JPS63205962A - Mos type thin-film transistor - Google Patents

Mos type thin-film transistor

Info

Publication number
JPS63205962A
JPS63205962A JP3956287A JP3956287A JPS63205962A JP S63205962 A JPS63205962 A JP S63205962A JP 3956287 A JP3956287 A JP 3956287A JP 3956287 A JP3956287 A JP 3956287A JP S63205962 A JPS63205962 A JP S63205962A
Authority
JP
Japan
Prior art keywords
film
active layer
poly
psg
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3956287A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kobata
木幡 光裕
Koji Mori
孝二 森
Hiroshi Ikeguchi
弘 池口
Yutaka Sano
豊 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Original Assignee
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Research Institute of General Electronics Co Ltd, Ricoh Co Ltd filed Critical Ricoh Research Institute of General Electronics Co Ltd
Priority to JP3956287A priority Critical patent/JPS63205962A/en
Publication of JPS63205962A publication Critical patent/JPS63205962A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Abstract

PURPOSE:To enhance the response performance by a method wherein a channel region is formed on a poly-Si active layer and specific impurities inside a layer containing said impurities as a diffusion source to the active layer are doped at a low concentration after the formation of a thermal oxide film on the layer. CONSTITUTION:A poly-Si active layer 2 is formed on an insulating substrate 1. Then, a PSG film 3 is coated; an oxide film 4 composed of SiO2 is formed on said film. Due to the heat generated during the formation of the film 4, N-type impurities from the PSG film 3 are doped into the layer 2 at a low concentration and are transformed into an N<-> type. This oxide film 4 is used as gate oxide films 5 and forms a gate part (film 5 and gate electrodes 6). Then, P<+> is diffused by using PSG, and source-drain regions 7 are formed. Then, interlayer insulating films 8 and electrode wiring parts 9 are formed.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は等倍イメージセンサ−の駆動装置あるいは液晶
駆動装置等に用いられるMOS型薄膜トランジスタに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a MOS type thin film transistor used in a driving device for a 1-magnification image sensor, a liquid crystal driving device, or the like.

〔従来技術〕[Prior art]

一般に、等倍イメージセンサ−や液晶ディスプレイ等を
駆動する大面積絶縁基板上に高密度に配置された薄膜ト
ランジスタ(以下、TPTと称する)は、その高速応答
性が最も重要である。通常、TPTの活性層を構成する
半導体膜としてはa−8i : H膜やpoly−5L
膜が用いられているが、高速スイッチング速度が要求さ
れる昔合にはa−Si:H膜よりもキャリア移動度の大
きいpoly−3i膜が用いられている。しかし。
In general, high-speed response is most important for thin film transistors (hereinafter referred to as TPTs), which are densely arranged on a large-area insulating substrate and drive 1-magnification image sensors, liquid crystal displays, and the like. Usually, the semiconductor film that constitutes the active layer of TPT is an a-8i:H film or a poly-5L film.
A poly-3i film, which has a higher carrier mobility than an a-Si:H film, is used in the past when high switching speed is required. but.

このようなpoly−Si膜を用いた場合にはpoly
−3iが有する粒界や結晶欠陥に起因してTPTのI 
offが増加し、結果的にI on/ I offが3
桁程度にまで低下し、良好なスイッチング特性が得られ
ないという問題を有する。ざらにまたpoly−Siの
粒界や結晶欠陥は絶縁膜−活性層界面および活性層内部
でのキャリアトラップやキャリア発生に伴うしきい値(
スレッショルド)電圧(v th)の不安定化を生じさ
せるという問題を有する。
When using such a poly-Si film, poly
-3i due to grain boundaries and crystal defects, TPT's I
off increases, resulting in I on/I off of 3
There is a problem in that the switching characteristics are reduced by several orders of magnitude, making it impossible to obtain good switching characteristics. In addition, the grain boundaries and crystal defects of poly-Si can cause carrier traps at the insulating film-active layer interface and inside the active layer, and the threshold value (
This has the problem of causing instability of the threshold voltage (v th).

