JPS63208284A - Superconductive device - Google Patents

Superconductive device

Info

Publication number
JPS63208284A
JPS63208284A JP62040244A JP4024487A JPS63208284A JP S63208284 A JPS63208284 A JP S63208284A JP 62040244 A JP62040244 A JP 62040244A JP 4024487 A JP4024487 A JP 4024487A JP S63208284 A JPS63208284 A JP S63208284A
Authority
JP
Japan
Prior art keywords
superconducting
semiconductor
metalloid
alloy
superconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62040244A
Other languages
Japanese (ja)
Inventor
Juichi Nishino
西野 壽一
Mutsuko Hatano
睦子 波多野
Haruhiro Hasegawa
晴弘 長谷川
Ushio Kawabe
川辺 潮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62040244A priority Critical patent/JPS63208284A/en
Publication of JPS63208284A publication Critical patent/JPS63208284A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/128Junction-based devices having three or more electrodes, e.g. transistor-like structures

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To omit a heating step, to simplify the manufacturing process and to improve the reproducibility of the characteristics of a device, by constituting a conductor layer with metalloid or alloy including the metalloid. CONSTITUTION:A normal conductor 13 is which is a superconductor layer, is provided in a superconductor electrode 14 constituting a superconductive device. For the conductor 13, a thin film comprising metalloid or alloy including the metalloid as a component is used instead of a conventional single crystal semiconductor. In detail, Bi or alloy of Bi and Sb is used. In this way, a superconductive device such as a superconductive transistor or Josephson element can be implemented without introducting a heating step intended for improving the crystalline property of a semiconductor. Therefore, not only the superconductive devices can be readily manufactured, but also circuits having high integration density can be implemented by three-dimensional integration.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は極低温環境において動作するスイッチング素子
に係り、特に動作の高速性と低消費電力性とに優れた超
電導デバイスに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a switching element that operates in a cryogenic environment, and particularly to a superconducting device that is excellent in high-speed operation and low power consumption.

〔発明の背景〕[Background of the invention]

従来、極低温で動作する超電導デバイスに関する技術分
野において、一対の超電導電極を半4体を介して結合さ
せた構造を有する超電導デバイスは、例えばジャーナル
・オブ・アプライド・フイジクス1980年、51巻、
2736ページ(Journal of Applie
d Physies vol、 51 (1980)p
、2736にクラーク(C1ark)に記載されている
。半導体材料としてはSi、InAs等の使用が可能で
あることは知られている。また、これら半導体材料とし
ては単結晶状の材料を使用する。
Conventionally, in the technical field related to superconducting devices that operate at extremely low temperatures, superconducting devices having a structure in which a pair of superconducting electrodes are coupled via a half body have been described, for example, in Journal of Applied Physics, 1980, Vol. 51,
Page 2736 (Journal of Applie
d Physies vol, 51 (1980) p.
, 2736, C1ark. It is known that Si, InAs, etc. can be used as semiconductor materials. Moreover, single crystal materials are used as these semiconductor materials.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

半導体結合を利用した超電導素子において、該半導体に
は単結晶状の材料を使用する方法においては、基板状の
半導体単結晶あるいは薄膜状の半導体単結晶を使用する
。後者にあっては薄膜状に育成した半導体単結晶を使用
するか、あるいはアモルファス状あるいは多結晶状の半
導体薄膜を形成したのちに高周波の印加、あるいはレー
ザ・ビームの照射等の方法によって加熱し単結晶状の半
導体として使用していた。これらの方法を用いる場合に
は試料の一部又は全部を加熱する必要があり、これらの
熱の効果により、超電導材料の超電導的な性質が変化し
てしまうために、従来技術においては、薄膜状の半導体
単結晶を積み重ねて3次元的に集積化された超電導トラ
ンジスタ等の超電導デバイスを含んだ回路を実現するこ
とは困難であった。
In a superconducting element using semiconductor bonding, in a method in which a single crystal material is used as the semiconductor, a semiconductor single crystal in the form of a substrate or a semiconductor single crystal in the form of a thin film is used. In the latter case, a semiconductor single crystal grown in the form of a thin film is used, or an amorphous or polycrystalline semiconductor thin film is formed and then heated by high frequency application or laser beam irradiation. It was used as a crystalline semiconductor. When using these methods, it is necessary to heat part or all of the sample, and the superconducting properties of the superconducting material change due to the effects of heat. It has been difficult to realize a circuit including a superconducting device such as a superconducting transistor that is three-dimensionally integrated by stacking semiconductor single crystals.

