JPS63312910A - Method for predicting lowering of furnace heat in blast furnace - Google Patents

Method for predicting lowering of furnace heat in blast furnace

Info

Publication number
JPS63312910A
JPS63312910A JP14884587A JP14884587A JPS63312910A JP S63312910 A JPS63312910 A JP S63312910A JP 14884587 A JP14884587 A JP 14884587A JP 14884587 A JP14884587 A JP 14884587A JP S63312910 A JPS63312910 A JP S63312910A
Authority
JP
Japan
Prior art keywords
wall
furnace
level
blast furnace
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14884587A
Other languages
Japanese (ja)
Inventor
Nobuyuki Nagai
信幸 永井
Masami Konishi
正躬 小西
Korehito Kadoguchi
維人 門口
Takeshi Yabata
矢場田 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14884587A priority Critical patent/JPS63312910A/en
Publication of JPS63312910A publication Critical patent/JPS63312910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)

Abstract

PURPOSE:To accurately predict lowering of furnace heat by arranging plural thermometers for inner wall in line in the vertical direction from lower part in the blast furnace, measuring differences of the inner wall temps. at the prescribed time intervals and comparing with the presetting value. CONSTITUTION:The thermometers 3 for the inner wall are arranged in line on seven points from a first level 31 to a seventh level 37, from the lower part toward vertical direction in the blast furnace 1 and also on four points in the inner circumferential direction at each level in the blast furnace 1. The differences of the inner wall temps. are measured by these thermometers 3 for the inner wall at the prescribed time intervals. In this constitution, in the case where the positive value of the difference of the inner wall temps. at any level lower than the m-th level (2<=m<=7) exceeds a preset value within the prescribed time after the positive value of the difference of the inner wall temps. at the m-th level exceeds a preset value, it is predicted that the blast furnace heat is lowered. By this method, the lowering of molten pig iron temp. can be accurately predicted.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、高炉の安定な操業を行うための高炉炉熱低
下予測方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for predicting heat drop in a blast furnace for stable operation of a blast furnace.

(従来の技術とその問題点) 高炉の安定操業の維持のためには、溶銑温度を一定にす
ることが必要であることが従来より知られている。この
ため、高炉操業者は常に高炉炉熱変化を予測する必要性
があった。
(Prior art and its problems) It has been known for a long time that in order to maintain stable operation of a blast furnace, it is necessary to keep the temperature of hot metal constant. For this reason, blast furnace operators have always needed to predict changes in blast furnace heat.

高炉炉熱変化において、特に温度低下によって溶銑が凝
固し、高炉から流出しなくなる可能性があるため、温度
低下の予測は極めて重要なものとなる。
Prediction of temperature drop is extremely important in blast furnace furnace thermal changes, especially since hot metal may solidify due to temperature drop and may no longer flow out of the blast furnace.

高炉炉熱の予測方法としては、特開昭60−39107
に開示されたものがある。この方法は炉腹部周辺装入物
温度が溶銑温度と強い相関関係を持つという見地から、
予め第8図に示す様に高炉1に設置したセンサ(炉腹ゾ
ンデ)2により検出される炉腹部周辺部温度と、溶銑温
度との関係を第9図に示す如く直線回帰する。この直線
式に基づき、炉腹部周辺部温度から溶銑温度’pipを
予測するのである。
As a method for predicting blast furnace furnace heat, Japanese Patent Application Laid-Open No. 60-39107
There are some that have been disclosed. This method is based on the viewpoint that the charge temperature around the furnace belly has a strong correlation with the hot metal temperature.
As shown in FIG. 8, the relationship between the temperature around the furnace belly area detected by the sensor (belly sonde) 2 installed in the blast furnace 1 and the temperature of the hot metal is subjected to linear regression as shown in FIG. 9. Based on this linear equation, the hot metal temperature 'pip is predicted from the temperature around the furnace abdomen.

しかしながら、この方法では炉内の内壁近傍の温度を測
定するために炉腹ゾンデ2を挿入する必要があり、この
ため温度測定を間欠時点でしか行なえず、溶銑温度予測
精度も当然悪化してしまうという問題点があった。
However, with this method, it is necessary to insert the furnace probe 2 in order to measure the temperature near the inner wall of the furnace, which means that temperature measurements can only be carried out intermittently, which naturally deteriorates the accuracy of hot metal temperature prediction. There was a problem.