これらの問題を解決する方法の一つとして、活性層po
ly−5L膜のチャネル領域をB、P、As等の不純物
を用いて10”/aJ程度にライトドープするのが一般
的である。従来、Siウェーハーを用いる通常のプロセ
スでは、このチャネルドープに制御性のよいイオンイン
プランテーションが使用される。このイオンインプラン
テーションはP、B等の不純物をイオン化させて取り出
し、さらに適当な加速電圧を印加してpoly−Si 
(ウェーハー)中に注入するものであり、そのための装
置は非常に高価であるという問題がある。さらに、上記
のような絶縁基板上に形成されるTPTではイオンイン
プランテーションによってチャージアップを起こしやす
く、注入効率の低下やTPTの特性低下も招きやすいと
いう問題を有するものである。
One of the ways to solve these problems is to
It is common to lightly dope the channel region of the ly-5L film with impurities such as B, P, and As to about 10"/aJ. Conventionally, in a normal process using a Si wafer, this channel doping is Ion implantation with good controllability is used.This ion implantation ionizes and extracts impurities such as P and B, and then applies an appropriate acceleration voltage to form poly-Si.
The problem is that the equipment for this purpose is very expensive. Furthermore, a TPT formed on an insulating substrate as described above has a problem in that charge-up is likely to occur due to ion implantation, resulting in a decrease in implantation efficiency and a decrease in the characteristics of the TPT.

このため固相熱拡散や気相拡散を用いて不純物をドーピ
ングする方法も検討されているが。
For this reason, methods of doping impurities using solid phase thermal diffusion or vapor phase diffusion are also being considered.

これらの方法を用いた場合には、拡散ソースの濃度設定
が難しく、所定濃度以上にドーピングされてしまう傾向
にあり、同様に均一性も悪いため実用化には困難がある
ものである。
When these methods are used, it is difficult to set the concentration of the diffusion source, the doping tends to exceed a predetermined concentration, and the uniformity is also poor, making it difficult to put it into practical use.

〔目   的〕 本発明は上記した如き従来の問題点を解消し、イオンイ
ンプランテーションを用いずに、絶縁基板上にpoly
−3i活性層がライトドープされ、I on/ I o
ffが高く、高速応答性を有し、しきい値電圧の安定性
が図れるMO3型TPTを提供することを目的とするも
のである。
[Purpose] The present invention solves the above-mentioned conventional problems, and enables the production of polyimide on an insulating substrate without using ion implantation.
-3i active layer is lightly doped, I on/I o
The object of the present invention is to provide an MO3 type TPT that has a high ff, high-speed response, and can stabilize the threshold voltage.

〔構  成〕〔composition〕

本発明のMO3型TPTは、トランジスタのチャネル領
域がpoly−Si活性層上に形成された拡散源として
の特定不純物を含む層中の該不純物をさらにその上の熱
酸化膜形成によってライトドープしたものであることを
特徴とするものである。
In the MO3 type TPT of the present invention, the channel region of the transistor is formed on a poly-Si active layer and is lightly doped with the impurity in a layer containing a specific impurity as a diffusion source by forming a thermal oxide film thereon. It is characterized by:

以下に本発明を添付図面を参照して説明する。The invention will now be described with reference to the accompanying drawings.

第1図はTPTによって構成されたC−MOSインバー
タを示すもので、このようなC−MOSインバータを用
いて等倍光センサ駆動回路が構成されている。TPTは
MOS構造となっており、絶縁基板1(例えば、石英)
上に特定不純物が10”/c#程度にライトドープされ
たpoly−5L活性層2が形成されている。ここで、
poly−Si活性層2に特定不純物をライトドープす
る工程を第2図を参照して説明する。第2図において、
絶縁基板1上にpoly−Si活性層2を形成しく第2
図(a)参照)1次いで、PSG膜3(N型不純物をラ
イトドープする場合;逆にP型不純物をライトドープす
る場合にはBSGを用いる)を塗布しく第2図(b)参
照)、この上にSiO□からなる酸化膜4を形成する(
第2図(c)参照)。この酸化膜4の形成時の加熱によ
ってPSG膜3からN型不純物がpoly−Si活性層
2中にライトドープされてN−となる。この酸化膜4は
ゲート酸化膜5として使用し、ゲート部分(ゲート酸化
膜5、ゲート電極6)を形成する(第2図(d)参照)
。次いでBSGを用いてP°拡散を行い。
FIG. 1 shows a C-MOS inverter constructed from TPT, and a 1x optical sensor drive circuit is constructed using such a C-MOS inverter. TPT has a MOS structure, and an insulating substrate 1 (for example, quartz)
A poly-5L active layer 2 lightly doped with a specific impurity of about 10"/c# is formed thereon. Here,
The process of lightly doping the poly-Si active layer 2 with a specific impurity will be explained with reference to FIG. In Figure 2,
A second poly-Si active layer 2 is formed on the insulating substrate 1.
(See Figure (a)) 1. Next, apply a PSG film 3 (when lightly doping with N-type impurities; conversely, use BSG when lightly doping with P-type impurities) (see Figure 2 (b)), An oxide film 4 made of SiO□ is formed on this (
(See Figure 2(c)). By heating during the formation of the oxide film 4, N-type impurities from the PSG film 3 are lightly doped into the poly-Si active layer 2, becoming N-. This oxide film 4 is used as a gate oxide film 5 to form a gate portion (gate oxide film 5, gate electrode 6) (see FIG. 2(d)).
. Next, perform P° diffusion using BSG.

