JPH0373145B2 - - Google Patents

Info

Publication number
JPH0373145B2
JPH0373145B2 JP5187086A JP5187086A JPH0373145B2 JP H0373145 B2 JPH0373145 B2 JP H0373145B2 JP 5187086 A JP5187086 A JP 5187086A JP 5187086 A JP5187086 A JP 5187086A JP H0373145 B2 JPH0373145 B2 JP H0373145B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
semiconductor
pad
pads
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5187086A
Other languages
Japanese (ja)
Other versions
JPS62209845A (en
Inventor
Katsuya Okumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5187086A priority Critical patent/JPS62209845A/en
Priority to US07/022,371 priority patent/US4807021A/en
Publication of JPS62209845A publication Critical patent/JPS62209845A/en
Publication of JPH0373145B2 publication Critical patent/JPH0373145B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16237Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area disposed in a recess of the surface of the item

Abstract

PURPOSE:To facilitate laminating a laminating semiconductor substrate on a semiconductor substrate three-dimensionally and avoid development of crackings by a method wherein pads on the semiconductor substrate and exposed parts of pads corresponding to the contact holes of the laminating semiconductor substrate are fixed and connected together with pairs of conductive connecting particles. CONSTITUTION:A semiconductor substrate 21 on which at least a semiconductor device is formed and pads 22 are formed at predetermined positions on its surface and at least one laminating semiconductor substrate 6 which has contact holes 7 along its thickness direction and on which pads 2 and 3 are formed in the neighborhood including bottom parts of the contact holes 7 so as to expose at least parts of them in the bottoms of the contact holes 7 and at least a semiconductor device is formed are prepared. The pad 22 on the semiconductor substrate 21 and the exposed part of the pad 3 corresponding to the contact hole 7 of the laminating substrate 6 are fixed and laminated together with a pair of connecting particles 16 and 23. With this constitution, development of crackings caused by thermal stress can be avoided and a three-dimensional structure semiconductor device which has excellent heat radiation properties, high integrity and high reliability and facilitates multiplied functions compared to the conventional SOI structure can be obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、半導体装置に関し、半導体素子等が
形成された半導体基板を複数枚積層した三次元構
造を有する半導体装置に係わる。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor device, and relates to a semiconductor device having a three-dimensional structure in which a plurality of semiconductor substrates on which semiconductor elements and the like are formed are laminated. .

(従来の技術) 近年、半導体装置の高集積化、多機能化を目的
とした三次元SOI(Silicon on Insulation)デバ
イスの開発が盛んに行なわれている。これは、半
導体基板表面の非晶質絶縁膜上にシリコン単結晶
を形成し、該単結晶層を用いて半導体素子を作
り、三次元的に半導体素子を積層していく技術で
ある。かかる技術は、例えば日経エレクトロニク
ス 1985年10月17日号 P229〜253の“高集積、
多機能デバイスとして姿が見えてきた三次元
LSI”に記載されている。
(Prior Art) In recent years, three-dimensional SOI (Silicon on Insulation) devices have been actively developed for the purpose of increasing the integration and multifunctionality of semiconductor devices. This is a technique in which a silicon single crystal is formed on an amorphous insulating film on the surface of a semiconductor substrate, a semiconductor element is manufactured using the single crystal layer, and the semiconductor elements are stacked three-dimensionally. Such technology is described, for example, in Nikkei Electronics, October 17, 1985 issue, pages 229-253,
3D is emerging as a multifunctional device
LSI”.

しかしながら、SOI技術は開発の途についたば
かりであり、実用化の上で数々の欠点を有する。
本質的な欠点としては、異質なものを多重に積
層し、高温プロセスを経て単結晶化が進められる
ため、ストレスが非常に大きくなり、クラツク等
が発生し易いこと、層間が密着構造を有してい
るため、放熱性が低く、熱がこもり易いことが挙
げられる。また、シリコン以外の半導体材料を積
層していくことは現在の技術では不可能である。
However, SOI technology is still in the early stages of development and has a number of drawbacks in terms of practical application.
The essential disadvantages are that different materials are laminated in multiple layers and single crystallization is progressed through a high-temperature process, so the stress is extremely large and cracks are likely to occur, and the layers have a close contact structure. Because of this, heat dissipation is low and heat is easily trapped. Furthermore, it is impossible with current technology to stack semiconductor materials other than silicon.

