JPS63206413A - Method for predicting reduction of blast furnace heat - Google Patents

Method for predicting reduction of blast furnace heat

Info

Publication number
JPS63206413A
JPS63206413A JP3934687A JP3934687A JPS63206413A JP S63206413 A JPS63206413 A JP S63206413A JP 3934687 A JP3934687 A JP 3934687A JP 3934687 A JP3934687 A JP 3934687A JP S63206413 A JPS63206413 A JP S63206413A
Authority
JP
Japan
Prior art keywords
wall
blast furnace
furnace
temperature
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3934687A
Other languages
Japanese (ja)
Inventor
Naoki Tamura
直樹 田村
Nobuyuki Nagai
信幸 永井
Masami Konishi
正躬 小西
Korehito Kadoguchi
維人 門口
Junpei Kiguchi
淳平 木口
Teruhisa Uehara
上原 輝久
Shinichi Tamada
玉田 慎一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3934687A priority Critical patent/JPS63206413A/en
Publication of JPS63206413A publication Critical patent/JPS63206413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To accurately estimate the dropping of the temp. of molten pig iron in a blast furnace by measuring differences in the temp. of the inner wall of the furnace at prescribed positions at regular time intervals and by considering negative values among the differences in place of the absolute value of the temp. of the inner wall. CONSTITUTION:Inner wall thermometers 3 are fitted to prescribed positions of a blast furnace 1 and differences in the temp. of the inner wall of the furnace are measured with the thermometers 3 at regular time intervals. Negative values among the differences are summed up. When the sum total exceeds a set value, it is supposed that the temp. of the wall has suddenly dropped owing to the falling of raw ore, and a warning is given which predicts the reduction of the furnace heat of the blast furnace.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、高炉の安定な操業を行なうための高炉炉熱
低下予測方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for predicting heat drop in a blast furnace for stable operation of a blast furnace.

(従来の技術とその問題点) 高炉の安定操業のlI#持のためには、溶銑温度を一定
にすることが必要であることが従来より知られている。
(Prior art and its problems) It has been known for a long time that in order to maintain stable operation of a blast furnace, it is necessary to keep the temperature of hot metal constant.

このため、高炉操業者は常に高炉炉熱変化を予測する必
要性があった。
For this reason, blast furnace operators have always needed to predict changes in blast furnace heat.

高炉炉熱変化において、特に温度低下によって溶銑が凝
固し、高炉から流出しなくなる可能性があるため、温度
低下の予測は極めて重要なものとなる。
Prediction of temperature drop is extremely important in blast furnace furnace thermal changes, especially since hot metal may solidify due to temperature drop and may no longer flow out of the blast furnace.

高炉炉熱の予測方法としては、特開昭60−39107
に開示されたものがある。この方法は炉腹部周辺装入物
温度が溶銑温度と強い相関関係を持つという見地から、
予め第8図に示す様に高炉1に設置したセンサ(炉腹ゾ
ンデ)2により検出される炉腹部局辺部温度と、溶銑温
度との関係を第9図に示す如く直線回帰する。この直線
式に基づき、炉腹部局辺部温度から溶銑温度”pigを
予測するのである。
As a method for predicting blast furnace furnace heat, Japanese Patent Application Laid-Open No. 60-39107
There are some that have been disclosed. This method is based on the viewpoint that the charge temperature around the furnace belly has a strong correlation with the hot metal temperature.
As shown in FIG. 8, the relationship between the temperature in the local area of the blast furnace 1, which is detected by the sensor (belly sonde) 2 installed in the blast furnace 1, and the temperature of the hot metal is subjected to linear regression as shown in FIG. Based on this linear equation, the hot metal temperature "pig" is predicted from the temperature in the local area of the furnace abdomen.

しかしながら、この方法では炉内の内壁近傍の温度を測
定するために炉腹ゾンデ2を挿入する必要があり、この
ため温度測定を間欠時点でしか行なえず、溶銑温度予測
精度も当然悪化してしまうという問題点があった。
However, with this method, it is necessary to insert the furnace probe 2 in order to measure the temperature near the inner wall of the furnace, which means that temperature measurements can only be carried out intermittently, which naturally deteriorates the accuracy of hot metal temperature prediction. There was a problem.