本発明の目的は、これら従来技術の持つ問題点を解決し
て、三次元的に集積化することが可能な超電導デバイス
と、それを用いた超電導集積回路とを提供することにあ
る。
An object of the present invention is to solve the problems of these conventional techniques and provide a superconducting device that can be three-dimensionally integrated, and a superconducting integrated circuit using the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明においては、上記の本発明の目的を達成するため
に、超電導デバイスを構成する超電導電極間に設けた超
電体層たる常電導体に従来の単結晶状の薄膜半導体に代
えて、半金属あるいはこれを成分として含む合金より成
る薄膜を使用した点に特徴がある。より具体的にはBi
、あるいはBiとSbとの合金を用いる。
In the present invention, in order to achieve the above-mentioned object of the present invention, a semiconductor layer is used as a normal conductor, which is a superconductor layer provided between superconducting electrodes constituting a superconducting device, in place of a conventional single-crystal thin film semiconductor. It is characterized by the use of a thin film made of metal or an alloy containing metal as a component. More specifically, Bi
, or an alloy of Bi and Sb.

〔作用〕[Effect]

従来技術においては、半導体の結晶性を改善することに
よって、半尊体材料の移動度を向上させこれによって、
半導体に接して設けた超電導電極間の半導体を介した超
電導的結合を大きくし、この部分に流すことのできる超
電導電流の大きさを。
In the prior art, the mobility of the semiconducting material is increased by improving the crystallinity of the semiconductor.
By increasing the superconducting coupling between superconducting electrodes placed in contact with the semiconductor through the semiconductor, we can increase the amount of superconducting current that can flow through this area.

回転動作が実現できる程度に大きくすることが必要であ
った。このために、半導体の材料にSiやGaを用いた
場合にあっては、加熱による結晶性の改善を行うことが
一般的に不可欠となっていた。
It was necessary to make it large enough to realize rotational movement. For this reason, when Si or Ga is used as a semiconductor material, it is generally essential to improve crystallinity by heating.

また化合物半導体を用いた場合には、分子線成長法を利
用することができるが、超電導体あるいは絶縁膜などに
重ねて、さらにその上に組成が均一で良質の単結晶を成
長させることは困難であった。
Furthermore, when using compound semiconductors, molecular beam growth can be used, but it is difficult to overlay a superconductor or insulating film and grow a high-quality single crystal with a uniform composition on top of the superconductor or insulating film. Met.

従って、これら従来技術の持つ問題点は、超電導電極の
間に設ける材料としては、加熱を施すことなしに組成が
均一でキャリアの移動度の大きな薄膜を作ることができ
、しかも電界効果によって導電率を変化させることので
きることが必要である。
Therefore, the problem with these conventional technologies is that a thin film with a uniform composition and high carrier mobility can be made without heating as a material to be provided between superconducting electrodes, and the conductivity is increased by the electric field effect. It is necessary to be able to change the

こうした材料としての要求を満足子るものとして、Bi
又はBiとsbの合金、が利用できることがわかった。
As a material that satisfies these requirements, Bi
It was also found that an alloy of Bi and sb can be used.

Bi及びBiとsbの合金は試料に過大な加熱を行うこ
となしに薄膜状で、しかも移動度が10” rrr/V
−Sと超電導デバイスを実現するために十分に大きな値
を得ることができる。
Bi and alloys of Bi and sb can be formed into thin films without excessive heating of the sample, and have a mobility of 10” rrr/V.
-S and a sufficiently large value can be obtained to realize a superconducting device.