(発明が解決しようとする問題点) 本発明は、上述した従来の三次元化によるクラ
ツク発生及び放熱性の悪化を解決し、高信頼性、
高集積度で多機能化を達成した半導体装置を提供
しようとするものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems of crack generation and deterioration of heat dissipation caused by three-dimensionalization, and achieves high reliability and
The present invention aims to provide a semiconductor device that achieves high integration and multifunctionality.

[発明の構成] (問題点を解決するための手段) 本発明は、半導体素子が少なくとも形成され、
かつ表面の所定部分にパツドが形成された半導体
基板と、厚さ方向に連結孔を有し、かつ該連結孔
の底部を含む周辺にパツドが少なくともその一部
を該底面に露出させるように形成されると共に半
導体素子が形成された少なくとも1つの積層用半
導体基板とを具備し、前記半導体基板のパツドと
前記積層用半導体基板の連結孔に対応したパツド
の露出部とを2つの導電性連結粒を介して固着
し、積層したことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a method in which a semiconductor element is formed at least,
and a semiconductor substrate having a pad formed on a predetermined portion of its surface, a connecting hole in the thickness direction, and a pad formed around the connecting hole including the bottom so that at least a part of the pad is exposed to the bottom surface. and at least one laminated semiconductor substrate on which a semiconductor element is formed, and a pad of the semiconductor substrate and an exposed portion of the pad corresponding to a connecting hole of the laminated semiconductor substrate are connected with two conductive connection grains. It is characterized by being adhered and laminated through.

(作用) 本発明は、半導体素子等が形成された半導体基
板と同素子が形成された積層用半導体基板の間、
更に積層用半導体基板間を積層用半導体基板の連
結孔に対応するパツドの露出部及び相手側のパツ
ドに導電性連結粒を介して固着、接続することに
よつて、半導体基板上に積層用半導体基板を三次
元的に積層できる。また、半導体基板相互の積層
は連結粒によりなされているため、熱ストレスを
該連結粒で吸収でき、従来のSOI構造のようなク
ラツク発生を防止できる。更に、半導体基板相互
の積層は連結粒によりなされ、それら基板間に所
望の隙間を形成できるため、各基板間に熱がこも
ることなく、放熱性が改善される。特に、前記基
板間の隙間に冷媒を流通させることが可能である
ため、大幅な放熱効果を発揮できる。
(Function) The present invention provides a structure in which between a semiconductor substrate on which a semiconductor element, etc. is formed, and a laminated semiconductor substrate on which the same element is formed,
Further, by fixing and connecting the semiconductor substrates for stacking to the exposed portion of the pad corresponding to the connecting hole of the semiconductor substrate for stacking and the pad on the other side via conductive connecting grains, the semiconductor substrates for stacking are bonded and connected to each other via conductive connecting grains. Substrates can be stacked three-dimensionally. Further, since the semiconductor substrates are laminated with each other using connected grains, thermal stress can be absorbed by the connected grains, and the occurrence of cracks as in the conventional SOI structure can be prevented. Further, since the semiconductor substrates are laminated with each other by connecting grains, and a desired gap can be formed between the substrates, heat is not trapped between the substrates, and heat dissipation is improved. In particular, since it is possible to circulate the coolant in the gap between the substrates, a significant heat dissipation effect can be exhibited.

(発明の実施例) 以下、本発明の実施例を製造方法を併記して詳
細に説明する。
(Examples of the Invention) Examples of the invention will be described in detail below along with manufacturing methods.