また、溶銑温度が同じ値でも、生産計画や原料装入条件
等の変化により、炉内温度が変化する場合がある。した
がって第9図で示した炉壁温度の絶対値に基づく直線式
では、必ずしも正確な予測ができないという問題点があ
った。
Further, even if the hot metal temperature is the same, the furnace temperature may change due to changes in the production plan, raw material charging conditions, etc. Therefore, the linear equation based on the absolute value of the furnace wall temperature shown in FIG. 9 has the problem that accurate prediction cannot necessarily be made.

(発明の目的) この発明の目的は、上記従来技術の問題点を解消し、連
続的に高炉内壁温度を測定し、内壁温度の絶対値によら
ず、溶銑温度の低下を正確に予測することのできる高炉
炉熱低下予測方法を提供することである。
(Objective of the Invention) The object of the present invention is to solve the above-mentioned problems of the prior art, to continuously measure the temperature of the blast furnace inner wall, and to accurately predict the decrease in hot metal temperature regardless of the absolute value of the inner wall temperature. It is an object of the present invention to provide a method for predicting heat reduction in a blast furnace.

(目的を達成するための手段) 上記目的を達成するため、この発明による高炉炉熱低下
予測方法は、高炉の所定箇所に内壁温度計を設置し、該
内壁温度計にて、所定時間間隔ごとの内壁温度差を測定
し、ある時刻における前記内壁温度差の負の値を示す部
分の合計値が、予め定められた値を越えた時に高炉炉熱
低下の予測を行っている。
(Means for Achieving the Object) In order to achieve the above object, the blast furnace heat drop prediction method according to the present invention includes installing an inner wall thermometer at a predetermined location of the blast furnace, and measuring the temperature at predetermined time intervals using the inner wall thermometer. The temperature difference in the inner wall of the blast furnace is measured, and when the sum of the negative values of the inner wall temperature difference at a certain time exceeds a predetermined value, a decrease in blast furnace heat is predicted.

(実施例) 高炉の炉熱低下の一因として、以下に示すものが考えら
れる。
(Example) The following may be considered as a cause of the decrease in furnace heat of a blast furnace.

高炉内の荷下り速度が原料装入条件、装入物分布等の理
由で上がると、いわゆる生鉱下りにより高炉内の融着帯
レベルが下がり、炉熱低下が起こる。
When the unloading speed in the blast furnace increases due to raw material charging conditions, charge distribution, etc., the level of the cohesive zone in the blast furnace decreases due to so-called raw ore unloading, resulting in a decrease in furnace heat.

ところで、融着帯レベルが下がると、該当部分における
炉壁温度も急激に下降する。この急激な温度下降を検知
すれば炉熱低下が予測できる。
By the way, when the cohesive zone level decreases, the furnace wall temperature at the corresponding portion also decreases rapidly. If this rapid temperature drop is detected, a decrease in furnace heat can be predicted.

第1図(a)、 (b)は、各々この発明の一実施例で
用いられる内壁湿度計の配置を示す側面断面図、平面断
面図である。内壁温度計3は同図(a)に示すように、
高炉1の高さ方向に7個(背部3個。
FIGS. 1(a) and 1(b) are a side sectional view and a plan sectional view, respectively, showing the arrangement of an inner wall hygrometer used in an embodiment of the present invention. As shown in the figure (a), the inner wall thermometer 3
7 pieces in the height direction of blast furnace 1 (3 pieces on the back).

腹部2個、朝顔部2個)同図(b)に示すように高炉1
の周方向に4つ設置する。つまり、4方向7レベルで計
28個の内壁温度計3を設置する訳である。
(2 abdomens, 2 morning glories) As shown in the same figure (b), blast furnace 1
Install four in the circumferential direction. In other words, a total of 28 inner wall thermometers 3 are installed in four directions and seven levels.

内壁温度計は例えば、本出願人による実開昭57−81
531.実公昭59−16816に開示されたものを用
いてもよく、第2図は後者に開示された内壁温度計(以
下これをrFMセンサ」という。)を示す概念図である
The inner wall thermometer is, for example, disclosed in Japanese Utility Model Application No. 57-81 by the present applicant.
531. The one disclosed in Japanese Utility Model Publication No. 59-16816 may be used, and FIG. 2 is a conceptual diagram showing the inner wall thermometer (hereinafter referred to as "rFM sensor") disclosed in the latter.