また、Biとsbの合金における組成範囲としては、s
bの組成が40%以5であることが望ましい。さらに、
望ましくは7〜20%の範囲であれば良い。これは、こ
の組成範囲において、B1−sb合金が、半金属的ある
いは半導体的な電子のエネルギ・バンド構造を有し、0
〜約5%のsbの濃度の範囲においては、バンドが重な
りを有する半金属として、約5%〜約40%の範囲にお
いては電子のエネルギ構造にギャップが存在する半導体
としてふるまうからであり、この様な場合には、B i
 −S b合金は本発明における超電導デバイスを構成
する材料として使用できる。特にsbの組成が約7%〜
約20%の範囲にあっては、半導体としてのエネルギ・
ギャップの値は5 meVから15meVの範囲にあり
、超電導体中に生じるエネルギ・ギャップと同程度であ
り、この超電導体中に生じるエネルギ・ギャップに対応
する電圧を基準として、この程度の電圧振幅において動
作するデバイスに使用するためには適した半導体として
のエネルギ・ギャップの値を得ることができるのである
In addition, the composition range of the alloy of Bi and sb is s
It is desirable that the composition of b is 40% or more. moreover,
It is preferably within the range of 7 to 20%. This means that in this composition range, the B1-sb alloy has a semimetallic or semiconductor-like electron energy band structure, and 0
This is because in the range of sb concentration from about 5% to about 5%, it behaves as a semimetal with overlapping bands, and in the range from about 5% to about 40%, it behaves as a semiconductor with a gap in the electron energy structure. In such cases, B i
-Sb alloy can be used as a material constituting the superconducting device in the present invention. Especially the composition of sb is about 7%~
In the range of about 20%, the energy and
The value of the gap is in the range of 5 meV to 15 meV, which is about the same as the energy gap that occurs in the superconductor, and with a voltage amplitude of this order as the reference voltage that corresponds to the energy gap that occurs in the superconductor. It is possible to obtain an energy gap value suitable for a semiconductor for use in a working device.

このように1本発明によれば、半導体の結晶性改善を目
的とした加熱工程を導入することなしに超電導トランジ
スタ、あるいはジョセフソン素子といった超電導デバイ
スを実現することができるので、これら超電導デバイス
の作製が容易になるばかりでなく、3次元的に集積化し
て、高集積度の回路を実現できるようになる。
As described above, according to the present invention, superconducting devices such as superconducting transistors or Josephson elements can be realized without introducing a heating process for the purpose of improving the crystallinity of semiconductors. Not only will this make it easier, but it will also be possible to integrate three-dimensionally and realize highly integrated circuits.

〔実施例〕〔Example〕

以下、本発明を実施例を参照して詳細に説明する。まず
、第1図を用いて本発明の第1の実施例を説明する。S
i基板11の表面を熱酸化して厚さ300nmの5if
tより成る絶縁膜12を形成する。続いて抵抗加熱蒸着
によりB1−12wt%sbの合金より成る厚さ150
nmの常電導体薄膜13を形成し、リフトオフ法によっ
て加工した。次に厚さ1100nのNbより成る超電導
薄膜を形成しこれをCF4ガスによる反応性イオン・エ
ツチング法によって加工して超電導電極14を形成する
。次に化学的気相成長法によって厚さ約30nmのSi
O2より成るゲート絶縁膜15を形成し、最後に厚さ約
60nmのAll!蒸着膜より成るゲート電極16を作
製して、本発明の超電導デバイスを実現することができ
た。この超電導デバイスを液体ヘリウム温度(4,2K
)に冷却して動作させたところ、ゲート電極に正の電圧
を印加した場合には、B1−1.2wt%sb合金を介
して対向した超電導電極の間に流れる超電導電流の値を
増大させることができた。本実施例においては、超電導
電極の材料としてNbを用いたが、これに代えてpb、
pb金合金またNbN。
Hereinafter, the present invention will be explained in detail with reference to Examples. First, a first embodiment of the present invention will be described using FIG. S
The surface of the i-substrate 11 is thermally oxidized to a thickness of 300 nm.
An insulating film 12 made of T is formed. Subsequently, a film with a thickness of 150 mm made of B1-12 wt% sb alloy is formed by resistance heating vapor deposition.
A normal conductor thin film 13 having a thickness of 1 nm was formed and processed by a lift-off method. Next, a superconducting thin film made of Nb having a thickness of 1100 nm is formed and processed by a reactive ion etching method using CF4 gas to form a superconducting electrode 14. Next, a Si film with a thickness of about 30 nm was grown by chemical vapor deposition.
A gate insulating film 15 made of O2 is formed, and finally an All! film with a thickness of about 60 nm is formed. By producing the gate electrode 16 made of a vapor deposited film, the superconducting device of the present invention could be realized. This superconducting device is heated at liquid helium temperature (4.2K).
) When a positive voltage was applied to the gate electrode, the value of the superconducting current flowing between the opposing superconducting electrodes via the B1-1.2 wt% sb alloy was increased. was completed. In this example, Nb was used as the material of the superconducting electrode, but instead of this, pb,
PB gold alloy also NbN.