() まず、二次元のLSI製造法により厚さ450μ
mのシリコンウエハ1に半導体素子、素子間の
配線(いずれも図示せず)及びAl膜からなる
50μm×50μmのパツド2…,3…を形成した。
なお、これらパツドのうち、後述する連結孔に
対応するパツド3…の一部は、層間絶縁膜に形
成された開孔部内に埋込まれ、かつ該開孔部底
部の基板表面には薄い酸化膜が形成されてい
る。この酸化膜は、ダイソートテストの障害と
なるパツドの基板表面への電気的な接続を防止
するために用いられる。但し、前記薄い酸化膜
の代わりに開孔部の底部を含む周辺の基板表面
にpn接合を作るための不純物拡散層を形成し
てもよい。つづいて、前記パツド3…に対応す
るシリコンウエハ1の裏面に等方性エツチング
と異方性エツチングの組合わせにより開口30μ
m×30μm、深さ50μmのワインカツプ状の孔
4を開孔した(第1図a図示)。なお、エツチ
ングは、いずれもフツ素系ガクのプラズマを用
いて行なつた。
() First, the thickness was 450μ by two-dimensional LSI manufacturing method.
A silicon wafer 1 with a size of
Pads 2..., 3... of 50 μm x 50 μm were formed.
Among these pads, a portion of pads 3 corresponding to connecting holes described later are embedded in the openings formed in the interlayer insulating film, and a thin oxide layer is formed on the substrate surface at the bottom of the openings. A film is formed. This oxide film is used to prevent electrical connection of the pad to the substrate surface, which would be an obstacle in the die sort test. However, instead of the thin oxide film, an impurity diffusion layer for creating a pn junction may be formed on the peripheral substrate surface including the bottom of the opening. Next, openings of 30 μm are formed on the back surface of the silicon wafer 1 corresponding to the pads 3 by a combination of isotropic etching and anisotropic etching.
A wine cup-shaped hole 4 measuring m×30 μm and 50 μm deep was opened (as shown in FIG. 1a). Note that the etching was performed using fluorine-based plasma in both cases.

() 次いで、前記シリコンウエハのダイソート
テストを行なつた後、ダイシングを施して個々
のチツプを作り、選別を行なつて良品チツプ5
を得た(第1図b図示)。つづいて、良品チツ
プ5の裏面全体を異方性エツチングを行なつて
厚さ45μmの薄板状の積層用半導体基板6を作
製した(第1図c図示)。この異方性エツチン
グの工程において、裏面に開口されたワインカ
ツプ状の孔4は略その形状が保持されながらエ
ツチングされるため、テーパ状の連結孔7が形
成された。また、前記エツチングに際して前述
した開孔部底部の薄い酸化膜除去を行なつて、
該連結孔7の底部に開孔部に対応してパツド3
の一部を露出させた。
() Next, after performing a die sort test on the silicon wafer, dicing is performed to produce individual chips, which are then sorted to produce 5 good chips.
was obtained (as shown in FIG. 1b). Subsequently, the entire back surface of the non-defective chip 5 was subjected to anisotropic etching to produce a thin plate-shaped semiconductor substrate 6 for lamination having a thickness of 45 μm (as shown in FIG. 1c). In this anisotropic etching process, the wine cup-shaped hole 4 opened on the back surface is etched while substantially maintaining its shape, so that a tapered connecting hole 7 is formed. Also, during the etching, the thin oxide film at the bottom of the opening was removed,
A pad 3 is provided at the bottom of the connecting hole 7 corresponding to the opening.
exposed part of.

() 次いで、前記積層用半導体基板6の連結孔
7に例えばAuからなる球状の連結粒を固着す
るが、この方法を第2図a,bに示す外部にヒ
ータ11が配設された内径30μmの銃筒12か
らなる連結粒固着機13と、半導体基板がセツ
トされるヒータ14を内蔵した保持台15とか
ら構成される装置を参照して説明する。
() Next, spherical connecting particles made of, for example, Au are fixed in the connecting holes 7 of the semiconductor substrate 6 for lamination. This will be explained with reference to a device comprising a connected particle fixing device 13 consisting of a gun barrel 12, and a holding table 15 having a built-in heater 14 on which a semiconductor substrate is set.