同図において、4は2本の導線5が絶縁的に平行して埋
設され前方端側に感温部6を有するシース型測温体であ
り、シース型測温体4は複数本を、夫々の感温部6が長
さ方向の異なる部位に配置される様に平行配列されてお
り、ざらにシース型ダミー棒7を感温部6の先端に接続
して、最先端を揃えている。シース型ダミー棒7は2本
の導線5が絶縁的に平行して埋設され、シース型測温体
4と実質的に同一の熱伝導性を有する。FMセンサ3は
このシース型測温体4を絶縁材8で相互に非接続に保ち
、シース管9内に収納することにより形成される。
In the figure, reference numeral 4 denotes a sheath type thermometer having two conductive wires 5 buried in parallel insulatively and having a temperature sensing part 6 on the front end side. The temperature-sensing parts 6 are arranged in parallel so as to be placed at different parts in the length direction, and a roughly sheathed dummy rod 7 is connected to the tips of the temperature-sensing parts 6 to align the leading ends. The sheath type dummy rod 7 has two conductive wires 5 buried in parallel insulating manner, and has substantially the same thermal conductivity as the sheath type temperature measuring element 4. The FM sensor 3 is formed by keeping the sheath type temperature measuring element 4 disconnected from each other by an insulating material 8 and storing it in a sheath tube 9.

第3図はFMセンサ3の設置説明図である。同図におい
て、10〜13は高炉の炉壁であり、10はレンガ、1
1はステープ、12はスタンプ、13は鉄皮である。F
Mセンサ3は同図に示すように、パツキン14及び溶接
部15への溶接により、炉壁内部に設置されている。な
お、16は充填材であり、17はミルク注入口であり充
填材16を注ぎ込む箇所である。
FIG. 3 is an explanatory diagram of the installation of the FM sensor 3. In the figure, 10 to 13 are the walls of the blast furnace, 10 is a brick, and 1
1 is a staple, 12 is a stamp, and 13 is an iron skin. F
As shown in the figure, the M sensor 3 is installed inside the furnace wall by welding to a packing 14 and a welded portion 15. Note that 16 is a filler, and 17 is a milk injection port into which the filler 16 is poured.

なお、ここで説明したFMセンサ3はその設置及び構造
上、炉壁の侵食と共にFMセンサ3自体も侵食され、シ
ース型測温体4が炉壁近傍の炉内に露出する場合もあり
、実際には「炉壁温度」と共に[F壁近傍の炉内温度」
を測定していることになる。以下、両者を含めた概念を
「炉壁温度」として述べる。FMセンサ3は上述のよう
に、従来のシース熱電対等の温度計に比べ、多数の測定
点を有し、迅速な測温応答性を満足し、長期の連続的な
温度測定が可能であり、信頼性の向上、耐久性の向上、
施工性の向上等が計られている。
Note that due to the installation and structure of the FM sensor 3 described here, the FM sensor 3 itself is eroded along with the erosion of the furnace wall, and the sheath type temperature sensing element 4 may be exposed inside the furnace near the furnace wall. In addition to the "furnace wall temperature", the "furnace temperature near the F wall" is
is being measured. Hereinafter, a concept including both will be described as "furnace wall temperature." As mentioned above, the FM sensor 3 has a larger number of measurement points than conventional thermometers such as sheathed thermocouples, satisfies rapid temperature measurement response, and is capable of long-term continuous temperature measurement. Improved reliability, improved durability,
Efforts are being made to improve workability.