ソース・ドレイン領域7を形成する(第2図(e)参照
)。その後、常法に従い、層間絶縁@8を減圧C,VD
法により形成し、コンタクトホールを形成した後、電極
配線9を形成することにより、エンハンスト型のp−C
h  MOS  TFTが得られる。
Source/drain regions 7 are formed (see FIG. 2(e)). After that, according to the usual method, the interlayer insulation @8 is reduced to C, VD.
After forming the contact hole and forming the electrode wiring 9, an enhanced p-C
h MOS TFT is obtained.

また、上述の説明において、第2図の(b)工程におけ
るPSG塗布に代り、BSG塗布を行い、第2図(e)
のソース・ドレイン領域7形成にPSGを用いてN゛拡
散行えば、エンハンスト型(ノーマリ・オフ)のn−c
hMO5TFTが得られることになる。
In addition, in the above explanation, instead of PSG coating in the step (b) of FIG. 2, BSG coating was performed, and as shown in FIG.
If PSG is used to form the source/drain region 7 of N-diffusion, an enhanced type (normally off) n-c
hMO5TFT will be obtained.

さらに、第2図の(b)ソース・ドレイン領域7形成に
BSGを用いてP′″拡散を行えば、デプレッション型
(ノーマリ・オン)のp−chMO5TFTが得られる
。同様にしてデプレッション型のn−ch  MOS 
 TF:Tもライトドーピングする不純物およびソース
・ドレイン領域形成時の拡散不純物を選択することによ
り容易に形成することができる。
Furthermore, by performing P'' diffusion using BSG to form the source/drain regions 7 (FIG. 2(b)), a depletion type (normally on) p-ch MO5TFT can be obtained. -ch MOS
TF:T can also be easily formed by selecting lightly doped impurities and diffusion impurities when forming source/drain regions.

上記のように、本発明ではpoly−Si活性層2上に
BあるいはPを含む塗布型SiO□膜(P S Gまた
はBSG)を形成し、このSin2膜中の特定不純物を
、この塗布型SiO□膜上に形成した熱酸化膜4を形成
する時の加熱によりpoly−Si活性層2中にライト
ドープするものであるため、p。
As described above, in the present invention, a coated SiO□ film (PSG or BSG) containing B or P is formed on the poly-Si active layer 2, and specific impurities in this Si2 film are removed using the coated SiO□ film (PSG or BSG). □ Since the poly-Si active layer 2 is lightly doped by heating when forming the thermal oxide film 4 formed on the film, p.

1y−Si活性層中にドーピングされる特定不純物の量
はPSGまたはBSG’(塗布型SiO□膜)の膜厚を
塗布条件、例えばスピンコード時の回転数等により、あ
るいはpoly−3i活性層2の膜厚、あるいは熱酸化
膜形成時の加熱条件を適宜選択することにより、pol
y−Si活性層を均一にしかも非常に低濃度、例えば約
10” ’ / aJ程度にライトドーピングすること
が可能となる。
The amount of specific impurity doped into the 1y-Si active layer depends on the film thickness of PSG or BSG' (coating type SiO By appropriately selecting the film thickness or the heating conditions during thermal oxide film formation, the pol
It becomes possible to uniformly and lightly dope the y-Si active layer to a very low concentration, for example, about 10''/aJ.