まず、保持台15上に前記積層用半導体基板
6をその連結孔7の開口部が上になるようにセ
ツトした後、銃筒12を前記半導体基板6の連
結孔7に位置合せした(第2図a図示)。つづ
いて、内蔵されたヒータ14によつて保持台1
5を300℃に昇温した後、銃筒12の外部をヒ
ータ11によつて約350℃に保持し、該銃筒1
2に内径30μmの球状をなすAu粒16を挿入
し、圧縮窒素17により前記Au粒16を加熱
しながら加速度をもたせて放射して第2図bに
示すように連結孔7底部のパツド3の露出部上
に熱圧接して固着する。なお、第2図b中の8
は基板6とパツド3とを電気的に絶縁するため
の層間絶縁膜、9は該絶縁膜8に形成され、パ
ツド3の一部を前記連結孔7底部に露出させる
ための開孔部である。こうした工程により第1
図dに示す連結孔7に対応するパツド3の露出
部にAu粒16が固着された積層用半導体基板
6を得た。
First, the semiconductor substrate 6 for lamination was set on the holding table 15 so that the opening of the connecting hole 7 of the semiconductor substrate 6 faced upward, and then the gun barrel 12 was aligned with the connecting hole 7 of the semiconductor substrate 6 (the second (Figure a shown). Subsequently, the holding table 1 is heated by the built-in heater 14.
5 to 300°C, the outside of the gun barrel 12 is maintained at about 350°C by the heater 11, and the gun barrel 1 is heated to 300°C.
A spherical Au particle 16 with an inner diameter of 30 μm is inserted into the hole 2, and the compressed nitrogen 17 heats the Au particle 16 and radiates it with acceleration to form the pad 3 at the bottom of the connecting hole 7, as shown in FIG. 2b. It is fixed by hot pressure welding on the exposed part. In addition, 8 in Figure 2b
9 is an interlayer insulating film for electrically insulating the substrate 6 and the pad 3, and 9 is an opening formed in the insulating film 8 to expose a part of the pad 3 to the bottom of the connecting hole 7. . Through these processes, the first
A semiconductor substrate 6 for lamination was obtained in which Au grains 16 were fixed to the exposed portions of the pads 3 corresponding to the connecting holes 7 shown in FIG. d.

() 次いで、二次元のLSI製造法により厚さ
450μmのシリコンウエハに半導体素子、素子
間の配線及びAl膜からなる50μm×50μmのパ
ツドを形成した。つづいて、ダイソートテスト
の後、前記シリコンウエハをダイシングし、良
品チツプ21を選別し、この良品チツプ21表
面のパツド22上に前述の連結粒固着機を用い
て40μm径の球状をなすAu粒23を固着した
(第1図e図示)。
() Next, the thickness was determined using a two-dimensional LSI manufacturing method.
A 50 μm x 50 μm pad consisting of a semiconductor element, wiring between elements, and an Al film was formed on a 450 μm silicon wafer. Subsequently, after the die sort test, the silicon wafer is diced, non-defective chips 21 are selected, and spherical Au particles with a diameter of 40 μm are placed on the pads 22 on the surface of the non-defective chips 21 using the aforementioned connected particle fixing machine. 23 was fixed (as shown in Figure 1e).

() 次いで、前記()の工程で作製した良品
チツプ21上に前記()〜()の工程によ
り作製した積層用半導体基板6を該チツプ21
のパツド22上のAu粒23と該半導体基板6
の連結孔7内のAu粒16とが合致するように
重ねた後、300℃に加熱しながら積層用半導体
基板6をチツプ21に対して押し付けることに
よりAu粒23,16を互いに固着した(第1
図f図示)。つづいて、積層された半導体基板
6表面の所定のパツド2,3上に前述した連結
固着機を用いて球状をなすAu粒24を熱圧接
して固着した(第1図g図示)。
() Next, the semiconductor substrate 6 for lamination produced in the steps () to () above is placed on the good chip 21 produced in the step () above.
The Au particles 23 on the pad 22 and the semiconductor substrate 6
The Au particles 23 and 16 were stacked so that they matched with the Au particles 16 in the connecting holes 7, and then the semiconductor substrate 6 for lamination was pressed against the chip 21 while heating at 300° C., thereby fixing the Au particles 23 and 16 to each other. 1
Figure f (illustrated). Subsequently, spherical Au particles 24 were bonded and fixed by thermocompression onto predetermined pads 2 and 3 on the surface of the stacked semiconductor substrates 6 using the above-mentioned connecting fixing machine (as shown in FIG. 1g).