各FMセンサ3は、第4図に示すように所定サンプリン
グ時間Δtごとに高炉1の内壁温度を測定している。こ
こで、時刻j、の1番目のFMセンサ3の内壁温度をT
1.とじ、時刻jの1サンプJ、1 リング時間Δを前の内壁温度を王、 、とすると、J−
1,I 王1.とT、 、どの内壁温度差(差分値)Δ丁J、 
I   J−1,1 ・・は、 J、1 6丁・・=T、、−T・ 、   ・・・(1)J、l
   J、I   J−1,1 となる。この状態を第5図に示す。
Each FM sensor 3 measures the inner wall temperature of the blast furnace 1 at every predetermined sampling time Δt, as shown in FIG. Here, the inner wall temperature of the first FM sensor 3 at time j is T
1. When closing, 1 sample J at time j, 1 ring time Δ, and the previous inner wall temperature is , then J-
1, I King 1. and T, , which inner wall temperature difference (difference value) ΔTJ,
I J-1,1... is J,1 6th...=T,, -T・, ...(1) J,l
J, I J-1,1. This state is shown in FIG.

この差分値ΔTj、、に、各FMセンサ3毎の高さ1周
方向等を考慮して重みW・を乗する。ざらに、差分値Δ
T、、が正のものに対しては、ViJ、1 一〇、それ以外のものに対しては、Vr =1を示す正
負パラメータV、も乗じ、時刻jの補正差分値(負の差
分値)CT・・を得る。
This difference value ΔTj, , is multiplied by a weight W· in consideration of the height of each FM sensor 3 in one circumferential direction, etc. Roughly speaking, the difference value Δ
For positive T, , ViJ is 1 10; for other cases, it is multiplied by the positive/negative parameter V indicating Vr = 1, and the corrected difference value at time j (negative difference value ) CT... is obtained.

J、I CT・・=W・ ・V・ ・Δ丁1.  ・・・(2)
J、 l      I      I       
 J、 1次に、補正差分値CT・、の絶対値の全FM
セJ、1 値が予め定められた閾値εより大きくなれば、生鉱下り
による炉壁の急激な温度下降があったとみなし炉熱低下
予測のアラームを出力するのである。
J, ICT...=W. .V. .ΔD1. ...(2)
J, l I I
J, first order, total FM of the absolute value of the corrected difference value CT.
If the SEJ,1 value becomes larger than a predetermined threshold ε, it is assumed that there has been a rapid temperature drop in the furnace wall due to raw ore descent, and an alarm predicting a decrease in furnace heat is output.

ST・≧ε            ・・・(4)上記
した予測方法は、コンピュータにより実現が可能となる
。第6図はその処理の流れを示すフローチャートである
。同図において、ステップS1で各FMセンサ3の炉壁
温度T・、をサンブリJ、1 ング時間Δを毎に測定する。次に、ステップS2におい
て各FMセンサ3の差分値を(1)式に基づき計算する
ST・≧ε (4) The above prediction method can be realized by a computer. FIG. 6 is a flowchart showing the flow of the process. In the figure, in step S1, the furnace wall temperature T of each FM sensor 3 is measured at every sampling time Δ. Next, in step S2, the difference value of each FM sensor 3 is calculated based on equation (1).

そして、ステップS3において、(2) 、 (3)式
に基づく負の差分値総継sTjを求める。さらに、ステ
ップS4において、この負の差分値総和ST・と予め定
められた閾値εとの比較を行い、(4)式を満足されば
ステップS5において荷下り速度が上ったことによる炉
熱低下が起こるであろうとみなし、アラームを出力する
。一方、(4)式を満足しない場合は、異常なしとみな
しステップS1に戻り、以下ステップ81〜ステツプS
4を繰り返すことで炉熱低下を予測する。
Then, in step S3, a total negative difference value sTj is determined based on equations (2) and (3). Furthermore, in step S4, this negative difference value sum ST・ is compared with a predetermined threshold value ε, and if equation (4) is satisfied, in step S5, the furnace heat decreases due to the increased unloading speed. It is assumed that this will occur and an alarm is output. On the other hand, if the equation (4) is not satisfied, it is assumed that there is no abnormality and the process returns to step S1.
Predict the decrease in furnace heat by repeating step 4.

第7図(a)、 (b)は、各々時間変化における溶銑
温度”trioと差分値総和STjを示すグラフである
。第7図(a)の溶銑温度Tpigは、溶鉄鋼への出銑
時(1出銑約2時間)の約30分毎の実測温度であり、
出銑と次の出銑の間に約30分画いている間欠出銑であ
る。なお、溶銑温度の低下が認められた時点で炉熱上昇
アクションをとっている。
FIGS. 7(a) and (b) are graphs showing the hot metal temperature "trio" and the sum of difference values STj over time. The hot metal temperature Tpig in FIG. (1 pig iron tap approximately 2 hours) is the actual temperature measured approximately every 30 minutes,
This is an intermittent tap with approximately 30 minutes between each tap. Furthermore, when a drop in hot metal temperature is observed, action is taken to raise the furnace heat.

