JPS6320855A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6320855A
JPS6320855A JP61166024A JP16602486A JPS6320855A JP S6320855 A JPS6320855 A JP S6320855A JP 61166024 A JP61166024 A JP 61166024A JP 16602486 A JP16602486 A JP 16602486A JP S6320855 A JPS6320855 A JP S6320855A
Authority
JP
Japan
Prior art keywords
pads
substrate
semiconductor substrate
grains
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61166024A
Other languages
Japanese (ja)
Inventor
Katsuya Okumura
勝弥 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61166024A priority Critical patent/JPS6320855A/en
Publication of JPS6320855A publication Critical patent/JPS6320855A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Landscapes

  • Wire Bonding (AREA)

Abstract

PURPOSE:To fix a plurality of conductive connecting grains efficiently to pads, and to improve the productivity of a semiconductor device remarkably by temporarily fastening the connecting grains onto a support substrate, arranging a semiconductor substrate, on which the pads are formed, and fixing and moving the connecting grains to the pads. CONSTITUTION:A process in which conductive connecting grains 24 are shaped, a process in which a plurality of the connecting grains 24 are disposed and fastened at desired positions on a support substrate 22, a process in which a semiconductor substrate 16, to which semiconductor elements are formed minimally and on the surface of which pads 12, 13 are shaped, is arranged onto the support substrate 22 so that the connecting grains 24 on the substrate 22 and the pads 12, 13 on the semiconductor substrate 16 coincide, and a process in which the connecting grains 24 are fixed to the pads 12, 13 on the semiconductor substrate 16 and shifted to the pad side are provided. Accordingly, a plurality of the conductive connecting grains 24 can be fastened efficiently to the pads 12, 13 on the semiconductor substrate 16, and the method can be applied effectively for manufacturing a semiconductor device having three-dimensional structure enabling multifunction and having the high degree of integration and high reliability.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、半導体装置の製造方法に関し、特に半導体基
板上のパッドに連拮粒を形成する工程を改良した半導体
装置の製造方法に係わる。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device in which the process of forming continuous grains on pads on a semiconductor substrate is improved. It is related to the manufacturing method.

(従来の技術) 従来、半導体IIにおいては信号の入出力端子であるパ
ッドを外部基板に接続するために、該パッドにメッキ手
段によりバンプを形成することが行われている。しかし
ながら、かかる方法ではバンプを充分な大きさに成長さ
せられず、しかもメッキ法を採用することから複雑な工
程を必要とし、更にバンプが硬く外部基板との接合信頼
性が低いという問題があった。
(Prior Art) Conventionally, in a semiconductor II, in order to connect a pad that is a signal input/output terminal to an external substrate, a bump is formed on the pad by plating means. However, with this method, the bumps could not be grown to a sufficient size, and the plating method required a complicated process.Additionally, the bumps were hard and the reliability of bonding with the external board was low. .

このようなことから、本出願人は金属、特に柔らかいA
LIf)ARからなる連結粒をパッドに固着し、該連結
粒を介して外部基板に固着、接続する方法を提案した。
For this reason, the applicant has decided to use metals, especially soft A.
We proposed a method in which connecting grains made of LIf)AR are fixed to pads, and then fixed and connected to an external substrate via the connecting grains.

以下、この連結粒のパッドへの固着方法を第7図に示す
外部にヒータ1が配設された内径40μmの銃WI2か
らなる連結粒固着機3を参照して詳細に説明する。
Hereinafter, the method of fixing the connected grains to the pad will be explained in detail with reference to the connected grain fixing machine 3 shown in FIG. 7, which is comprised of a gun WI2 having an inner diameter of 40 μm and is provided with a heater 1 on the outside.

まず、ヒータを内蔵した支持台(図示せず)上に複数の
パッド4が形成された半導体基板5を配置する。つづい
て、銃筒3を前記半導体基板5のパッド4に位置合せし
た後、銃筒2をヒータ1によって約350℃に保持し、
該銃筒2に内?!! 40μmの球状をなすAuからな
る連結粒6を挿入し、圧縮窒素7により前記連結粒6を
加熱しながら加速度をもたせてa[して前記支持台によ
り約30o℃に加熱されているパッド4上に熱圧接して
固着する。
First, the semiconductor substrate 5 on which a plurality of pads 4 are formed is placed on a support stand (not shown) that includes a built-in heater. Subsequently, after aligning the gun barrel 3 with the pad 4 of the semiconductor substrate 5, the gun barrel 2 is maintained at about 350° C. by the heater 1.
Inside the gun barrel 2? ! ! Connected grains 6 made of Au having a spherical shape of 40 μm are inserted, and the connected grains 6 are heated with compressed nitrogen 7 while being accelerated so as to be placed on the pad 4 heated to about 30° C. by the support table. It is fixed by hot pressure welding.