また、溶銑温度が同じ値でも、生産計画や原料装入条件
等の変化により、炉内温度が変化する場合がある。した
がって第9図で示した炉壁温度の絶対値に基づく直線式
では、必ずしも正確な予測ができないという問題点があ
った。
Further, even if the hot metal temperature is the same, the furnace temperature may change due to changes in the production plan, raw material charging conditions, etc. Therefore, the linear equation based on the absolute value of the furnace wall temperature shown in FIG. 9 has the problem that accurate prediction cannot necessarily be made.

(発明の目的) この発明の目的は、上記従来技術の問題点を解消し、連
続的に^炉内壁温度を測定し、内壁温度の絶対値によら
ず、溶銑温度の低下を正確に予測することのできる高炉
炉熱低下予測方法を提供することである。
(Objective of the Invention) The object of the present invention is to solve the above-mentioned problems of the prior art, to continuously measure the furnace inner wall temperature, and to accurately predict the decrease in hot metal temperature regardless of the absolute value of the inner wall temperature. It is an object of the present invention to provide a method for predicting heat reduction in a blast furnace.

(目的を達成するための手段) 上記目的を達成するため、この発明による高炉炉熱低下
予測方法は、高炉の高さ方向に下方から第1〜第にレベ
ルの内壁温度計を設置し、該内壁温度計にて、所定時間
間隔ごとの内壁温度差を測定し、第m(2≦m≦k)レ
ベルの内’1m度差の正の値を示す部分が予め定められ
た値を越えた後の所定時間内において、第(m−1>レ
ベル以下の内壁温度差の正の値を示す部分のいずれかが
予め定められた値を越えた時に高炉炉熱低下予測を行っ
ている。
(Means for Achieving the Object) In order to achieve the above object, the blast furnace heat drop prediction method according to the present invention includes installing inner wall thermometers at the first to second levels from below in the height direction of the blast furnace. The inner wall temperature difference was measured at each predetermined time interval using an inner wall thermometer, and the part showing a positive value of 1 m degree difference in the mth (2≦m≦k) level exceeded the predetermined value. During a subsequent predetermined period of time, the blast furnace heat drop is predicted when any of the portions showing a positive value of the inner wall temperature difference below the (m-1> level) exceeds a predetermined value.

(実施例) 高炉の炉熱低下の一因として、以下に示すものが考えら
れる。
(Example) The following may be considered as a cause of the decrease in furnace heat of a blast furnace.

高炉羽口から吹き上げる溶銑温度及び溶銑量調整のため
の高温空気(ガス流)は通常、炉内中央部に吹き込んで
いる。ところが、原料装入条件。
High-temperature air (gas flow) blown up from the blast furnace tuyeres to adjust the temperature and amount of hot metal is usually blown into the center of the furnace. However, the raw material charging conditions.

装入物分布等の理由により、急にガス流が炉内周辺部に
多く流れる場合がある。その結果、1”e O+C−+
Fe +C○ の吸熱反応が促進され、炉熱低下が起こる。
Due to reasons such as charge distribution, a large amount of gas may suddenly flow to the periphery of the furnace. As a result, 1”e O+C−+
The endothermic reaction of Fe + C○ is promoted and the furnace heat decreases.

ところで、ガス流が多量に炉内周辺部に流れると、Na
 、に、Pb等の炉内付着物及び停滞層が剥離し、壁落
ちすることにより、その部分の炉壁温度が急激に上昇す
る。この急′I!iな温度上昇を検知すれば炉熱低下が
予測できる。
By the way, when a large amount of gas flows around the furnace, Na
, when the deposits in the furnace such as Pb and the stagnation layer peel off and fall off the wall, the temperature of the furnace wall in that part increases rapidly. This sudden'I! If an i temperature rise is detected, a decrease in furnace heat can be predicted.

