafter referred to as "submillimeter waves") to be mounted on a mobile object. From this point of view, the weight should not be large, the shape should not be large, there should be no structurally weak parts, the completeness of omnidirectionality should not be impaired, and it should be easy to process and manufacture. This is in response to such requests.

【0004】0004

【発明の概要】この発明は、回転放物面(以下「パラボ
ラ」という。)からなる第1の反射鏡の軸に一致した軸
を有する直円錐面を第2の反射鏡として設けたものであ
る。円錐を、軸と錐面との角が45°の直円錐とし、パ
ラボラの軸、従って直円錐の軸、を鉛直にとり、パラボ
ラの面を円錐面に対向させると、円錐面に出入する電波
は水平面内で無指向性となる。フィードホーンは、パラ
ボラの焦点の位置に設ける。
[Summary of the Invention] The present invention is a paraboloid of revolution (hereinafter referred to as a "parabola") in which a right circular conical surface having an axis coinciding with the axis of the first reflecting mirror is provided as the second reflecting mirror. be. If the cone is a right cone with a 45° angle between the axis and the cone surface, the axis of the parabola, and therefore the axis of the right cone, is vertical, and the surface of the parabola is opposed to the cone surface, the radio waves entering and exiting the cone surface will be It is omnidirectional in the horizontal plane. The feed horn is installed at the focal point of the parabola.

【0005】[0005]

【効果】この発明によるアンテナは、構造が極めて簡単
であり、重量・寸法とも大きくならないし、形状も簡単
である。そして、構造的に脆弱な部分を有しない。製作
も容易である。この発明によれば、円偏波の電波に対し
て、軸を鉛直方向にとれば、水平面内無指向性が、原理
的に、保障される。
[Effects] The antenna according to the present invention has an extremely simple structure, does not increase in weight or size, and has a simple shape. Furthermore, it does not have any structurally weak parts. It is also easy to manufacture. According to this invention, if the axis of a circularly polarized radio wave is set in the vertical direction, omnidirectionality in the horizontal plane is guaranteed in principle.

【0006】なお、楕円偏波の電波に対しては、無指向
性が損われるが、どの方位に対しても或る程度の指向性
を有する特性が得られる。そして、反射鏡を使用してい
るので、周波数帯域は本質的に広帯域である。従って、
移動体に搭載するのに適し、又、ミリ波・サブミリ波用
に適する。
[0006] For elliptically polarized radio waves, although omnidirectionality is lost, a characteristic of having a certain degree of directivity in any direction can be obtained. Since a reflecting mirror is used, the frequency band is essentially wide. Therefore,
Suitable for mounting on moving objects, and suitable for millimeter and submillimeter waves.

【0007】[0007]

【実施例】図1は、この発明のアンテナの構成の基本配
置を示すものである。この図において、Aはパラボラで
あり、Bは直円錐である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the basic arrangement of the antenna structure of the present invention. In this figure, A is a parabola and B is a right circular cone.

【0008】以後の説明において、パラボラについて記
号「A」はパラボラの構造物を指すとともにパラボラの
鏡面をも指すものとし、又、直円錐について記号「B」
は直円錐の構造物を示すとともに直円錐の錐面(鏡面)
をも示すものとする。
In the following explanation, the symbol "A" for a parabola refers to the structure of the parabola as well as the mirror surface of the parabola, and the symbol "B" for a right circular cone.
indicates the structure of a right circular cone and the conical surface (mirror surface) of the right circular cone.
shall also be indicated.

【0009】図1で、パラボラAの軸と直円錐の軸とを
一致させてこれをZ軸として示した。又、この図で、Z
軸と錐面Bとの間の角θは45度である。パラボラAと
直円錐面Bとを対向させてあり、Fはフィードホーンで
パラボラAの焦点の位置にある。
In FIG. 1, the axis of the parabola A and the axis of the right circular cone are aligned and shown as the Z axis. Also, in this diagram, Z
The angle θ between the axis and the conical surface B is 45 degrees. A parabola A and a right circular conical surface B are opposed to each other, and F is a feed horn located at the focal point of the parabola A.