しかしながら、上記従来の連結粒の固着方法では一度に
複数個の連結粒を半導体基板のパッドに固着できず、半
導体装置の生産性が低いという問題があった。
However, in the conventional method for fixing connected grains, a plurality of connected grains cannot be fixed to pads of a semiconductor substrate at the same time, resulting in a problem that the productivity of semiconductor devices is low.

(発明が解決しようとする問題点) 本発明は、上述した従来の問題点を解決するためになさ
れたもので、複数個の導電性連結粒を効率よく半導体基
板のパッドに固着し得る半導体装置の製造方法を提供し
ようとするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and is a semiconductor device capable of efficiently fixing a plurality of conductive connected grains to pads of a semiconductor substrate. The present invention aims to provide a method for manufacturing.

[発明の構成] (問題点を解決するための手段) 本発明は、導電性連晧粒を形成する工程と、支持基板上
の所望位置に前記連結粒を複数個配列、固定する工程と
、半導体素子が少なくとも形成され、かつ表面にパッド
が形成された半導体基板を前記支持基板上にその連結粒
と該半導体M11のパッドとが合致するように配置する
工程と、前記連結粒を前記半導体基板のパッドに固着さ
せ、バッド側に移行させる工程とを具備したことを特徴
とする半導体装置の製造方法である。
[Structure of the Invention] (Means for Solving the Problems) The present invention comprises a step of forming conductive connected grains, a step of arranging and fixing a plurality of said connected grains at desired positions on a support substrate, a step of arranging a semiconductor substrate on which at least a semiconductor element is formed and a pad formed on the surface thereof on the supporting substrate so that the connecting grains match the pads of the semiconductor M11; This method of manufacturing a semiconductor device is characterized by comprising the steps of fixing the semiconductor device to the pad of the semiconductor device and moving the semiconductor device to the pad side.

(作用) 本発明は、予め支持基板上に複数個の導電性連結粒を所
望の配列状態で仮固定し、この支持基板上にパリドが形
成された半導体基板を該パッドが前記連結粒に合致する
ように配置し、該連結粒をパッドに固着して同パッドに
移行させることによって、複数個の導電性連結粒を効率
よく半導体基板のパッドに固着でき、半導体装置の生産
性を著しく向上できる。
(Function) The present invention temporarily fixes a plurality of conductive connecting grains on a supporting substrate in advance in a desired arrangement state, and attaches a semiconductor substrate on which a parid is formed on the supporting substrate so that the pads match the connecting grains. By arranging the conductive particles in such a manner that the conductive particles are fixed to the pads and transferred to the same pads, the plurality of conductive bonded particles can be efficiently fixed to the pads of the semiconductor substrate, and the productivity of semiconductor devices can be significantly improved. .

(発明の実施例) 以下、本発明を三次元LSIの製造に適用した例につい
て図面を参照して詳細に説明する。
(Embodiments of the Invention) Hereinafter, an example in which the present invention is applied to manufacturing a three-dimensional LSI will be described in detail with reference to the drawings.

(I)まず、二次元のLSI製造法により厚さ450μ
mのシリコンウェハ11に半導体素子、素子間の配線(
いずれも図示せず)及びAQxからなる50μm×50
μmのパッド12.13を形成した。なお、これらパッ
ドのうち、後述する連結孔に対応するパッド13の一部
は、層間絶縁膜に形成された開孔部内に埋込まれ、かつ
該開孔部底部の基板表面には薄い酸化膜が形成されてい
る。この酸化膜は、ダイソートテストの障害となるパッ
ドの基板表面への電気的な接続を防止するために用いら
れる。但し、前記薄い酸化膜の代わりに開孔部の底部を
含む周辺の基板表面にpn接合を作るための不純物拡散
層を形成してもよい。
(I) First, the thickness was 450μ by two-dimensional LSI manufacturing method.
Semiconductor elements and wiring between the elements (
50 μm x 50
Pads 12 and 13 of μm were formed. Among these pads, a part of the pad 13 corresponding to a connecting hole described later is embedded in an opening formed in an interlayer insulating film, and a thin oxide film is formed on the substrate surface at the bottom of the opening. is formed. This oxide film is used to prevent the pad from being electrically connected to the substrate surface, which would interfere with the die sort test. However, instead of the thin oxide film, an impurity diffusion layer for forming a pn junction may be formed on the peripheral substrate surface including the bottom of the opening.