第1図(a)、 (b)は、各々この発明の一実施例で
用いられる内壁温度計の配置を示す側面断面図、平面断
面図である。内壁温度計3は同図(a)に示すように、
高炉1の下方より高さ方向箱ルベル3 から第7レベル
37に7個(背部3個、腹部2個、朝顔部2個)、同図
(b)に示すように高炉1の周方向に4個設置する。つ
まり、4方向7レベルで計28個の内壁湿度計3を設置
する訳である。
FIGS. 1(a) and 1(b) are a side sectional view and a plan sectional view, respectively, showing the arrangement of an inner wall thermometer used in an embodiment of the present invention. As shown in the figure (a), the inner wall thermometer 3
7 pieces (3 on the back, 2 on the abdomen, 2 on the morning glory) from the box level 3 in the height direction from the bottom of the blast furnace 1, and 4 pieces in the circumferential direction of the blast furnace 1 as shown in Figure (b). Install one. In other words, a total of 28 inner wall hygrometers 3 are installed in four directions and seven levels.

内壁温度計は例えば、本出願人による実開昭57−81
531.実公昭59−16816に開示されたものを用
いてもよく、第2図は後者に開示された内壁温度計(以
下これをrFMセンサ」という。)を示す概念図である
The inner wall thermometer is, for example, disclosed in Japanese Utility Model Application No. 57-81 by the present applicant.
531. The one disclosed in Japanese Utility Model Publication No. 59-16816 may be used, and FIG. 2 is a conceptual diagram showing the inner wall thermometer (hereinafter referred to as "rFM sensor") disclosed in the latter.

同図において、4は2本の導線5が絶縁的に平行して埋
設され前方端側に感温部6を有するシース型測温体であ
り、シース型測温体4は複数本を、夫々の感温部6が長
さ方向の異なる部位に配置される様に平行配列されてお
り、ざらにシース型ダミー棒7を感温部6の先端に接続
して、最先端を揃えている。シース型ダミー棒7は2本
の導線5が絶縁的に平行して埋設され、シース型測温体
4と実質的に同一の熱伝導性を有する。FMセンサ3は
このシース型測温体4を絶縁材8で相互に非接触に保ち
、シース管9内に収納することにより形成される。
In the figure, reference numeral 4 denotes a sheath type thermometer having two conductive wires 5 buried in parallel insulatively and having a temperature sensing part 6 on the front end side. The temperature-sensing parts 6 are arranged in parallel so as to be placed at different parts in the length direction, and a roughly sheathed dummy rod 7 is connected to the tips of the temperature-sensing parts 6 to align the leading ends. The sheath type dummy rod 7 has two conductive wires 5 buried in parallel insulating manner, and has substantially the same thermal conductivity as the sheath type temperature measuring element 4. The FM sensor 3 is formed by keeping the sheath type temperature measuring element 4 in a non-contact manner with an insulating material 8 and housing it in a sheath tube 9.

第3図はFMセンサ3の設置説明図である。同図におい
て、10〜13は高炉の炉壁であり、10はレンガ、1
1はステーブ、12はスタンプ、13は鉄皮である。F
Mセンサ3は同図に示すように、パツキン14及び溶接
部15への溶接により、炉壁内部に設置されている。な
お、16は充填材であり、17はミルク注入口であり充
填材16を注ぎ込む箇所である。
FIG. 3 is an explanatory diagram of the installation of the FM sensor 3. In the figure, 10 to 13 are the walls of the blast furnace, 10 is a brick, and 1
1 is a stave, 12 is a stamp, and 13 is an iron skin. F
As shown in the figure, the M sensor 3 is installed inside the furnace wall by welding to a packing 14 and a welded portion 15. Note that 16 is a filler, and 17 is a milk injection port into which the filler 16 is poured.