() 次いで、前記()〜()と同様な工程
により複数枚の薄板状の積層用半導体基板を作
製し、これら半導体基板を前記第1図gにより
積層した半導体基板6の上に前記()と同様
な工程により順次積層し、多層積み重ねた半導
体装置(図示せず)を製造した。
() Next, a plurality of thin plate-shaped semiconductor substrates for lamination are produced by the same steps as in () to () above, and these semiconductor substrates are placed on top of the semiconductor substrate 6 laminated as shown in FIG. 1g above. A multilayer stacked semiconductor device (not shown) was manufactured by sequentially stacking layers in the same process as above.

しかして、本発明の半導体装置は半導体素子等
が形成された良品チツプ21と同素子が形成され
た積層用半導体基板6の間、更に各積層用半導体
基板6間を積層用半導体基板6の連結孔7に対応
するパツド3の露出部及び相手側のパツド22に
連結粒としてのAu粒23,16,24を介して
固着、積層するため、高集積度で多機能の三次元
構造を有する半導体装置を得ることができる。
Therefore, in the semiconductor device of the present invention, the semiconductor substrate 6 for lamination is connected between the non-defective chip 21 on which a semiconductor element or the like is formed and the semiconductor substrate 6 for lamination on which the same element is formed, and further between the semiconductor substrates 6 for lamination 6. The semiconductor has a highly integrated and multifunctional three-dimensional structure because it is fixed and stacked on the exposed part of the pad 3 corresponding to the hole 7 and on the mating pad 22 via the Au grains 23, 16, and 24 as connecting grains. You can get the equipment.

また、良品チツプ21と積層用半導体基板6及
び各積層用半導体基板6間の積層は、連結粒とし
てのAu粒23,16,24によりなされいるた
め、熱ストレスを該Au粒23,16,24で吸
収できるため、従来のSOI構造のようなクラツク
発生を防止できる。しかも、同様な理由により良
品チツプ21と積層用半導体基板6の間、各半導
体基板6の間に所望の隙間を形成できるため、各
基板間に熱がこもることなく、放熱性が改善され
る。従つて、高信頼性の三次元構造を有する半導
体装置を得ることができる。
In addition, since the non-defective chip 21, the semiconductor substrate 6 for lamination, and the lamination between the semiconductor substrates 6 for lamination are made of the Au grains 23, 16, 24 as connecting grains, thermal stress is not applied to the Au grains 23, 16, 24. This prevents the occurrence of cracks that occur in conventional SOI structures. Furthermore, for the same reason, a desired gap can be formed between the non-defective chip 21 and the laminated semiconductor substrate 6, and between each semiconductor substrate 6, so that heat is not trapped between the substrates, and heat dissipation is improved. Therefore, a semiconductor device having a highly reliable three-dimensional structure can be obtained.

更に、連結孔7の形状をテーパ状とすることに
より、この連結孔7に対応するパツド3の露出部
に球状をなすAu粒16を固着する際、該Au粒1
6が半導体基板6の連結孔7内面に接触すること
なく固着できるため、同Au粒16の連結孔7内
面との接触に伴う短絡を防止できる。
Furthermore, by making the shape of the connecting hole 7 tapered, when the spherical Au grains 16 are fixed to the exposed part of the pad 3 corresponding to the connecting hole 7, the Au grains 1
Since Au particles 16 can be fixed without coming into contact with the inner surface of the connecting hole 7 of the semiconductor substrate 6, short circuits caused by contact between the Au particles 16 and the inner surface of the connecting hole 7 can be prevented.