図中1目盛は100分を示し、Toは管理温度である。In the figure, one scale indicates 100 minutes, and To is the control temperature.

第7図(b)は、(3)式で求めた負の差分値総和ST
jの1分周期の経時変化を示し、εは閾値である。同図
(b)において、アラームが発生している。従って、ア
ラームへ時に、溶銑温度を高めるために何れかのアクシ
ョン(ガス流の温度をは起こさずに済ますことができる
FIG. 7(b) shows the total negative difference value ST obtained by equation (3).
It shows the change over time of 1 minute period of j, and ε is a threshold value. In the same figure (b), an alarm is generated. Therefore, in the event of an alarm, any action to increase the temperature of the hot metal (gas stream temperature) can be avoided.

上記した予測は、炉壁温度差(負の差分値)により行な
っているため、炉壁温度の絶対値の上下によらず、正確
な予測を行なうことができる。しかも、FMセンサ3は
その施工性の良さ及び測温応答性の良さから、高炉全周
を覆うように配置でき、連続的な内壁温度差が把握でき
ることで、さらに正確な予測を行なうことができる。
Since the above prediction is performed based on the furnace wall temperature difference (negative difference value), accurate prediction can be made regardless of whether the absolute value of the furnace wall temperature is higher or lower. Furthermore, due to its ease of installation and good temperature measurement response, the FM sensor 3 can be placed to cover the entire circumference of the blast furnace, and by being able to grasp continuous inner wall temperature differences, more accurate predictions can be made. .

尚、この実施例では内壁温度計にFMセンサを用いたが
、通常の測温センサ(例えばシース熱電対)でも寿命の
点で問題はあるものの代用可能である。また、ステーブ
温度計、レンガ埋め込み温度計を用いてもその信頼性、
測温応答性の低さから予測精度は若干低下するものの、
代用可能である。
In this embodiment, an FM sensor is used as the inner wall thermometer, but a normal temperature sensor (for example, a sheathed thermocouple) can be used instead, although there are problems in terms of service life. In addition, even if a stave thermometer or a brick-embedded thermometer is used, its reliability and
Although the prediction accuracy decreases slightly due to the low temperature response,
Can be substituted.

また、この実施例では、FMセンサ3を7レベル4方向
に28個設置したが、高炉の特性により適当に設置すれ
ば良いのは勿論である。
Further, in this embodiment, 28 FM sensors 3 were installed in 7 levels and in 4 directions, but it goes without saying that they may be installed appropriately depending on the characteristics of the blast furnace.

(発明の効果) 以上説明したように、この発明によれば、連続的な高炉
内壁温度差に基づくことで、内壁温度の絶対値の大小に
よらず、溶銑温度の低下を正確に予測することができる
(Effects of the Invention) As explained above, according to the present invention, it is possible to accurately predict the drop in hot metal temperature based on the continuous blast furnace inner wall temperature difference, regardless of the magnitude of the absolute value of the inner wall temperature. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b)は各々、この発明の一実施例に
用いられるFMセンサの高炉炉壁内の配置を示す側面断
面図、平面断面図、第2図、第3図は各々FMセンサの
概念図、設M説明図、第4図はFMセンサによる測定炉
壁温度の経時変化を示すグラフ、第5図はFMセンサに
よる測定炉壁温度の差分値の経時変化を示すグラフ、第
6図は発明の一実施例にコンピュータを用いた場合の処
理の流れを示すフローチャート、第7図(a)、(b)
は、各々溶銑温度、負の差分値総和STjを示すグラフ
、第8図は、従来技術における炉腹ゾンデの高炉内の配
置を示す側面断面図、第9図は溶銑温度と炉内周辺部温
度の相関を示すグラフである。
FIGS. 1(a) and 3(b) are a side sectional view and a plan sectional view, respectively, showing the arrangement of an FM sensor used in an embodiment of the present invention in the blast furnace wall, and FIGS. 2 and 3 are sectional views, respectively. A conceptual diagram of the FM sensor, an explanatory diagram of the design, Fig. 4 is a graph showing changes over time in the furnace wall temperature measured by the FM sensor, Fig. 5 is a graph showing changes over time in the difference value of the furnace wall temperature measured by the FM sensor, FIG. 6 is a flowchart showing the flow of processing when a computer is used in one embodiment of the invention, and FIGS. 7(a) and (b)
are graphs showing the hot metal temperature and the sum of negative difference values STj, respectively; FIG. 8 is a side sectional view showing the arrangement of the furnace belly sonde in the blast furnace in the conventional technology; and FIG. 9 is the hot metal temperature and the temperature of the surrounding area inside the furnace. It is a graph showing the correlation.