【0010】図1において、フィードホーンFから出た
電波W1は、パラボラAのA1点で反射した後、Z軸に
平行に進んで円錐Bの面のB1点で反射してZ軸に垂直
にC1の方向の経路で出る。同様に電波W2は、パラボ
ラAのA2点、円錐Bの面のB2点で反射した後Z軸に
垂直にC2の方向の経路で出る。
In FIG. 1, the radio wave W1 emitted from the feed horn F is reflected at point A1 of parabola A, travels parallel to the Z-axis, is reflected at point B1 on the surface of cone B, and travels perpendicular to the Z-axis. Exit via the route in the direction of C1. Similarly, the radio wave W2 is reflected at point A2 of parabola A and point B2 of the surface of cone B, and then exits on a path perpendicular to the Z-axis in the direction of C2.

【0011】ここで、図1において送信電力は円偏波と
してフィードホーンFより放射される。これを前提とす
る。さらに、フィードホーンFの放射位相中心を焦点と
するパラボラAの鏡面によって反射され、球面波から平
面波に変換される。この平面波が円錐面Bの反射鏡によ
って90度折り曲げられ、Z軸が鉛直に設けてある場合
水平方向の無指向性電波となる。
Here, in FIG. 1, transmission power is radiated from the feed horn F as a circularly polarized wave. This is the premise. Furthermore, it is reflected by the mirror surface of the parabola A whose focal point is the radiation phase center of the feed horn F, and the spherical wave is converted into a plane wave. This plane wave is bent by 90 degrees by the reflecting mirror of the conical surface B, and when the Z-axis is vertical, it becomes a horizontal omnidirectional radio wave.

【0012】円錐面Bの拡がり(Z軸に垂直な面に沿っ
た広がり)は、パラボラAの周縁部A0−A0からZ軸
に平行に引いた線の中に入るようにその周縁部B0−B
0の大きさを設定する。
The spread of the conical surface B (spread along the plane perpendicular to the Z-axis) is such that its peripheral edge B0-A0 falls within a line drawn parallel to the Z-axis from the peripheral edge A0-A0 of the parabola A. B
Set the size of 0.

【0013】垂直面内のビーム幅はパラボラAの直径(
図1の周縁部A0−A0の直径)によって決まるので、
この直径を大きくすればいくらでもビーム幅を狭くする
ことができる。ここで、パラボラAの直径をD、使用す
る電波の波長をλとすれば、垂直面内ビーム幅は
The beam width in the vertical plane is the diameter of parabola A (
Since it is determined by the diameter of the peripheral edge A0-A0 in Fig. 1,
By increasing this diameter, the beam width can be made as narrow as desired. Here, if the diameter of parabola A is D and the wavelength of the radio wave used is λ, then the beam width in the vertical plane is

【00
14】
00
14]

【数1】[Math 1]

【0015】によって与えられることが知られている。It is known that it is given by:

【0016】例えば、ミリ波帯で使用する場合として、
D=150mm、λ=3.85mm(78GHz)とす
れば上式により垂直面内ビーム幅は約3.6度となる。
For example, when used in the millimeter wave band,
If D=150 mm and λ=3.85 mm (78 GHz), the beam width in the vertical plane is about 3.6 degrees according to the above equation.

【0017】(円偏波の電波が無指向性となる説明)図
2は、図1の直円錐Bの鏡面を上方(パラボラAの側)
から見た図である。この図で、パラボラAから反射した
円偏波の波面が紙面と平行であり、その電界ベクトル1
,2,3,4はそれぞれ点線矢印1A,2A,3A,4
Aに向くように回転しているものとする。これは電界ベ
クトルの進行の後方より見ると右ねじ回りとなっている
(Explanation of why circularly polarized radio waves are omnidirectional) Figure 2 shows the mirror surface of right circular cone B in Figure 1 viewed from above (parabola A side).
This is a diagram seen from. In this figure, the wavefront of the circularly polarized wave reflected from parabola A is parallel to the plane of the paper, and its electric field vector 1
, 2, 3, and 4 are dotted arrows 1A, 2A, 3A, and 4, respectively.
Assume that it is rotating to face A. This is a right-handed twist when viewed from behind the direction of the electric field vector.