つづいて、前記パッド13に対応するシリコンウェハ1
1の裏面に等方性エツチングと異方性エツチングの組合
わせにより開口30μmX30μm、深さ50μmのワ
インカップ状の孔14を開孔した(第1図(a)図示)
。なお、エツチングは、いずれもフッ素系又は塩素系ガ
スのプラズマを用いて行なった。
Next, the silicon wafer 1 corresponding to the pad 13 is
A wine cup-shaped hole 14 with an opening of 30 μm x 30 μm and a depth of 50 μm was formed on the back surface of the substrate 1 by a combination of isotropic etching and anisotropic etching (as shown in FIG. 1(a)).
. Note that etching was performed using fluorine-based or chlorine-based gas plasma.

(II)次いで、前記シリコンウェハのダイワードテス
トを行なった後、ダイシングを施して個々のチップを作
り、選別を行なって良品チップ15を得た(第1図(b
)図示)。つづいて、良品チップ15の裏面全体を異方
性エツチングを行なって厚さ45μmの薄板状の積層用
半導体基板16を作製したく第1図(C)図示)。この
異方性エツチングの工程において、裏面に開口されたワ
インカップ状の孔14は略その形状が保持されながらエ
ツチングされるため、テーバ状の連結孔17が形成され
た。また、前記エツチングに際して前述した開孔部底部
の薄い酸化膜除去を行なって、該連結孔17の底部に開
孔部に対応してパッド13の一部を露出させた。
(II) Next, after performing a die word test on the silicon wafer, dicing was performed to produce individual chips, and a good chip 15 was obtained by sorting (Fig. 1(b)
). Next, the entire back surface of the non-defective chip 15 is anisotropically etched to produce a thin plate-like semiconductor substrate 16 having a thickness of 45 μm (as shown in FIG. 1C). In this anisotropic etching process, the wine cup-shaped hole 14 opened on the back surface is etched while substantially maintaining its shape, so that a tapered connecting hole 17 is formed. Further, during the etching, the thin oxide film at the bottom of the opening was removed, so that a part of the pad 13 was exposed at the bottom of the connecting hole 17 corresponding to the opening.

(I[I)次いで、前記積層用半導体基板16の連結孔
17に例えばAuからなる球状の連結粒を固着するが、
この方法を第2図(a)〜(C)に示す工程により詳細
に説明する。
(I[I) Next, spherical connecting particles made of, for example, Au are fixed in the connecting holes 17 of the semiconductor substrate 16 for lamination,
This method will be explained in detail using the steps shown in FIGS. 2(a) to 2(C).

まず、後述する連結粒が仮固定される部分を含む周辺に
凸部21が形成された厚さ1mのガラス支持基板22を
用怠し、この支持基板22の凸部21を含む表面に回転
塗布法により厚さ8〜10μmのポリイミド膜23を形
成し、150℃で30分間ベータして溶剤を揮発させた
。こうして形成されたポリイミド膜23は、高温でのベ
ークを行なわないため、柔らかく、若干の粘着性を有し
ていた。なお、該ポリイミド1123には後述する半導
体基板との位置合せを行なうためのマーク(図示せず)
がエツチング等により形成されている。つづいて、ポリ
イミド膜32上に30μm径の球状をなすAUからなる
連結枝24を前記第1図(C)で製造された半導体基板
6のパッド3と同様な配列位置で仮固定した(第2図(
a)図示)。
First, a glass support substrate 22 with a thickness of 1 m on which convex portions 21 are formed around the area including the portion where the connected grains to be described later are temporarily fixed is used, and the surface of the support substrate 22 including the convex portions 21 is coated by spin coating. A polyimide film 23 having a thickness of 8 to 10 μm was formed by the method, and the solvent was volatilized by heating at 150° C. for 30 minutes. The polyimide film 23 thus formed was soft and had some stickiness because it was not baked at a high temperature. Note that the polyimide 1123 has a mark (not shown) for alignment with a semiconductor substrate, which will be described later.
is formed by etching or the like. Subsequently, connection branches 24 made of AU having a spherical shape of 30 μm in diameter were temporarily fixed on the polyimide film 32 at the same array position as the pads 3 of the semiconductor substrate 6 manufactured in FIG. figure(
a) As shown).