Claims (1)

【特許請求の範囲】[Claims] (1)高炉の所定箇所に内壁温度計を設置し、該内壁温
度計にて、所定時間間隔ごとの内壁温度差を測定し、 ある時刻における前記内壁温度差の負の値を示す部分の
合計値が、予め定められた値を越えた時に高炉炉熱低下
予測を行なう高炉炉熱低下予測方法。
(1) An inner wall thermometer is installed at a predetermined location in the blast furnace, and the inner wall temperature difference is measured at predetermined time intervals with the inner wall thermometer, and the sum of the parts showing a negative value of the inner wall temperature difference at a certain time is determined. A blast furnace heat drop prediction method that predicts a blast furnace heat drop when a value exceeds a predetermined value.
JP3934687A 1987-02-23 1987-02-23 Method for predicting reduction of blast furnace heat Pending JPS63206413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3934687A JPS63206413A (en) 1987-02-23 1987-02-23 Method for predicting reduction of blast furnace heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3934687A JPS63206413A (en) 1987-02-23 1987-02-23 Method for predicting reduction of blast furnace heat

Publications (1)

Publication Number Publication Date
JPS63206413A true JPS63206413A (en) 1988-08-25

Family

ID=12550517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3934687A Pending JPS63206413A (en) 1987-02-23 1987-02-23 Method for predicting reduction of blast furnace heat

Country Status (1)

Country Link
JP (1) JPS63206413A (en)

Similar Documents

Publication Publication Date Title
CA1168896A (en) Thermal sensor for detecting temperature distribution
US5158366A (en) Refractory monitoring temperature sensor and refractory erosion location measuring device
US4442706A (en) Probe and a system for detecting wear of refractory wall
SE445258B (en) VIEW TO MONITOR THE DRAINAGE OF ELFABLE WALLS IN A MASTER OVEN
JPS63206413A (en) Method for predicting reduction of blast furnace heat
JPS63206414A (en) Method for predicting reduction of furnace heat of blast furnace
JPS63206412A (en) Method for predicting reduction of blast furnace heat
JPS63312910A (en) Method for predicting lowering of furnace heat in blast furnace
JPH0476799A (en) Device for deciding and forecasting service life of thermocouple temperature sensor
JP7016706B2 (en) Equipment monitoring equipment, equipment monitoring methods, and programs
JPH02118007A (en) Method for predicting lowering of furnace heat in blast furnace
JPS63312911A (en) Method for predicting lowering of furnace heat in blast furnace
JPS63210215A (en) Prediction of furnace heat in blast furnace
JPS63210223A (en) Predicting on of lowering of furnace heat of blast furnace
JPS596888B2 (en) Method for detecting deposits on blast furnace walls
JPS63210222A (en) Prediction of lowering of furnace heat in blast furnace
JPS63297516A (en) Method for predicting lowering of furnace temperature in blast furnace
JPS63210219A (en) Prediction of furnace heat in blast furnace
JPS63210210A (en) Prediction for lowering of furnace heat in blast furnace
JPS6261642B2 (en)
JPH039162B2 (en)
JPS63210212A (en) Prediction for lowering of furnace heat in blast furnace
JPS63297517A (en) Method for predicting lowering of furnace heat in blast furnace
JPH03223658A (en) Method for monitoring surface state of refractory material and repairing-time judging apparatus for refractory material
JPS59221583A (en) Method of monitoring internal state of vertical type furnace