【0018】[0018]

【外1】[Outside 1]

【0019】このとき、各々の電界ベクトルは、前記し
たように回転する約束により、反射後はそれぞれ「A」
記号のついていないものから同じ数字の「A」記号のつ
いているものの向きに回転する。これは、電界ベクトル
の進行の後方より見ると左ねじ回りとなっている。即ち
、電波は円錐面Bのどの個所で反射したものも同じ左ね
じ回りとなって、旋回している。
At this time, each electric field vector becomes "A" after reflection due to the promise of rotation as described above.
It rotates from the one with no symbol to the one with the same number "A" symbol. This is a left-handed screw rotation when viewed from behind the progression of the electric field vector. That is, the radio waves reflected at any point on the conical surface B rotate in the same left-handed direction.

【0020】楕円偏波の電波についても、円錐面Bでの
反射後、円偏波の場合と同様に電界ベクトルが旋回して
いる。
[0020] Regarding the elliptically polarized radio wave, after reflection on the conical surface B, the electric field vector rotates as in the case of the circularly polarized wave.

【0021】(電波が直線偏波の場合の説明)電波が直
線偏波(図2の電界ベクトル1,2,3,4について点
線矢印1A,2A,3A,4Aがない場合)であると、
Z軸が鉛直に設けてあるとして、波面が紙面に平行であ
り、電界ベクトル1,2,3,4が円錐面Bで反射され
た後、5と7のものは水平偏波となるが、6と8のもの
は垂直偏波となる。即ち円錐面Bによる反射によって偏
波面が保存されない。
(Explanation when radio waves are linearly polarized waves) If the radio waves are linearly polarized waves (when there are no dotted line arrows 1A, 2A, 3A, and 4A for electric field vectors 1, 2, 3, and 4 in FIG. 2),
Assuming that the Z-axis is vertical, the wavefront is parallel to the plane of the paper, and after electric field vectors 1, 2, 3, and 4 are reflected by conical surface B, vectors 5 and 7 become horizontally polarized waves. 6 and 8 are vertically polarized waves. That is, the plane of polarization is not preserved due to reflection by the conical surface B.

【0022】(実施例の変形についての考察)(1)図
1では、直円錐Bの頂点が、パラボラAの焦点に位置し
てフィードホーンFと一致するように示してあるが、こ
れは必須ではない。直円錐全体をZ軸に沿って移動させ
て、図1を引用して言えば、A1−B1間、A2−B2
間の距離は、実施の都合によって決めればよい。
(Considerations on modification of the embodiment) (1) In FIG. 1, the apex of the right circular cone B is shown to be located at the focus of the parabola A and coincide with the feed horn F, but this is not necessary. isn't it. By moving the entire right circular cone along the Z axis, referring to Figure 1, between A1 and B1, A2 and B2
The distance between them may be determined depending on the convenience of implementation.

【0023】(2)直円錐Bの錐面は、伝播の方向と電
力とに方向性が生ずることを諒承すれば、構造的に錐面
の一部を欠くことは、本質的なことではない。
(2) If it is accepted that the conical surface of the right circular cone B has directionality in the direction of propagation and the electric power, it is not essential that a part of the conical surface is structurally missing. .