なお、ここで説明したFMセンサ3はその設置及び構造
上、炉壁の侵食と共にFMセンサ3自体も侵食され、シ
ース型測温体4が炉壁近傍の炉内に露出する場合もあり
、実際には「炉’!!4度」と共に[炉壁近傍の炉内温
度jを測定していることになる。以下、両者を含めた概
念を「炉壁温度」として述べる。FMセンサ3は上述の
ように、従来のシース熱電対等の温度計に比べ、多数の
測定点を有し、迅速な測温応答を満足し、長期の連続的
な温度測定が可能であり、信頼性の向上、耐久性の向上
、施工性の向上等が計られている。
Note that due to the installation and structure of the FM sensor 3 described here, the FM sensor 3 itself is eroded along with the erosion of the furnace wall, and the sheath type temperature sensing element 4 may be exposed inside the furnace near the furnace wall. This means that the temperature j in the furnace near the furnace wall is being measured along with "furnace'!! 4 degrees". Hereinafter, a concept including both will be described as "furnace wall temperature." As mentioned above, compared to conventional thermometers such as sheathed thermocouples, the FM sensor 3 has a large number of measurement points, satisfies rapid temperature measurement response, is capable of long-term continuous temperature measurement, and is highly reliable. The aim is to improve performance, durability, and workability.

各FMセンサ3は、第4図に示すように所定サンプリン
グ時間Δtごとに高炉1の内壁温度を測定している。こ
こで、時刻jの第にレベル(k=1〜7)の1番目(i
=1〜4)のFMセンサ3の内壁温度をT・ ・とじ、
時刻jの1サンブリJ、に、+ ング時間Δtffiの内壁温度をT・  ・とすると、
J−1,に、I T、 、とT、  、との内壁温度差(差分値)J、 
k、 I   J−1,k、 +ΔT、 、は、 J、に、+ ΔT・ 、=T・ ・−■、  ・ ・・・(1)J、
に、+   J、に、+   J−1,に、+となる。
Each FM sensor 3 measures the inner wall temperature of the blast furnace 1 at every predetermined sampling time Δt, as shown in FIG. Here, the first (i
= 1 to 4), the inner wall temperature of the FM sensor 3 is T.
Let T be the inner wall temperature at + time Δtffi for one assembly J at time j, then
J-1, the inner wall temperature difference (difference value) J between I T, and T, ,
k, I J-1,k, +ΔT, , is J, +ΔT・ ,=T・・・−■, ・・・・(1) J,
, + J, + J-1, and +.

この状態を第5図に示す。This state is shown in FIG.

この差分値ΔT・ 、に、各FMセンサ3毎のJ、に、
+ 高さ1周方向等を考慮して重みWlを乗する。さらに、
差分値Δ”j、に、iが負のものに対しては、■に、i
”0、それ以外のものに対しては、vk、i=1を示す
正負パラメータ■に、iも乗じ、時刻jの補正差分値(
正の差分値)CT・ ・を得る。
To this difference value ΔT・, to J for each FM sensor 3,
+ Multiply the weight Wl by taking into account the height and the direction of one circumference. moreover,
To the difference value Δ”j, for i is negative, to ■, i
”0, for other values, vk, the positive/negative parameter ■ indicating i=1 is also multiplied by i, and the corrected difference value at time j (
A positive difference value) CT・・ is obtained.

J、に、+ CT・ ・=W、・■ 、・Δ王、 、・・・(2)J
、に、+   +   k、+    J、に、+次に
、補正差分値CTj、、、、の各レベルごとのFMセン
サ3に対する総和をとり、これをST・J。
J, Ni, + CT・・=W,・■ ,・Δ King, ,...(2) J
, + k, + J, + Next, the sum of the corrected difference values CTj, .

、とする。, and so on.

STj、= 、Σ CTj、、、、      ・・・
(3)イzj そして次(4)式に従い、この差分値総和STj、にの
少なくとも1つの値STj、(m=1〜7)が各レベル
毎に予め定められた閾値ε、より大きくなれば、炉内付
着物の壁落ちによるか壁の急激な温度上背の可能性があ
るとみなす。
STj, = , Σ CTj, , ...
(3) Izzj Then, according to the following equation (4), if at least one value STj, (m=1 to 7) of this total difference value STj, becomes larger than a predetermined threshold ε for each level, then It is considered that there is a possibility that the temperature of the wall suddenly rose due to deposits falling on the wall inside the furnace.