〔効  果〕〔effect〕

以上のような本発明によれば、poly−Si活性層中
の所定のチャネル領域へのライトドープが高価なイオン
インプランテーション装置を使用せずに行え、各トラン
ジスターI off値の低下としきい値電圧の安定化が
図られ、スイッチング特性が大幅に改善されたC−MO
S  TFTが効率よく製造できるという効果を有する
According to the present invention as described above, a predetermined channel region in a poly-Si active layer can be lightly doped without using an expensive ion implantation device, and the I off value of each transistor can be reduced and the threshold voltage can be reduced. C-MO with improved stability and significantly improved switching characteristics.
This has the effect that STFTs can be manufactured efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るC−MOS  TFTの平面図お
よび断面図である。 第2図は本発明に係るMOS  TFTを作製する場合
の一例を示す工程説明図である。 1・・・絶縁基板     2・・・poly−5L活
性層3・・・PSG膜    4・・・酸化膜5・・・
ゲート酸化膜  6・・・ゲート電極7・・・ソース・
ドレイン領域 8・・・層間絶縁膜9・・・電極配線 篤1 図 嶌2図
FIG. 1 is a plan view and a cross-sectional view of a C-MOS TFT according to the present invention. FIG. 2 is a process explanatory diagram showing an example of manufacturing a MOS TFT according to the present invention. 1... Insulating substrate 2... Poly-5L active layer 3... PSG film 4... Oxide film 5...
Gate oxide film 6... Gate electrode 7... Source
Drain region 8... Interlayer insulating film 9... Electrode wiring Atsushi 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、MOS型薄膜トランジスタにおいて、トランジスタ
のチャネル領域がpoly−Si活性層上に形成された
拡散源としての特定不純物を含む層中の該不純物を、さ
らにその上の熱酸化膜形成によってライトドープしたも
のであることを特徴とするMOS型薄膜トランジスタ。
1. In a MOS type thin film transistor, the channel region of the transistor is light doped with the impurity in a layer containing a specific impurity as a diffusion source formed on a poly-Si active layer by further forming a thermal oxide film thereon. A MOS thin film transistor characterized by:
JP3956287A 1987-02-23 1987-02-23 Mos type thin-film transistor Pending JPS63205962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3956287A JPS63205962A (en) 1987-02-23 1987-02-23 Mos type thin-film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3956287A JPS63205962A (en) 1987-02-23 1987-02-23 Mos type thin-film transistor

Publications (1)

Publication Number Publication Date
JPS63205962A true JPS63205962A (en) 1988-08-25

Family

ID=12556520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3956287A Pending JPS63205962A (en) 1987-02-23 1987-02-23 Mos type thin-film transistor

Country Status (1)

Country Link
JP (1) JPS63205962A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033885A (en) * 2000-07-14 2002-01-31 Toshiba Corp Original reading apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033885A (en) * 2000-07-14 2002-01-31 Toshiba Corp Original reading apparatus

Similar Documents

Publication Publication Date Title
US6492685B1 (en) Semiconductor device having a pair of N-channel TFT and P-channel TFT
US5834071A (en) Method for forming a thin film transistor
JPH0555582A (en) Thin-film semiconductor element and its manufacture
JP3741741B2 (en) Method for manufacturing complementary integrated circuit
JPH04279064A (en) Display device
JP3890270B2 (en) Thin film transistor manufacturing method
JPH01309378A (en) Thin-film semiconductor element
JPS63205962A (en) Mos type thin-film transistor
JPH06169086A (en) Polycrystalline silicon thin film transistor
JP2000183351A (en) Manufacture of thin-film semiconductor device
JP3140023B2 (en) Semiconductor device and manufacturing method thereof
JPH01115162A (en) Thin film transistor and manufacture thereof
JPH0534837B2 (en)
JPS62219574A (en) Semiconductor device
JP4387477B2 (en) Manufacturing method of semiconductor device
JPH07221312A (en) Semiconductor device, its manufacture, and liquid crystal display device
JP2837473B2 (en) Silicon thin film transistor
JPH0684944A (en) Thin film transistor
JP2960742B2 (en) Thin film transistor element
KR100214069B1 (en) Method of fabricating a field effect transistor for semiconductor device
JPH07142739A (en) Manufacture of polycrystal line silicon thin-film transistor
KR100323736B1 (en) Thin film transistor and fabricating method thereof
JPH055186B2 (en)
JPH01147869A (en) Manufacture of semiconductor device
JPS63164471A (en) Thin film transistor and manufacture thereof