【0024】(3)直円錐のまま、Z軸と錐面との間の
角θを45度以外の角度にすれば、全方向性を保持した
まま伝播の方向をZ軸に対する垂直方向から偏倚させる
ことができる。Z軸を鉛直に設けているとき、角θの大
きさを45度より小さくして、地表に対して指向性を持
たせるとか、反対に45度より大きくして空中の飛翔体
に対して指向性を持たせるとかのことができる。
(3) If the angle θ between the Z axis and the conical surface is set to an angle other than 45 degrees while keeping the right circular cone, the direction of propagation can be shifted from the direction perpendicular to the Z axis while maintaining omnidirectionality. can be done. When the Z-axis is set vertically, the angle θ can be set smaller than 45 degrees to provide directivity toward the ground surface, or conversely, set larger than 45 degrees to provide directivity toward flying objects in the air. You can do things like give it a gender.

【0025】(4)Z軸を鉛直線から傾けて設置すると
、特定の方向(方位)の地表又は上方に対して指向性を
持たせることができる。
(4) When installed with the Z axis tilted from the vertical line, directivity can be given to the ground surface or upward in a specific direction (azimuth).

【0026】(5)軸を鉛直線の方向に一致させて斜円
錐にしても、無指向性ではなくなるが、地表又は上方に
指向性を持たせることができる。
(5) Even if the axis is aligned with the vertical line to form an oblique cone, it will not be omnidirectional, but it will be possible to provide directionality toward the ground surface or upward.

【0027】(6)この発明は、ミリ波帯・サブミリ波
帯に限らず、原理的には、波の波長に制限はない。
(6) The present invention is not limited to the millimeter wave band or submillimeter wave band, and in principle there is no restriction on the wavelength of the wave.

【0028】(7)この発明は、送信アンテナとしても
、受信アンテナとしても、使用できる。
(7) The present invention can be used both as a transmitting antenna and as a receiving antenna.

【0029】(8)偏波面の問題を捨象して、反射経路
だけについて言えば、この発明は、音波・超音波に対し
ても使用できる。
(8) Discarding the problem of the plane of polarization and talking only about the reflection path, the present invention can also be used for sound waves and ultrasonic waves.

【0030】(まとめ)この発明は、移動体に搭載して
、電波灯台との間に電波を授受するのに適する。また、
固定舎屋、移動体等に設置して、四方の移動局等との間
に通信をする場合の送信・受信をするのに適する。
(Summary) The present invention is suitable for being mounted on a moving object and transmitting and receiving radio waves to and from a radio wave lighthouse. Also,
Suitable for transmitting and receiving when installed in a fixed building or mobile station, etc., and communicating with mobile stations on all sides.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例の説明図[Figure 1] Explanatory diagram of the example

【図2】実施例の説明図[Figure 2] Explanatory diagram of the example

【符号の説明】[Explanation of symbols]

A…回転放物面鏡(パラボラ)      A0 …回
転放物面鏡Aの周縁 B…直円錐反射鏡                 
 B0 …直円錐反射鏡Bの周縁 F…フィードホーン θ…直円錐反射鏡Bの軸と鏡面との間の角1,2,3,
4,1A,2A,3A,4A…円偏波の電界ベクトル 5,6,7,8,5A,6A,7A,8A…直円錐反射
鏡Bで反射した円偏波の電界ベクトル
A... Parabolic mirror of revolution (parabola) A0... Periphery of parabolic mirror A of revolution B... Right circular cone reflecting mirror
B0 ... Periphery F of right cone reflector B ... Feed horn θ ... Angles 1, 2, 3 between the axis of right cone reflector B and the mirror surface,
4, 1A, 2A, 3A, 4A... Electric field vector of circularly polarized wave 5, 6, 7, 8, 5A, 6A, 7A, 8A... Electric field vector of circularly polarized wave reflected by right cone reflecting mirror B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  回転放物面からなる第1の反射器と、
上記回転放物面の軸に一致した軸を有する直円錐反射面
からなる第2の反射器を備えたことを特徴とする無指向
性アンテナ。
Claim 1: A first reflector made of a paraboloid of revolution;
An omnidirectional antenna comprising a second reflector made of a right circular conical reflecting surface having an axis that coincides with the axis of the paraboloid of revolution.
【請求項2】  回転放物面の軸を鉛直線の方向に設け
たことを特徴とする請求項1に記載の無指向性アンテナ
2. The omnidirectional antenna according to claim 1, wherein the axis of the paraboloid of revolution is provided in the direction of a vertical line.
【請求項3】  直円錐反射面がその軸に対して45度
に形成してあることを特徴とする請求項1又は2に記載
の無指向性アンテナ。
3. The omnidirectional antenna according to claim 1, wherein the right circular conical reflecting surface is formed at an angle of 45 degrees with respect to its axis.
JP11617591A 1991-05-21 1991-05-21 Omnidirectional antenna Pending JPH04344705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11617591A JPH04344705A (en) 1991-05-21 1991-05-21 Omnidirectional antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11617591A JPH04344705A (en) 1991-05-21 1991-05-21 Omnidirectional antenna