次いで、第2図(b)に示すようにガラス支持基板22
に前記半導体基板16を該基板16のパッド13を有す
る連結孔17が支持基板22の連結枝24と合致するよ
うに配置させた。この位置合せは、支持基板22が透明
なガラスから゛なるため、該支持基板22の裏面側から
ポリイミド膜23に形成された図示しないマーク及び半
導体基板の裏面に付されたマーク(図示せず)とを合致
するように半導体基板16を移動゛させることにより行
なった。なお、第2図(b)中の18は基板16とパッ
ド13とを電気的に絶縁するための1間絶縁躾、1つは
該絶縁膜18に形成され、パッド13の一部を前記連結
孔17底部に露出させるための開孔部である。つづいて
、半導体基板16のバッド13側より加熱機構を有する
押え治具25で300℃に加熱した状態で半導体基板1
6とガラス支持基板22とを圧接することによって、A
Uからなる連結枝24が基板16の連結孔17内上部の
A2からなるパッド13に接触しAu−A2の金属間化
合物を形成して固着したく第2図(C)図示)。この工
程において、連結枝24が仮固定されている支持基板2
2部分には凸部21が形成されているため、連結枝24
を基板16の連結孔17内に挿入するに際して、支持基
板22上のポリイミド膜21が基板16裏面側に接触す
ることなく該連結枝24を連結孔17内上部のパッド1
3に接触できる。なお、押え治具25に超音波を印加し
て連結枝の固着を更に促進したり、低温での固着を行な
うようにしてもよい。しかる後、ガラス支持基板22を
下方に移動させることにより、連結枝24はポリイミド
1123から剥離した。こうした工程により第1図(d
)′に示す連結孔17に対応するパッド13の露出部に
Auの連結枝24が固着された積層用半導体基板16を
得た。
Next, as shown in FIG. 2(b), the glass support substrate 22 is
The semiconductor substrate 16 was arranged so that the connection hole 17 having the pad 13 of the substrate 16 coincided with the connection branch 24 of the support substrate 22. Since the support substrate 22 is made of transparent glass, this alignment is performed by a mark (not shown) formed on the polyimide film 23 from the back side of the support substrate 22 and a mark (not shown) attached to the back surface of the semiconductor substrate. This was done by moving the semiconductor substrate 16 so that the Note that 18 in FIG. 2(b) is an insulating layer for electrically insulating the substrate 16 and the pad 13, and one is formed on the insulating film 18 to connect a part of the pad 13 to the above-mentioned connection. This is an opening for exposing the bottom of the hole 17. Next, the semiconductor substrate 16 is heated to 300° C. from the pad 13 side of the semiconductor substrate 16 using a holding jig 25 having a heating mechanism.
6 and the glass support substrate 22, A
The connecting branch 24 made of U contacts the pad 13 made of A2 at the upper part of the connecting hole 17 of the substrate 16, and forms an intermetallic compound of Au-A2 to be fixed (as shown in FIG. 2C). In this step, the supporting substrate 2 to which the connecting branches 24 are temporarily fixed
Since the convex portion 21 is formed on the two parts, the connecting branch 24
When inserting the connecting branch 24 into the connecting hole 17 of the substrate 16, the connecting branch 24 is inserted into the upper pad 1 inside the connecting hole 17 without the polyimide film 21 on the supporting substrate 22 coming into contact with the back side of the substrate 16.
You can contact 3. Note that it is also possible to apply ultrasonic waves to the holding jig 25 to further promote fixation of the connecting branches, or to perform fixation at low temperatures. Thereafter, the connecting branches 24 were peeled off from the polyimide 1123 by moving the glass support substrate 22 downward. Through these steps, Figure 1 (d)
A semiconductor substrate 16 for lamination was obtained in which a connecting branch 24 of Au was fixed to the exposed portion of the pad 13 corresponding to the connecting hole 17 shown in )'.

(IV)次いで、二次元のLSI製造法により厚さ45
0μmのシリコンウェハに半導体素子、素子間の配線及
びARIIIからなる50μmx50μmのパッドを形
成した。つづいて、ダイソートテストの後、前記シリコ
ンウェハをダイシングし、良品チップを選別し、この良
品チップ表面のバッド上に例えばAuからなる球状の連
結枝を固着するが、この方法を第3図(a)〜(C)に
工程により説明する。
(IV) Next, a thickness of 45
A 50 μm×50 μm pad consisting of a semiconductor element, wiring between elements, and ARIII was formed on a 0 μm silicon wafer. Subsequently, after the die sort test, the silicon wafer is diced, good chips are selected, and spherical connecting branches made of, for example, Au are fixed onto the pads on the surface of the good chips. Steps a) to (C) will be explained.