NbaGe、Nb5sn、NbaSi、等のNb化合物
、あるいはM o Nなどを用いても良いことば言うま
でもない。
Needless to say, Nb compounds such as NbaGe, Nb5sn, NbaSi, etc., or M o N may also be used.

第2図を用いて、本発明の第2の実施例について説明す
る。本発明の第1の実施例と全く同様の材料及び構成を
有し、半導体基板21.絶縁膜22、常電導体薄膜23
.超電導電極24.ゲート絶縁膜25.ゲート電極26
より成る電界効果型の超電導デバイスを形成する。この
デバイスは、半導体基板21上に形成された、第1層目
の集積回路を構成するデバイスの1つに相当する。次に
化学的気相成長法によって厚さ約2μmの5iOzより
成る層間絶縁膜27を形成する。続いて厚さ約200n
mのB1−12wt%sb合金より成る2層目の常電導
体薄膜29と、厚さ約200nmのNb蒸着膜より成る
超電導電極28とを形成する。超電導電極28は常電導
体薄膜29を介して超電導的に結合し、準平面型のジョ
セフソン素子を構成している。このジョセフソン接合素
子は、第2層目の集積回路を構成するデバイスの1つで
ある。最後に化学的気相成長法によって構成した厚さ約
2μmのSiO2より成る保護膜30を形成し、本発明
の超電導デバイスとこれを含む集積回路とを実現するこ
とができた。本実施例においては、1つの半導体基板2
1上に2層の集積回路を作製し1層間の電気的な結合を
行い動作させている。集積の層数は2層あるいはそれ以
上であっても良いことは言うまでもなく、いづれの場合
にあっても、過度の加熱を含まないために、再現性良く
、しかも高い歩留りで集積回路を実現できた。
A second embodiment of the present invention will be described with reference to FIG. The semiconductor substrate 21. has exactly the same material and structure as the first embodiment of the present invention. Insulating film 22, normal conductor thin film 23
.. Superconducting electrode 24. Gate insulating film 25. Gate electrode 26
A field-effect superconducting device is formed. This device corresponds to one of the devices forming the first layer integrated circuit formed on the semiconductor substrate 21. Next, an interlayer insulating film 27 made of 5 iOz and having a thickness of about 2 μm is formed by chemical vapor deposition. Next, the thickness is about 200n.
A second normal conductor thin film 29 made of a B1-12wt% sb alloy of m and a superconducting electrode 28 made of a Nb vapor-deposited film with a thickness of about 200 nm are formed. The superconducting electrodes 28 are superconductingly coupled via a normal conductor thin film 29 to form a quasi-planar Josephson element. This Josephson junction element is one of the devices constituting the second layer integrated circuit. Finally, a protective film 30 made of SiO2 with a thickness of approximately 2 μm was formed by chemical vapor deposition, thereby making it possible to realize the superconducting device of the present invention and an integrated circuit including the same. In this embodiment, one semiconductor substrate 2
A two-layer integrated circuit is fabricated on the first layer, and the first layer is electrically connected to operate. It goes without saying that the number of layers for integration may be two or more, but in any case, since excessive heating is not involved, integrated circuits can be realized with good reproducibility and high yield. Ta.