ST、  ≧ε           ・・・(4)J
、l      m (m=1〜7のいずれか) その後、適当に設定されたホールド時間内において、(
4)式を満足した第mレベルより下方に設けられた第(
m−1)レベル以下の各レベル毎のFMセンサ3.(J
=1〜(m−1))の正の差分値総和STj、、が次(
5)式に従い、少なくとも1つの値が各レベル毎に予め
定められた閾値ε。
ST, ≧ε...(4)J
, l m (m=one of 1 to 7) After that, within an appropriately set hold time, (
4) The (
m-1) FM sensor for each level below level 3. (J
The sum of positive difference values STj, , of =1 to (m-1)) is then (
5) A threshold value ε in which at least one value is predetermined for each level according to the formula.

より大きくなれば、はじめて炉内付着物の壁落ちによる
炉壁の急激な温度上昇があったとみなし、炉熱低下予測
のアラームを出力するのである。
When it becomes larger, it is assumed that there has been a rapid temperature rise on the furnace wall due to the falling of deposits inside the furnace, and an alarm is output to predict a decrease in furnace heat.

STj、、≧ε□          ・・・(5)(
1=1〜(m−1)のいずれか) なお、(4)式において、 ST・   ≧ ε1         ・・・(6)
J、1 が最初に成立した時は、この時点でアラームを出力する
ようにする。
STj,, ≧ε□ ...(5)(
1 = 1 to (m-1)) In addition, in formula (4), ST・ ≧ ε1 ... (6)
When J,1 is established for the first time, an alarm is output at this point.

上記した予測方法はコンピュータにより実現が可能とな
る。第6図はその処理の流れを示す70−チャートであ
る。同図において、ステップS1で各FMセンサ3の炉
壁温度T・ ・をサンブリJ、に、+ ング時間Δを毎に測定する。次に、ステップS2におい
て各FMセンサ3の差分値を(1)式に基づき肘算する
The above prediction method can be realized by a computer. FIG. 6 is a 70-chart showing the flow of the process. In the same figure, in step S1, the furnace wall temperature T of each FM sensor 3 is measured at every heating time Δ. Next, in step S2, the difference value of each FM sensor 3 is calculated based on equation (1).

そして、ステップS3において、(2)、(3)式に基
づく各高さレベルごとの正の差分値総和ST・J。
Then, in step S3, the sum of positive difference values ST·J for each height level is determined based on equations (2) and (3).

kを求める。さらに、ステップS4において、この7つ
の高さレベルごとの正の差分値総和ST・J。
Find k. Furthermore, in step S4, the total sum of positive difference values ST·J for each of these seven height levels is determined.

kと各レベル毎に予め定められた閾値ε との比較を行
い、(4)式をいずれかの高さレベルにおいて満足すれ
ば次のステップS5に移行する。一方、全ての高さレベ
ルにおいて(4)式を満足しない場合は、異常なしとみ
なしステップs1に戻り、以下ステップ81〜ステツプ
S4を繰り返すことで炉熱低下予測を続ける。
A comparison is made between k and a predetermined threshold value ε for each level, and if equation (4) is satisfied at any height level, the process moves to the next step S5. On the other hand, if equation (4) is not satisfied at all height levels, it is assumed that there is no abnormality, and the process returns to step s1, and the furnace heat drop prediction is continued by repeating steps 81 to S4.

ステップS4において、第mレベルの高さにおいて、(
4)式を満たした場合、ステップS5において、m=1
か否かの判別を行い、m=1であればステップ$9で炉
熱低下が起こるであろうとみなし、アラームを出力する
In step S4, at the height of the m-th level, (
4) If the formula is satisfied, in step S5, m=1
If m=1, it is assumed that a decrease in furnace heat will occur in step $9, and an alarm is output.

ステップ$5でm≠1と判断されれば、次のステップS
6において変動時刻t、をt。−〇に初期化し、同時に
ホールド時間り、を設定する。
If m≠1 is determined in step $5, the next step S
6, the variation time t is set to t. - Initialize to 〇 and set the hold time at the same time.