まず、厚さ1jlalのガラス支持基板31表面に回転
塗布法により厚さ8〜10μmのポリイミド膜32を形
成し、150℃で30分間ベークして溶剤を揮散させた
。こうして形成されたポリイミド膜32は、高温でのベ
ークを行なわないため、柔らかく、若干の粘着性を有し
ていた。なお、該ポリイミド1123には後述する半導
体基板との位置合せを行なうためのマーク(図示せず)
がエツチング等により形成されている。つづいて、ポリ
イミド膜32上に40μm径の球状をなすAuからなる
連結枝33を前記良品チップのパッドと同trtな配列
位置で仮固定したく第3図(a)図示)。
First, a polyimide film 32 with a thickness of 8 to 10 μm was formed on the surface of a glass support substrate 31 with a thickness of 1 μl by a spin coating method, and was baked at 150° C. for 30 minutes to volatilize the solvent. The polyimide film 32 thus formed was soft and had some stickiness because it was not baked at a high temperature. Note that the polyimide 1123 has a mark (not shown) for alignment with a semiconductor substrate, which will be described later.
is formed by etching or the like. Next, connecting branches 33 made of Au and having a spherical shape of 40 μm in diameter are temporarily fixed on the polyimide film 32 at the same alignment position as the pads of the good chip (as shown in FIG. 3(a)).

次いで、第3図(b)に示すようにガラス支持基板31
に前述した方法により作製した良品チップ34をその表
面のパッド35が支持基Ifi31の連結枝3.3と合
致するように配置させた。この位置合せは、支持基板3
1が透明なガラスからなるため、該支持基板31の裏面
側からポリイミド膜32に形成された図示しないマーク
及び良品チップ34の裏面に付されたマーク(図示せず
)とを合致するように良品チップ34を移動させること
により行なった。なお、第3図<b>中の36はチップ
34とパッド35とを電気的に絶縁するための層間絶a
mである。つづいて、良品チップ34側より加熱機構を
有する押え治具37で300℃に加熱した状態で良品チ
ップ34とガラス支持基板31とを圧接することによっ
て、Auからなる連結粒33が良品チップ34表面のA
2からなるパッド35に接触しAu−Anの合成間化合
物を形成して固着した(第3図(C)図示)。
Next, as shown in FIG. 3(b), the glass support substrate 31 is
A non-defective chip 34 manufactured by the method described above was placed so that the pads 35 on its surface matched with the connecting branches 3.3 of the support base Ifi31. This alignment is performed using the supporting substrate 3.
Since the chip 1 is made of transparent glass, a mark (not shown) formed on the polyimide film 32 from the back side of the support substrate 31 and a mark (not shown) attached to the back side of the good chip 34 are checked so that they match. This was done by moving the chip 34. Note that 36 in FIG. 3<b> is an interlayer insulation a for electrically insulating the chip 34 and the pad 35.
It is m. Subsequently, by pressing the good chip 34 and the glass support substrate 31 together while heating the good chip 34 to 300° C. from the non-defective chip 34 side with a holding jig 37 having a heating mechanism, the connected grains 33 made of Au are applied to the surface of the non-defective chip 34. A of
2 and formed an intersynthetic compound of Au-An, which was fixed (as shown in FIG. 3(C)).

しかる後、ガラス支持基板31を下方、に移動させるこ
とにより、連結粒33はポリイミド膜32 hsら剥離
した。こうした工程により第1図(e)に示すように良
品チップ34表面のバッド35上に40!m径の球状を
なすALIからなる連結粒33を固着した。
Thereafter, by moving the glass support substrate 31 downward, the connected grains 33 were peeled off from the polyimide film 32 hs. Through these steps, as shown in FIG. 1(e), 40! Connected grains 33 made of ALI having a spherical shape with a diameter of m were fixed.

(V)次いで、前記(IV)の工程で作製した良品デツ
プ34上に前記<I)〜(I[)の工程により作製した
積層用半導体基板16を該チップ34のパッド35上の
Auからなる連結粒33と該半導体基板1Gの連結孔1
7内のAUからなる連結粒24とが合致するように伍ね
た後、300℃に加熱しながら積層用半導体基板16を
チップ34に対して押し付けることにより連結粒33.
24を互いに固着した(第1図(f)図示)。つづいて
(V) Next, the semiconductor substrate 16 for lamination produced by the steps <I) to (I[) above is placed on the good product depth 34 produced in the step (IV) above, and is made of Au on the pad 35 of the chip 34. Connecting grain 33 and connecting hole 1 of semiconductor substrate 1G
After aligning so that the connected grains 24 made of AU in 7 are aligned, the semiconductor substrate 16 for lamination is pressed against the chip 34 while heating to 300° C., thereby forming the connected grains 33.
24 were fixed together (as shown in FIG. 1(f)). Continuing.

T?4mされた半導体基板16表面の所定のバッド12
.13上に球状をなすAuの連結粒38を熱圧接して固
着したく第1図(Q)図示)。
T? A predetermined pad 12 on the surface of the semiconductor substrate 16 with a width of 4 m
.. 13 (shown in FIG. 1 (Q)).