更に、実施例に示す方法によればシリコンウエ
ハの裏面を等方性エツチングと異方性エツチング
を組合わせてワインカツプ状の孔4を開孔した
後、裏面全体を異方性エツチングすることによつ
て、テーパ状をなす連結孔7を有する薄板状の積
層用半導体基板6を簡単に作製できる。また、第
2図に示す連結粒固着機を用いることによりパツ
ド3の露出部上に該パツド3の破損等を招くこと
なく、Au粒等の連結粒を熱圧接、固着できる。
その結果、三次元構造の半導体装置を極めて簡単
な工程で製造することができる。
Furthermore, according to the method shown in the example, after forming wine cup-shaped holes 4 on the back surface of the silicon wafer by a combination of isotropic etching and anisotropic etching, the entire back surface is anisotropically etched. Thus, a thin plate-shaped semiconductor substrate 6 for lamination having a tapered connection hole 7 can be easily produced. Furthermore, by using the connected grain fixing machine shown in FIG. 2, connected grains such as Au grains can be thermocompressed and fixed onto the exposed portion of the pad 3 without causing damage to the pad 3 or the like.
As a result, a three-dimensionally structured semiconductor device can be manufactured through extremely simple steps.

なお、上記実施例では連結粒として球状のAu
粒を用いたが、コストの低減化等を目的として球
状のステンレス粒の表面にAu膜を被覆した連結
粒を用いてもよい。具体的には、第3図に示すよ
うに例えば直径30μmの球状をなすステンレス粒
31の表面にメツキ法により厚さ約3μmのニツ
ケル膜32を形成し、更に該ニツケル膜32上に
メツキ法により厚さ約3μmのAu膜33を形成し
た連結粒34を用いてもよい。この場合、ステン
レス粒の代わりに、他の金属、ガラス、セラミツ
クス又は耐熱性のプラスチックの粒を使用しても
よい。更に、連結粒の形状に関しても、球状に限
定されず円柱状等任意の形状としてもよい。但
し、熱ストレスの緩和効果や操作性の点から、球
状の連結粒を使用することが望ましい。
In addition, in the above example, spherical Au was used as the connected grains.
Although grains were used, for the purpose of cost reduction, etc., connected grains in which the surface of spherical stainless steel grains was coated with an Au film may also be used. Specifically, as shown in FIG. 3, for example, a nickel film 32 with a thickness of about 3 μm is formed on the surface of a spherical stainless grain 31 with a diameter of 30 μm by a plating method, and then a nickel film 32 with a thickness of about 3 μm is formed on the nickel film 32 by a plating method. Connected grains 34 formed with an Au film 33 having a thickness of about 3 μm may also be used. In this case, particles of other metals, glass, ceramics, or heat-resistant plastics may be used instead of stainless steel particles. Further, the shape of the connected grains is not limited to a spherical shape, but may be any shape such as a cylindrical shape. However, from the viewpoint of thermal stress alleviation effect and operability, it is desirable to use spherical connected grains.

上記実施例では、シリコンからなる積層用半導
体基板のみを複数枚用い、これら積層用半導体基
板をチツプ上に積層した構造について説明した
が、これに限定されない。例えば、積層用半導体
基板の間に配線基板を連結粒を介して挿入し、該
配線基板を境にして下層側の積層用半導体基板等
と上層側の積層用半導体基板との間の電流経路を
変更するようにしてもよい。また、第4図に示す
ようにチツプ41をシリコンで形成し、このシリ
コンチツプ41上にシリコン半導体基板42とガ
リウム砒素半導体基板43とを積層し、更にこれ
らシリコン半導体基板42及びガリウム砒素半導
体基板43にシリコン半導体基板44を積層した
三次元構造の半導体装置としてもよい。こうした
第4図図示の構成とすれば、従来のSOI構造に比
べてより一層多機能化が図られた三次元構造の半
導体装置を簡単に実現できる。
In the above embodiment, a structure in which only a plurality of laminated semiconductor substrates made of silicon are used and these laminated semiconductor substrates are laminated on a chip has been described, but the present invention is not limited to this. For example, a wiring board is inserted between the semiconductor substrates for lamination via a connecting grain, and a current path is established between the semiconductor substrate for lamination on the lower layer side and the semiconductor substrate for lamination on the upper layer side with the wiring substrate as a boundary. It may be changed. Further, as shown in FIG. 4, a chip 41 is formed of silicon, a silicon semiconductor substrate 42 and a gallium arsenide semiconductor substrate 43 are laminated on this silicon chip 41, and further these silicon semiconductor substrate 42 and gallium arsenide semiconductor substrate 43 are laminated. The semiconductor device may have a three-dimensional structure in which a silicon semiconductor substrate 44 is stacked on top of the semiconductor substrate. With the configuration shown in FIG. 4, it is possible to easily realize a semiconductor device with a three-dimensional structure that has more functions than the conventional SOI structure.