次にステップS7で変動時刻t、がホールド時間り、を
越えたかを確認する。これは、第mレベルのFMセンサ
311により検出された炉熱低下徴候が、第(m−1)
レベル以下のFMセンサ3によっても検出される伝播時
間の遅れを考慮したものである。従って、変動時刻tc
がホールド時間hrを越えていれば、MmレベルのFM
センサ3、により検出された炉熱低下徴候は誤りとみな
し、ステップS1に戻る。
Next, in step S7, it is checked whether the fluctuation time t exceeds the hold time t. This means that the furnace heat drop sign detected by the m-th level FM sensor 311 is the (m-1)th level.
This takes into consideration the delay in propagation time that is also detected by the FM sensor 3 below the level. Therefore, the varying time tc
If exceeds the hold time hr, the Mm level FM
The sign of decrease in furnace heat detected by sensor 3 is regarded as an error, and the process returns to step S1.

一方、変動時刻tCがホールド時間hrを越えていなけ
れば次のステップS8へ移る。ステップS8において第
(m−1)レベル以下のFMセンサ3による正の差分値
総和STj、(j!=1〜(m−1))の各々と各レベ
ル毎に予め定められた閾値εlとの比較を行い、(5)
式をいずれかの高さレベルにおいて満足すれば、はぼ確
実に炉熱低下が起こるであろうとみなし、ステップS9
でアラームを出力する。一方、全ての正の差分値総和S
Tj、、が(5)式を満足しない場合は、ステップS7
に戻り、再び変動時刻t、がホールド時間り、を越えた
かを確認し炉熱低下予測を続ける。
On the other hand, if the fluctuation time tC does not exceed the hold time hr, the process moves to the next step S8. In step S8, the total sum of positive difference values STj, (j!=1 to (m-1)) by the FM sensor 3 below the (m-1)th level, and the threshold value εl predetermined for each level are calculated. Make a comparison and (5)
If the formula is satisfied at any height level, it is assumed that a decrease in furnace heat will definitely occur, and step S9
outputs an alarm. On the other hand, the sum of all positive difference values S
If Tj, , does not satisfy equation (5), step S7
Returning to , it is confirmed again whether the fluctuation time t exceeds the hold time ri, and the furnace heat drop prediction is continued.

第7図は、実操業における第5レベルのFMセンサ35
による正の差分値総和(a)、第4〜第ルベルの各々の
FMセンサ34〜31による正の差分値総和(b)〜(
e)と溶銑温度(f)の経時変化を時間的に対応させて
示したグラフであり、TCは管理温1fである。同図(
a)に示すように時刻toに第5レベルの正の差分値総
和STj、5が閾値ε を越え、時刻t。よりホールド
時間hr内の時刻t1で同図(d)に示すように第2レ
ベルの正の差分値総和ST・ が閾値ε2を越えている
J、ま ためアラームが出力される。その模、同図([)に示す
ように溶銑温度が管理温度T。より低下していることが
わかる。従って、時刻t1で溶銑温度を高めるための何
れかのアクション(ガス流の温度を上げる、高炉に供給
する水分量を落とす等)を起こせば、充分に同図(「)
で示した炉熱低下は起こさずに済ますことができる。
FIG. 7 shows the fifth level FM sensor 35 in actual operation.
(a), the sum of positive difference values (b) by each of the FM sensors 34 to 31 of the fourth to fourth rubles (b) to (
It is a graph showing temporal changes in e) and hot metal temperature (f) in a temporal manner, where TC is the control temperature 1f. Same figure (
As shown in a), at time to, the fifth level positive difference value sum STj, 5 exceeds the threshold ε, and at time t. Then, at time t1 within the hold time hr, as shown in FIG. 4(d), the second level positive difference value sum ST* exceeds the threshold value ε2, and an alarm is output again. In this case, as shown in the figure ([), the temperature of the hot metal is the control temperature T. It can be seen that it has decreased further. Therefore, if any action is taken to raise the hot metal temperature at time t1 (increasing the temperature of the gas flow, reducing the amount of water supplied to the blast furnace, etc.), it is sufficient to
The decrease in furnace heat shown in can be avoided.