(Vl )次いで、前記(I)〜(II)と同様な工程
により?!!数枚の薄板状の1層用半導体基板を作製し
、これら半導体基板を前記第1図(Q)により積層した
半導体基板16の上に前記(V)と同様な工程により順
次積層し、多iI8%み重ねた半導体装置(図示せず)
を製造した。
(Vl) Then, by the same steps as (I) to (II) above? ! ! Several thin plate-shaped single-layer semiconductor substrates are manufactured, and these semiconductor substrates are sequentially stacked on top of the semiconductor substrate 16 laminated as shown in FIG. % stacked semiconductor devices (not shown)
was manufactured.

しかして、本発明方法によれば予めガラス支持基板(例
えば22)のポリイミド1123上に複数個のAuから
なる連結粒24を所望の配列状態で仮固定し、この支持
基板22上にバッド13が形成された半導体基板16を
該パッド13が前記連結粒24に合致するように配置し
、該連拮粒24をバッド13に固着して同バッド13に
移行させることによって、複数個の連結粒24を効率よ
く半導体基板16のバッド13に固着できる。しかも、
良品チップ34のバッド35へのAuからなる連結粒3
3の固着もポリイミドpa32が被覆されたガラス支持
基板31を用いて同様に行なうため、複数個の連結粒3
3を効率よく良品チップ34のパッド35に固着できる
。従って、半導体Iff!の生産性を著しく向上できる
According to the method of the present invention, a plurality of connected grains 24 made of Au are temporarily fixed in advance in a desired arrangement on the polyimide 1123 of a glass support substrate (for example, 22), and the pads 13 are placed on this support substrate 22. The formed semiconductor substrate 16 is arranged so that the pad 13 matches the connected grain 24, and the connected grain 24 is fixed to the pad 13 and transferred to the pad 13, thereby forming a plurality of connected grains 24. can be efficiently fixed to the pad 13 of the semiconductor substrate 16. Moreover,
Connection grain 3 made of Au to the bad chip 35 of the good chip 34
3 is similarly fixed using the glass support substrate 31 coated with polyimide PA32, so a plurality of connected grains 3
3 can be efficiently fixed to the pads 35 of the good chip 34. Therefore, the semiconductor If! productivity can be significantly improved.

また、本実絶倒の方法により製造された半導体装置は半
導体素子等が形成された良品チップ34と同素子が形成
されたV44層用半導基板16の間、更に各積層用半導
体M仮16間を積層用半導体基板16の連結孔17に対
応するパッド13の露出部及び相手側のパッド35にA
uからなる連結粒33.24.38を介して固着、Vl
i層するため、高集積度で多機能の三次元構造を有する
半導体装置を得ることができる。
In addition, in the semiconductor device manufactured by this method, there is a space between the non-defective chip 34 on which the semiconductor element, etc. is formed and the semiconductor substrate 16 for the V44 layer on which the same element is formed, and furthermore, in each layered semiconductor M temporary 16. A between the exposed part of the pad 13 corresponding to the connection hole 17 of the semiconductor substrate 16 for lamination and the mating pad 35.
Fixed via connected grains 33, 24, 38 consisting of u, Vl
Since the i-layer is formed, a semiconductor device having a highly integrated and multifunctional three-dimensional structure can be obtained.

更に、良品チップ34と積層用半導体基板16及び各積
層用半導体基If116間の積層は、Auからなる連結
粒33.24.38によりなされいるため、熱ストレス
を該AU粒33.24.38で吸収できるため、従来の
5othxaのようなりラック発生を防止できる。しか
も、同様な理由により良品チップ34とfaffl用半
導体用板導体基板16半導体基板16の間に所望の隙間
を形成できるため、各基板間に熱がこもることなく、放
熱性が改善される。従って、高信頼性の三次元構造を有
する半導体装置を得ることができる。
Furthermore, since the lamination between the non-defective chip 34, the semiconductor substrate for lamination 16, and each of the semiconductor substrates for lamination If116 is performed by the connecting grains 33, 24, and 38 made of Au, thermal stress can be absorbed by the AU grains 33, 24, and 38. Since it can be absorbed, it is possible to prevent the occurrence of racks like in conventional 5othxa. Furthermore, for the same reason, a desired gap can be formed between the non-defective chip 34 and the semiconductor substrate 16 for faffl, so that heat is not trapped between the respective substrates, and heat dissipation is improved. Therefore, a semiconductor device having a highly reliable three-dimensional structure can be obtained.