Publications (1)

Publication Number Publication Date
JPH04344705A true JPH04344705A (en) 1992-12-01

Family

ID=14680654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11617591A Pending JPH04344705A (en) 1991-05-21 1991-05-21 Omnidirectional antenna

Country Status (1)

Country Link
JP (1) JPH04344705A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050277A (en) * 2001-08-08 2003-02-21 Mitsui Eng & Shipbuild Co Ltd Imaging radar system for multi-pass millimeter wave
US8803749B2 (en) 2011-03-25 2014-08-12 Kwok Wa Leung Elliptically or circularly polarized dielectric block antenna

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829346A (en) * 1971-08-18 1973-04-18
JPS4859755A (en) * 1971-11-25 1973-08-22
US3978486A (en) * 1974-01-11 1976-08-31 Michiel Antonius Reinders Antenna reflector support

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829346A (en) * 1971-08-18 1973-04-18
JPS4859755A (en) * 1971-11-25 1973-08-22
US3978486A (en) * 1974-01-11 1976-08-31 Michiel Antonius Reinders Antenna reflector support

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050277A (en) * 2001-08-08 2003-02-21 Mitsui Eng & Shipbuild Co Ltd Imaging radar system for multi-pass millimeter wave
US8803749B2 (en) 2011-03-25 2014-08-12 Kwok Wa Leung Elliptically or circularly polarized dielectric block antenna

Similar Documents

Publication Publication Date Title
RU2494506C1 (en) Electronic beam scanning lens antenna
US3995275A (en) Reflector antenna having main and subreflector of diverse curvature
US20150061956A1 (en) Antenna
US3500419A (en) Dual frequency,dual polarized cassegrain antenna
US4260993A (en) Dual-band antenna with periscopic supply system
US4844198A (en) Plane wave focusing lens
JPS5911007A (en) Antenna device in common use as two-frequency band
Fry et al. aerails for centimetre wave lengths
JPH04344705A (en) Omnidirectional antenna
US4109253A (en) Method and apparatus for substantially reducing cross polarized radiation in offset reflector antennas
CN108306111B (en) Gregory antenna based on super surface
JPS6128245B2 (en)
WO2023171076A1 (en) Antenna device
TWI713252B (en) Toroidal compact antenna test range
RU2293409C2 (en) Multibeam antenna assembly
US4471359A (en) Dual band, low sidelobe, high efficiency mirror antenna
CA1037155A (en) Reflector antenna
Lehmensiek et al. On reflector feeds with unidirectional axially symmetric radiation patterns: Their cross-polarization performance and efficiencies
JP3034262B2 (en) Aperture antenna device
JPH04344706A (en) Fan beam antenna
JPS63209303A (en) Nondirectional antenna within horizontal plane
JP2571378B2 (en) Omni-directional antenna in horizontal plane
JPS603211A (en) Antenna in common use for multi-frequency band
Chu et al. An experimental broadband imaging feed
JP2608412B2 (en) Omni-directional antenna in horizontal plane