上記した予測は、炉壁温度差(正の差分値)により行な
っているため、炉壁温度の絶対値の上下によらず、正確
な予測を行なうことができる。しかも、各高さレベルご
との炉壁温度差の(4)式による異常の検知に加え、異
常が認められたレベル以下の炉壁温度差の(5)式によ
る検知により炉内上部での変動が下方に伝播するのをと
らえることで、より精度よく、機会を損じることなく炉
熱低下を予測できる。
Since the above prediction is performed based on the furnace wall temperature difference (positive difference value), accurate prediction can be made regardless of whether the absolute value of the furnace wall temperature is higher or lower. Moreover, in addition to detecting abnormalities using equation (4) for the difference in furnace wall temperature at each height level, the fluctuation in the upper part of the furnace can be detected using equation (5) for the difference in furnace wall temperature below the level at which the abnormality was detected. By detecting the downward propagation of heat, it is possible to predict the decrease in furnace heat more accurately and without losing opportunities.

また、FMセンサ3はその施工性の良さ及び測温応答性
の良さから、^炉全周を覆うように配置でき、連続的な
内壁温度差が把握できることで、さらに正確な予測を行
なうことができる。
In addition, because of its ease of installation and good temperature measurement response, the FM sensor 3 can be placed to cover the entire circumference of the furnace, and by being able to grasp continuous inner wall temperature differences, more accurate predictions can be made. can.

尚、この実施例では内壁温度計にFMセンサを用いたが
、通常の測温センサ(例えばシース熱電対)でも寿命の
点で問題はあるものの代用可能である。また、ステーブ
温度計、レンガ埋め込み温度計を用いてもその信頼性、
測温応答性の低さから予測精度は若干低下するものの、
代用可能である。
In this embodiment, an FM sensor is used as the inner wall thermometer, but a normal temperature sensor (for example, a sheathed thermocouple) can be used instead, although there are problems in terms of service life. In addition, even if a stave thermometer or a brick-embedded thermometer is used, its reliability and
Although the prediction accuracy decreases slightly due to the low temperature response,
Can be substituted.

また、この実施例では、FMセンサ3を7レベル4方向
に28個設置したが、高炉の特性により適当に設置すれ
ば良いのは勿論である。
Further, in this embodiment, 28 FM sensors 3 were installed in 7 levels and in 4 directions, but it goes without saying that they may be installed appropriately depending on the characteristics of the blast furnace.

(発明の効果) 以上説明したように、この発明によれば、連続的な高炉
内壁温度差に基づくことで、内壁温度の絶対値の大小に
よらず、溶銑温度の低下を正確に予測することができる
(Effects of the Invention) As explained above, according to the present invention, it is possible to accurately predict the drop in hot metal temperature based on the continuous blast furnace inner wall temperature difference, regardless of the magnitude of the absolute value of the inner wall temperature. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b)は各々、この発明の一実施例に
用いられるFMセンサの高炉炉壁内の配置を示す側面断
面図、平面断面図、第2図、第3図は各々FMセンサの
概念図、設置説明図、第4図はFMセンサによる測定炉
壁温度の経時変化を示すグラフ、第5図はFMセンサに
よる測定炉壁温度の差分値の経時変化を示すグラフ、第
6図はこの発明の一実施例にコンピュータを適用した時
の処理の流れを示すフローチャート、第7図は、第5レ
ベルのFMセンサによる正の差分値総和、第4〜第ルベ
ルの各々のFMセンサによる正の差分値総和、ならびに
溶銑温度の経時変化を時間的に対応させて示したグラフ
、第8図は従来技術における炉腹ゾンデの高炉内の配置
を示す側面断面図、第9図は溶銑温度と炉内周辺部温度
の相関を示すグラフである。
FIGS. 1(a) and 3(b) are a side sectional view and a plan sectional view, respectively, showing the arrangement of an FM sensor used in an embodiment of the present invention in the blast furnace wall, and FIGS. 2 and 3 are sectional views, respectively. FM sensor conceptual diagram, installation explanatory diagram, Fig. 4 is a graph showing the change over time in the furnace wall temperature measured by the FM sensor, Fig. 5 is a graph showing the change over time in the difference value of the furnace wall temperature measured by the FM sensor, FIG. 6 is a flowchart showing the flow of processing when a computer is applied to an embodiment of the present invention. FIG. A graph showing the sum of positive difference values measured by sensors and temporal changes in hot metal temperature in relation to each other over time. Fig. 8 is a side sectional view showing the arrangement of the furnace belly sonde in the blast furnace in the conventional technology. Fig. 9 is It is a graph showing the correlation between hot metal temperature and furnace peripheral temperature.