なお、上記実施例では連結粒の仮固定をガラス支持基板
上に半硬化状態のポリイミド膜を形成したものを用いて
行なったが、これに限定されず、以下に説明する第4図
〜第6図に示す方法により行なってもよい。
In the above example, the connected grains were temporarily fixed using a semi-cured polyimide film formed on a glass support substrate, but the present invention is not limited to this, and as shown in FIGS. 4 to 6 described below, The method shown in the figure may also be used.

■、第4図に示すようにガラス支持基板41にホーニン
グ法等により所望の径及び深さの半円弧状の凹部42を
連結粒の配列位置に形成し、これら凹部42に例えばA
Rからなる連結粒43を落下させ、仮固定する。
(2) As shown in FIG. 4, semicircular-arc-shaped recesses 42 of desired diameter and depth are formed in the glass support substrate 41 at the positions where the connected grains are arranged by a honing method, etc., and these recesses 42 are filled with, for example, A
The connected grains 43 made of R are dropped and temporarily fixed.

■、第5図に示すようにガラス支持基板41上に所望厚
さのマイラー等からなる有滋膜44を張付け、この有1
111144をレーザビームによりン′fJ解、分解し
て穴45を連結粒の配列位置に形成し、これら穴45に
例えばA2からなる連結粒43を落下させ、仮固定する
。なお、有橢摸44には図示しない合せ用マークが付さ
れている。
② As shown in FIG.
111144 is decomposed using a laser beam to form holes 45 at the positions where the connected grains are arranged, and connected grains 43 made of A2, for example, are dropped into these holes 45 and temporarily fixed. Note that a matching mark (not shown) is attached to the handle 44.

■、第6図に示すようにガラス支持基板41の裏面にフ
ェライト等からなる所望厚さの磁性薄膜46を形成し、
該支持基板41の表面にN1球47の表面にAuメッキ
膜48を施した連結枝43′を所望の配列位置でe置す
る。この場合、連結枝43′は支持基板411面に被覆
された磁性3膜46の磁力により同支持基Ifi41表
面に仮固定される。
(2) As shown in FIG. 6, a magnetic thin film 46 of a desired thickness made of ferrite or the like is formed on the back surface of the glass support substrate 41;
Connecting branches 43', each of which has an Au plating film 48 applied to the surface of the N1 sphere 47, are placed on the surface of the support substrate 41 at desired arrangement positions. In this case, the connecting branch 43' is temporarily fixed to the surface of the support base Ifi41 by the magnetic force of the three magnetic films 46 coated on the surface of the support substrate 411.

上記実施例では、半導体基板等のパッドへの連結枝の固
着を該基板側に配置した押え治具の加熱門構や超音波t
1構により行なったが、支持基板の載置台に付加された
加熱n構や超音波機構を用いて行なってもよい。
In the above embodiment, the fixing of the connecting branch to the pad of a semiconductor substrate, etc. is achieved by using a heating gate structure of a holding jig placed on the substrate side, or an ultrasonic wave t.
Although this was carried out using one mechanism, it may also be carried out using a heating mechanism or an ultrasonic mechanism added to the mounting table for the support substrate.

[発明の効果] 以上詳述した如く、本発明によれば複数個の導電性連結
枝を効率よく半導体基板のパッドに固着でき、ひいては
多機能化が可能な高集積度で高信頼性の三次元構造の半
導体装置の製造に有効に適用できる等顕著な効果を有す
る。
[Effects of the Invention] As detailed above, according to the present invention, a plurality of conductive connecting branches can be efficiently fixed to pads of a semiconductor substrate, and a highly integrated and highly reliable tertiary device that can be multi-functionalized. It has remarkable effects, such as being able to be effectively applied to the manufacture of semiconductor devices with original structures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(Q)は、本発明の実施例における三次
元構造の半導体装置の製造工程を示す断面図、第2図(
a)〜(C)は、積層用半導体基板の連結孔のパ・Iド
にALJからなる連結枝を固着する工程を示す断面図、
第3図(a)〜(C)は良品チップのパッドにAuから
なる連結枝を固着する工程を示す断面図、第4図〜第6
図は夫々本発明の他の実施例を示す断面図、第7図は従
来の半導体基板のパッドに連結枝を固着する工程を示す
断面図である。 11・・・シリコンウェハ、12.13.35・・・パ
ッド、16・・・積層用半導体基板、17・・・連結孔
、22.31.41・・・ガラス支持基板、23.32
・・・ポリイミド膜、24.33.38.43.43′
・・・連結枝、34・・・良品チップ、42・・・凹部
、44・・・有薇膜、45・・・穴、46・・・磁性薄
膜。 出願人代理人 弁理士  鈴江武彦 −9只4−
FIGS. 1(a) to (Q) are cross-sectional views showing the manufacturing process of a three-dimensional structure semiconductor device in an embodiment of the present invention, and FIG.
a) to (C) are cross-sectional views illustrating the process of fixing connecting branches made of ALJ to pads and I dos of connecting holes of semiconductor substrates for lamination;
3(a) to 6(C) are cross-sectional views showing the process of fixing connecting branches made of Au to the pads of a non-defective chip, and FIGS. 4 to 6
The figures are cross-sectional views showing other embodiments of the present invention, and FIG. 7 is a cross-sectional view showing a conventional process of fixing connecting branches to pads of a semiconductor substrate. 11... Silicon wafer, 12.13.35... Pad, 16... Semiconductor substrate for lamination, 17... Connecting hole, 22.31.41... Glass support substrate, 23.32
...Polyimide film, 24.33.38.43.43'
. . . Connecting branch, 34 . . . Good chip, 42 . . . Recess, 44 . Applicant's agent Patent attorney Takehiko Suzue -9.4-