〔発明の効果〕〔Effect of the invention〕

以・上、述べた様に本発明によれば、超電導デバイス及
びこれを含んだ集積回路を作製する場合に、加熱の工程
を必要としないので、作製のための工程が簡略となり、
またデバイス特性の再現性に優れているばかりでなく、
3次元的に集積化した回路を容易に作製でき、従って高
い集積度を実現できる効果がある。
As described above, according to the present invention, a heating process is not required when manufacturing a superconducting device and an integrated circuit including the same, so the manufacturing process is simplified.
In addition to excellent reproducibility of device characteristics,
It is possible to easily produce a three-dimensionally integrated circuit, which has the effect of realizing a high degree of integration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1の実施例による超電導デバイス
の一部分を示す断面図、第2図は1本発明の第2の実施
例による超電導集積回路の一部分を示す断面図である。 11.21・・・半導体基板、12.22・・・絶縁膜
、13.23,29・・・常電導体薄膜、14,24゜
28・・・超電導電極、15,25・・・グー1〜絶縁
膜、16.26・・・ゲート電極、27・・・層間絶縁
膜、30・・・保護膜。 代理人 弁理士 小川勝男−一− (パ−
FIG. 1 is a sectional view showing a portion of a superconducting device according to a first embodiment of the present invention, and FIG. 2 is a sectional view showing a portion of a superconducting integrated circuit according to a second embodiment of the present invention. 11.21...Semiconductor substrate, 12.22...Insulating film, 13.23,29...Normal conductor thin film, 14,24°28...Superconducting electrode, 15,25...Goo 1 ~Insulating film, 16.26... Gate electrode, 27... Interlayer insulating film, 30... Protective film. Agent: Patent Attorney Katsuo Ogawa (Parent)

Claims (1)

【特許請求の範囲】 1、極低温で動作し、少なくとも1対の超電導電極と、
該誘電導電極に接した導電体層と、該超電導電極の間の
該導電体層上に設けられた制御電極とを有して構成され
、該制御電極に印加した電圧による電界効果によつて、
該超電導電極の間の超電導的な結合の大きさを制御する
超電導デバイスにおいて、該導電体層は半金属あるいは
これを含んだ合金より成ることを特徴とする超電導デバ
イス。 2、特許請求の範囲第1項に記載の超電導デバイスにお
いて、該導電体層を構成する材料はBiあるいはBiと
Sbとの合金であることを特徴とする超電導デバイス。
[Claims] 1. At least one pair of superconducting electrodes that operate at extremely low temperatures;
It is configured to have a conductor layer in contact with the dielectric electrode, and a control electrode provided on the conductor layer between the superconducting electrodes. ,
A superconducting device for controlling the magnitude of superconducting coupling between superconducting electrodes, wherein the conductor layer is made of a semimetal or an alloy containing the same. 2. The superconducting device according to claim 1, wherein the material constituting the conductor layer is Bi or an alloy of Bi and Sb.
JP62040244A 1987-02-25 1987-02-25 Superconductive device Pending JPS63208284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62040244A JPS63208284A (en) 1987-02-25 1987-02-25 Superconductive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62040244A JPS63208284A (en) 1987-02-25 1987-02-25 Superconductive device

Publications (1)

Publication Number Publication Date
JPS63208284A true JPS63208284A (en) 1988-08-29

Family

ID=12575296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62040244A Pending JPS63208284A (en) 1987-02-25 1987-02-25 Superconductive device

Country Status (1)

Country Link
JP (1) JPS63208284A (en)

Similar Documents

Publication Publication Date Title
JPH03228384A (en) Superconducting element
JPS63208284A (en) Superconductive device
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JPH01268075A (en) Josephson field-effect transistor
JP2599498B2 (en) Superconducting element and fabrication method
JPH0484469A (en) Three-terminal device
JP2641971B2 (en) Superconducting element and fabrication method
JP2944238B2 (en) Method for forming superconductor and superconducting element
JPH02194667A (en) Superconducting transistor and manufacture thereof
JP2950958B2 (en) Superconducting element manufacturing method
JP2641976B2 (en) Superconducting element and fabrication method
JP2667289B2 (en) Superconducting element and fabrication method
JP2597747B2 (en) Superconducting element and fabrication method
JP4056575B2 (en) Superconducting device and manufacturing method thereof
JPS61220385A (en) Josephson junction element
JP3249370B2 (en) Superconducting device
JPS61239681A (en) Superconducting element
JP2647251B2 (en) Superconducting element and fabrication method
JP2599500B2 (en) Superconducting element and fabrication method
JPS6332974A (en) Superconducting semiconductor junction element and its manufacture
JPH04137681A (en) Superconducting device and its manufacture
JPH02177483A (en) Superconducting transistor
JPH0249481A (en) Oxide josephson junction device
JPH02273975A (en) Superconducting switching element
JPH065935A (en) Superconductor device