[発明の効果] 以上詳述した如く、本発明によれば熱ストレス
によるクラツク発生を防止し、かつ放熱性に優
れ、更に従来のSOI構造に比べて多機能化が可能
な高集積度で高信頼性の三次元構造の半導体装置
を提供できる。
[Effects of the Invention] As detailed above, the present invention prevents the occurrence of cracks due to thermal stress, has excellent heat dissipation, and has a highly integrated and highly functional structure that can be multi-functional compared to conventional SOI structures. A semiconductor device with a reliable three-dimensional structure can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜gは、本発明の三次元構造の半導体
装置を得るための製造工程を示す断面図、第2図
a,bは、積層用半導体基板の連結孔のパツドに
Au粒を固着する工程を示す断面図、第3図は、
本発明に使用する連結粒の他の例を示す断面図、
第4図は、本発明の他の実施例を示す三次元構造
の半導体装置を示す断面図である。 1……シリコンウエハ、2,3,22……パツ
ド、6……積層用半導体基板、7……連結孔、8
……層間絶縁膜、9……開孔部、12……銃筒、
13……連結粒固着機、15……保持台、16,
23,24……Au粒、21……良品チツプ、3
1……ステンレス粒、34……連結粒、41……
シリコンチツプ、42,44……シリコン半導体
基板、43……ガリウム砒素半導体基板。
FIGS. 1a to 1g are cross-sectional views showing the manufacturing process for obtaining a three-dimensional semiconductor device of the present invention, and FIGS.
Figure 3 is a cross-sectional view showing the process of fixing Au grains.
A cross-sectional view showing another example of connected grains used in the present invention,
FIG. 4 is a sectional view showing a three-dimensional semiconductor device according to another embodiment of the present invention. 1... Silicon wafer, 2, 3, 22... Pad, 6... Semiconductor substrate for lamination, 7... Connecting hole, 8
... interlayer insulating film, 9 ... hole, 12 ... gun barrel,
13... connected grain fixing machine, 15... holding stand, 16,
23, 24...Au grain, 21...Good chip, 3
1...Stainless grain, 34...Connected grain, 41...
Silicon chip, 42, 44... silicon semiconductor substrate, 43... gallium arsenide semiconductor substrate.

Claims (1)