Claims (1)

【特許請求の範囲】[Claims] 導電性連結粒を形成する工程と、支持基板上の所望位置
に前記連結粒を複数個配列、固定する工程と、半導体素
子が少なくとも形成され、かつ表面にパッドが形成され
た半導体基板を前記支持基板上にその連結粒と該半導体
基板のパッドとが合致するように配置する工程と、前記
連結粒を前記半導体基板のパッドに固着させ、パッド側
に移行させる工程とを具備したことを特徴とする半導体
装置の製造方法。
a step of forming conductive connected grains; a step of arranging and fixing a plurality of said connected grains at desired positions on a support substrate; and supporting the semiconductor substrate on which at least a semiconductor element is formed and a pad is formed on the surface. It is characterized by comprising the steps of arranging the connected grains on the substrate so that they match the pads of the semiconductor substrate, and fixing the connected grains to the pads of the semiconductor substrate and moving them to the pad side. A method for manufacturing a semiconductor device.
JP61166024A 1986-07-15 1986-07-15 Manufacture of semiconductor device Pending JPS6320855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61166024A JPS6320855A (en) 1986-07-15 1986-07-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61166024A JPS6320855A (en) 1986-07-15 1986-07-15 Manufacture of semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7218891A Division JP2755927B2 (en) 1995-08-28 1995-08-28 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPS6320855A true JPS6320855A (en) 1988-01-28

Family

ID=15823517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61166024A Pending JPS6320855A (en) 1986-07-15 1986-07-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6320855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254932A (en) * 1988-08-20 1990-02-23 Fujitsu Ltd Solder bump formation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140269A (en) * 1976-05-19 1977-11-22 Hitachi Ltd Formation of solder electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140269A (en) * 1976-05-19 1977-11-22 Hitachi Ltd Formation of solder electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254932A (en) * 1988-08-20 1990-02-23 Fujitsu Ltd Solder bump formation

Similar Documents

Publication Publication Date Title
JP3186941B2 (en) Semiconductor chips and multi-chip semiconductor modules
US5380681A (en) Three-dimensional multichip package and methods of fabricating
US5902118A (en) Method for production of a three-dimensional circuit arrangement
KR100507300B1 (en) Multichip module and method for manufacturing the same
US7642629B2 (en) Methods and apparatus for packaging integrated circuit devices
JP3895595B2 (en) Method for vertically integrating electrical components by back contact
US8383460B1 (en) Method for fabricating through substrate vias in semiconductor substrate
US7960210B2 (en) Ultra-thin chip packaging
JP5769716B2 (en) Method for bonding a chip to a wafer
JP2003031524A (en) Semiconductor device and method of manufacturing the same
JP2001168275A (en) Small integrated circuit package and its manufacturing method
KR20110000726A (en) Method for bonding chips onto wafers
JPH06151701A (en) Manufacture of semiconductor device
JP2002270720A (en) Semiconductor device and its manufacturing method
JPH08125120A (en) Semiconductor device and production thereof
JP3719921B2 (en) Semiconductor device and manufacturing method thereof
JP2002343904A (en) Semiconductor device
JPS6320855A (en) Manufacture of semiconductor device
JP2755927B2 (en) Method for manufacturing semiconductor device
TWI425580B (en) Process for manufacturing semiconductor chip packaging module
JP3424649B2 (en) Failure analysis method for semiconductor device
JPH0373145B2 (en)
JPS62293658A (en) Semiconductor device
JPH0817962A (en) Semiconductor device and package
JPH0577339B2 (en)