Claims (1)

【特許請求の範囲】[Claims] (1)高炉の高さ方向に下方から第1〜第kレベルの内
壁温度計を設置し、該内壁温度計にて、所定時間間隔ご
との内壁温度差を測定し、 第m(2≦m≦k)レベルの内壁温度差の正の値を示す
部分が予め定められた値を越えた後の所定時間内におい
て、 第(m−1)レベル以下の内壁温度差の正の値を示す部
分のいずれかが予め定められた値を越えた時に高炉炉熱
低下予測を行う高炉炉熱低下予測方法。
(1) Install inner wall thermometers at the 1st to kth levels from below in the height direction of the blast furnace, and measure the inner wall temperature difference at each predetermined time interval with the inner wall thermometers, mth (2≦m ≦k) Within a predetermined time after the part showing a positive value of the inner wall temperature difference of the level exceeds a predetermined value, the part showing a positive value of the inner wall temperature difference of the (m-1)th level or less A blast furnace heat drop prediction method that predicts a blast furnace heat drop when any of the above exceeds a predetermined value.
JP14884587A 1987-06-15 1987-06-15 Method for predicting lowering of furnace heat in blast furnace Pending JPS63312910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14884587A JPS63312910A (en) 1987-06-15 1987-06-15 Method for predicting lowering of furnace heat in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14884587A JPS63312910A (en) 1987-06-15 1987-06-15 Method for predicting lowering of furnace heat in blast furnace

Publications (1)

Publication Number Publication Date
JPS63312910A true JPS63312910A (en) 1988-12-21

Family

ID=15462023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14884587A Pending JPS63312910A (en) 1987-06-15 1987-06-15 Method for predicting lowering of furnace heat in blast furnace

Country Status (1)

Country Link
JP (1) JPS63312910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8109670B2 (en) * 2003-03-31 2012-02-07 Saudi Arabian Oil Company Measurement of molten sulfur level in receptacles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8109670B2 (en) * 2003-03-31 2012-02-07 Saudi Arabian Oil Company Measurement of molten sulfur level in receptacles

Similar Documents

Publication Publication Date Title
CA1165726A (en) Method and apparatus for controlling the heat balance in aluminum reduction cells
US4358953A (en) Method of monitoring the wear of refractory walls of a blast furnace and temperature probe used for the method
JPS63312910A (en) Method for predicting lowering of furnace heat in blast furnace
JPS63312911A (en) Method for predicting lowering of furnace heat in blast furnace
JPS63206414A (en) Method for predicting reduction of furnace heat of blast furnace
JPS63206412A (en) Method for predicting reduction of blast furnace heat
JPS63206413A (en) Method for predicting reduction of blast furnace heat
JPH02118007A (en) Method for predicting lowering of furnace heat in blast furnace
JPS63210215A (en) Prediction of furnace heat in blast furnace
JP7016706B2 (en) Equipment monitoring equipment, equipment monitoring methods, and programs
JPS63210212A (en) Prediction for lowering of furnace heat in blast furnace
JPS63210223A (en) Predicting on of lowering of furnace heat of blast furnace
JPS63210222A (en) Prediction of lowering of furnace heat in blast furnace
JPS63210210A (en) Prediction for lowering of furnace heat in blast furnace
JPS63210219A (en) Prediction of furnace heat in blast furnace
JPS63297516A (en) Method for predicting lowering of furnace temperature in blast furnace
JPS63210211A (en) Prediction for lowering of furnace heat in blast furnace
US20230047904A1 (en) Temperature sensor module and temperature measurement system comprising the same
JPS63210221A (en) Prediction of furnace heat in blast furnace
JPS63297517A (en) Method for predicting lowering of furnace heat in blast furnace
RU2003021C1 (en) Method for detecting width of heat unit lining
CN213874735U (en) Precision self-detection and self-calibration device for temperature measurement sensor
JPS63210216A (en) Method for prediction of furnace heat in blast furnace
JPH04365807A (en) Method for predicting lowering of furnace heat accompanying wall falling in high temperature furnace
JPS63210217A (en) Prediction of furnace heat in blast furnace