【特許請求の範囲】 1 半導体素子が少なくとも形成され、かつ表面
の所定部分にパツドが形成された半導体基板と、
厚さ方向に連結孔を有し、かつ該連結孔の底部を
含む周辺にパツドが少なくともその一部を該底面
に露出させるように形成されると共に半導体素子
が形成された少なくとも1つの積層用半導体基板
とを具備し、前記半導体基板のパツドと前記積層
用半導体基板の連結孔に対応したパツドの露出部
とを2つの導電性連結粒を介して固着し、積層し
たことを特徴とする半導体装置。 2 積層用半導体基板は複数枚からなり、それら
は連結孔に対応する領域以外にもパツドを有し、
一層目の積層用半導体基板の連結孔以外のパツド
と二層目の積層用半導体基板の連結孔に対応する
パツドの露出部とを2つの連結粒を介して固着、
積層し、同様に三層目以降の積層用半導体基板を
順次連結粒を介して固着、積層することを特徴と
する特許請求の範囲第1項記載の半導体装置。 3 積層用半導体基板の厚さと連結粒の大きさと
が略同じであることを特徴とする特許請求の範囲
第1項記載の半導体装置。
[Claims] 1. A semiconductor substrate on which at least a semiconductor element is formed and a pad is formed on a predetermined portion of the surface;
At least one semiconductor for lamination, which has a connecting hole in the thickness direction, and a pad is formed around the connecting hole including the bottom so that at least a part of the pad is exposed on the bottom surface, and a semiconductor element is formed thereon. A semiconductor device comprising: a substrate; a pad of the semiconductor substrate and an exposed portion of the pad corresponding to the connection hole of the semiconductor substrate for lamination are fixed via two conductive connection grains and stacked; . 2. The semiconductor substrate for lamination consists of a plurality of sheets, which have pads in addition to the area corresponding to the connecting hole,
Fixing the pads other than the connecting holes of the first-layer laminated semiconductor substrate and the exposed portions of the pads corresponding to the connecting holes of the second-layer laminated semiconductor substrate via two connecting grains,
2. The semiconductor device according to claim 1, wherein the semiconductor substrates for laminating the third and subsequent layers are sequentially fixed and laminated via connecting grains. 3. The semiconductor device according to claim 1, wherein the thickness of the semiconductor substrate for lamination and the size of the connecting grains are substantially the same.
JP5187086A 1986-03-10 1986-03-10 Semiconductor device Granted JPS62209845A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5187086A JPS62209845A (en) 1986-03-10 1986-03-10 Semiconductor device
US07/022,371 US4807021A (en) 1986-03-10 1987-03-05 Semiconductor device having stacking structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5187086A JPS62209845A (en) 1986-03-10 1986-03-10 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS62209845A JPS62209845A (en) 1987-09-16
JPH0373145B2 true JPH0373145B2 (en) 1991-11-20

Family

ID=12898913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5187086A Granted JPS62209845A (en) 1986-03-10 1986-03-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62209845A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520479B2 (en) * 1999-02-26 2010-08-04 ローム株式会社 Semiconductor device
JP4575928B2 (en) * 1999-02-26 2010-11-04 ローム株式会社 Semiconductor device
JP4547728B2 (en) * 1999-03-29 2010-09-22 ソニー株式会社 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JPS62209845A (en) 1987-09-16

Similar Documents

Publication Publication Date Title
JP3895595B2 (en) Method for vertically integrating electrical components by back contact
US5902118A (en) Method for production of a three-dimensional circuit arrangement
US4807021A (en) Semiconductor device having stacking structure
US7691672B2 (en) Substrate treating method and method of manufacturing semiconductor apparatus
TWI229890B (en) Semiconductor device and method of manufacturing same
US7381629B2 (en) Method of forming through-wafer interconnects for vertical wafer level packaging
US5380681A (en) Three-dimensional multichip package and methods of fabricating
US8030208B2 (en) Bonding method for through-silicon-via based 3D wafer stacking
US20070252287A1 (en) Integrated electronic chip and interconnect device and process for making the same
KR20150099736A (en) Back-to-back stacked integrated circuit assembly and method of making
JPH0344067A (en) Laminating method of semiconductor substrate
WO2011108327A1 (en) Method for producing reconstituted wafers and method for producing semiconductor devices
US8518741B1 (en) Wafer-to-wafer process for manufacturing a stacked structure
WO2009146588A1 (en) Bonding method for through-silicon-via based 3d wafer stacking
US8409927B1 (en) Methods for fabricating integrated circuit systems including high reliability die under-fill
JP2011514686A (en) Method for bonding a chip on a wafer
JP3770631B2 (en) Manufacturing method of semiconductor device
JP5409084B2 (en) Manufacturing method of semiconductor device
JP4320492B2 (en) Semiconductor device mounting structure and method of manufacturing semiconductor device mounting structure
TW202201713A (en) Integrated circuit device with stacked dies having mirrored circuitry
JPH0373145B2 (en)
US9224712B2 (en) 3D bond and assembly process for severely bowed interposer die
JP5489512B2 (en) Manufacturing method of semiconductor device
JP5528000B2 (en) Manufacturing method of semiconductor device
TWI588946B (en) Back-to-back stacked integrated circuit assembly and method of making

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees