JPS6320571B2 - - Google Patents

Info

Publication number
JPS6320571B2
JPS6320571B2 JP55040143A JP4014380A JPS6320571B2 JP S6320571 B2 JPS6320571 B2 JP S6320571B2 JP 55040143 A JP55040143 A JP 55040143A JP 4014380 A JP4014380 A JP 4014380A JP S6320571 B2 JPS6320571 B2 JP S6320571B2
Authority
JP
Japan
Prior art keywords
condensation
arc plasma
ultrafine powder
container
location
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55040143A
Other languages
Japanese (ja)
Other versions
JPS56136635A (en
Inventor
Ryoji Ueda
Nobuhiko Wada
Hiroo Ooya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shingijutsu Kaihatsu Jigyodan filed Critical Shingijutsu Kaihatsu Jigyodan
Priority to JP4014380A priority Critical patent/JPS56136635A/en
Publication of JPS56136635A publication Critical patent/JPS56136635A/en
Publication of JPS6320571B2 publication Critical patent/JPS6320571B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Glanulating (AREA)

Description

【発明の詳細な説明】 本発明は、金属、金属酸化物及び炭化物、窒化
物並びに半導体で、高融点、超硬物質をプラズマ
アーク放電により高温蒸気とし、これを不活性ガ
ス中に噴出せしめて、上記物質を1000Å以下の超
微粉とすることを目的とする方法及び装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides high-temperature vaporization of metals, metal oxides, carbides, nitrides, and semiconductors with high melting points and superhard materials by plasma arc discharge, which is then blown out into an inert gas. , relates to a method and apparatus for the purpose of turning the above-mentioned substance into ultrafine powder of 1000 Å or less.

上記高融点超硬物質、例えばW、Ta、Mo、
SiC、TaC、TiC、Nb3C、B4C、WC、BN等の
1000Å以下の粉体(超微粉)は、各々の焼結用原
料材として、すぐれた特性を期待されている。そ
して、これらの超微粉は、磁性材料、粉末治金材
料、化学触媒、光及び電磁波吸収体、半導体材料
等の固体物性材料において種々の優れた性質を示
すことが知られているが、その実現には、純粋で
完全な性質を有し、且つ、その表面がきわめて清
浄なものが要求され、しかも、これら合金の超微
粉を多量に、容易に得ることが必要であり、要求
されるところである。
The above-mentioned high melting point superhard substances, such as W, Ta, Mo,
SiC, TaC, TiC, Nb 3 C, B 4 C, WC, BN etc.
Powder of 1000 Å or less (ultrafine powder) is expected to have excellent properties as a raw material for various sintering processes. These ultrafine powders are known to exhibit various excellent properties in solid physical materials such as magnetic materials, powder metallurgy materials, chemical catalysts, light and electromagnetic wave absorbers, and semiconductor materials. These alloys are required to have pure and perfect properties and have extremely clean surfaces, and it is necessary and desirable to easily obtain large amounts of ultrafine powder of these alloys. .

従来行われているこれら物質の粉体の製法に
は、主として化学的方法がとられており、1000Å
以下のものを得ることは、きわめて少ない。
Traditionally, chemical methods have been used to produce powders of these substances, and
It is extremely rare to get the following:

また、希ガス中で種々の物質を加熱蒸発せしめ
て、その蒸気を希ガス中で凝結させて、超微粉を
得る方法(以下これをガス蒸発法という)によつ
て種々の金属超微粉を得ることは、従来本発明者
等により行われている(例えば特公昭47−27718
号公報等参照)。
In addition, various ultrafine metal powders can be obtained by heating and evaporating various substances in a rare gas and condensing the vapor in a rare gas to obtain ultrafine powders (hereinafter referred to as the gas evaporation method). This has been done in the past by the inventors of the present invention (for example, in Japanese Patent Publication No. 47-27718
(Refer to the publication number, etc.)

なお、電気抵抗体、プラズマジエツト(特公昭
49−1717号公報等参照)、インダクシヨン赤外レ
ーザー光線等を用いたものも本発明者等によつて
発明されている。
In addition, electric resistors, plasma jets (special public
49-1717, etc.), those using induction infrared laser beams, etc. have also been invented by the present inventors.

本発明は、物質蒸気の発生に、物質を負極とす
るプラズマアーク放電を用いた高温の物質蒸気発
生器より噴出する物質蒸気を、一定圧の不活性ガ
スの入つた凝結室に導き、そこで、超微粉の凝結
を行うようにしたものである。
In the present invention, material vapor ejected from a high-temperature material vapor generator using plasma arc discharge with a material as a negative electrode is guided into a condensation chamber containing an inert gas at a constant pressure, and there, It is designed to coagulate ultra-fine powder.

なお、詳細に述べれば、この方法は、従来のガ
ス蒸発における加熱法と異なり蒸気発生源と、凝
結の場所とが分離しており、より安全な運転条件
と超微粉の生成条件とを期待できるものである。
In detail, unlike conventional heating methods for gas evaporation, this method separates the steam generation source from the condensation location, and can be expected to provide safer operating conditions and conditions for producing ultrafine powder. It is something.

即ち、従来のガス蒸発においては、物質の蒸発
源は、凝結用の不活性ガス雰囲気中におかれてい
るので、加熱された物質表面から直接雰囲気ガス
中へ目的物質蒸気が拡散して凝結する。このよう
な配置においては、雰囲気ガス中に生ずる対流や
圧力の変化がただちに蒸発源の温度あるいは蒸発
速度、拡散状態に影響するため、運転の制御並び
に安定条件を得ることに困難がある。本発明方法
及び装置にあつては、蒸発源と、ガス雰囲気とを
分離することにより、上記困難をとりのぞき、且
つ、プラズマスパツタリングによる大きな蒸発量
を得るようにしたものである。
That is, in conventional gas evaporation, the evaporation source of the substance is placed in an inert gas atmosphere for condensation, so the target substance vapor diffuses directly from the heated substance surface into the atmospheric gas and condenses. . In such an arrangement, changes in convection and pressure occurring in the atmospheric gas immediately affect the temperature, evaporation rate, and diffusion state of the evaporation source, making it difficult to control the operation and obtain stable conditions. In the method and apparatus of the present invention, by separating the evaporation source and the gas atmosphere, the above-mentioned difficulties are eliminated and a large amount of evaporation can be obtained by plasma sputtering.

次に本発明の方法とその実施する装置につきそ
の実施例を図面を参照し乍ら説明すると、図面の
装置は、最下部の物質蒸気発生室1と、中間部の
凝結筒2、その上方に補集筒3の3部からなつて
いる。
Next, an embodiment of the method of the present invention and an apparatus for implementing the same will be explained with reference to the drawings. It consists of three parts: collection cylinder 3.

物質蒸気発生室1は、それぞれ水冷できる銅製
の3個の環状電極体4,5,6によつて構成さ
れ、各電極体の間には、絶縁体7及び8で密封さ
れている。このうち7の下部の環状絶縁体の内側
には、放射状に不活性ガスの噴射ノズル9が開口
し、外部からのヘリウム等の不活性ガス供給管
9′と連結されており、9″のバルブで供給量の調
節が可能となつている。
The substance vapor generation chamber 1 is composed of three annular electrode bodies 4, 5, and 6 made of copper, each of which can be cooled with water, and the space between each electrode body is sealed with insulators 7 and 8. Inside the annular insulator at the bottom of 7, an inert gas injection nozzle 9 opens radially and is connected to an external inert gas supply pipe 9' such as helium, and a 9'' valve. It is now possible to adjust the supply amount.

最下部の電極体4は、上方を皿状の容器とし、
この中に被処理物質Mが収容できるようになつて
いて、その外方には、直流電源10の側が接続
されている。
The lowermost electrode body 4 has a dish-shaped container at the top,
The substance M to be processed can be accommodated in this, and the DC power source 10 is connected to the outside thereof.

上部環状電極体6は、直流電源10の側に接
続され、中間の環状電極体5も側に数オームの
抵抗器11を介して接続されている。
The upper annular electrode body 6 is connected to the DC power supply 10 side, and the middle annular electrode body 5 is also connected to the side via a resistor 11 of several ohms.

中部環状電極体5は、極との間に高圧電源1
2を介して接続するようになつており、放電開始
の際に一時的に接続される。
The middle annular electrode body 5 has a high voltage power supply 1 between it and the pole.
2, and is temporarily connected when discharge starts.

本器の中間にある凝結筒2は、圧力計13の附
設している気密容器であつて、その下方の物質蒸
気発生室1の蒸気噴出口Jの附近の凝結筒2の下
方部外側には、冷却パイプ14,14……が回曲
されている。
The condensing cylinder 2 located in the middle of this device is an airtight container equipped with a pressure gauge 13, and the lower outside of the condensing cylinder 2 near the steam outlet J of the substance vapor generation chamber 1 below is , the cooling pipes 14, 14... are bent.

本器最上部の捕集筒3の中には、液体窒素を入
れた冷却捕集器15が取外自在に取付けられてい
る。また、この捕集筒3には、排気パイプ16が
取付けられ、適時そのパイプを操作して排気し、
物質蒸気発生室1で出来た目的物質を凝集筒2か
ら捕集筒3に導き、ここに取付けた冷却兼捕集器
15表面に附着捕集せしめるようにしたものであ
る。
A cooling collector 15 containing liquid nitrogen is removably attached to the collector tube 3 at the top of the device. Further, an exhaust pipe 16 is attached to this collection cylinder 3, and the pipe is operated at the appropriate time to exhaust the air.
The target substance produced in the substance vapor generation chamber 1 is guided from the aggregation tube 2 to the collection tube 3, and is deposited and collected on the surface of the cooling/collection device 15 attached thereto.

次に、本発明の方法及び装置の手順を述べる
と、 まず本装置を密閉してから、上部の排気パイ
プ16より排気して10-5Torrの真空にする。
Next, the procedure of the method and apparatus of the present invention will be described. First, the apparatus is sealed and then evacuated from the upper exhaust pipe 16 to create a vacuum of 10 -5 Torr.

次に、下方の物質蒸気発生室に開口した不活
性ガス供給管9′のバルブ9″を開き、これから
ヘリウムガス等の不活性ガスを噴射ノズル9よ
り本密閉容器に供給する。
Next, the valve 9'' of the inert gas supply pipe 9' which opens into the material vapor generation chamber below is opened, and an inert gas such as helium gas is supplied from the injection nozzle 9 to the closed container.

次に、上方の排気パイプから排気し乍ら、ヘ
リウムガス等の不活性ガス供給バルブ9″を調
整して、本器内の圧力計13をみながら一定の
圧力が出るまで操作する。
Next, while exhausting air from the upper exhaust pipe, adjust the inert gas supply valve 9'' such as helium gas, and operate it until a constant pressure is reached while watching the pressure gauge 13 inside the device.

一定圧となつたときに、直流電源10を接続
し、且つ、高圧電源12のスイツチを入れて放
電を開始させる。
When the voltage becomes constant, the DC power supply 10 is connected and the high voltage power supply 12 is turned on to start discharging.

放電が開始されると、物質蒸気発生室1上方
の皿上に収容された被処理物より、目的の物質
蒸気が発生し、これを含んんだ高温のヘリウム
プラズマが上部電極6のノズル6′より凝集筒
2の中へ噴射口Jを通じて噴出する。
When the discharge starts, the target material vapor is generated from the object to be processed stored on the tray above the material vapor generation chamber 1, and high-temperature helium plasma containing this vapor is sent to the nozzle 6' of the upper electrode 6. It is then ejected into the aggregation cylinder 2 through the injection port J.

凝集筒の不活性ガス中では、該蒸気は、冷却
されて、超微粒子となり、容器内のヘリウムガ
スと混合され、煙状のエアロゾルになる。
In the inert gas of the aggregation cylinder, the vapor is cooled and becomes ultrafine particles, which are mixed with the helium gas in the container and become a smoky aerosol.

このエアロゾルは、上方の排気パイプ16の
操作による排気によつて、採集筒3中へ上昇
し、この中に取付けた冷却兼捕集器15の表面
にふれて超微粒子を折出する。
This aerosol rises into the collection tube 3 by being exhausted by operating the upper exhaust pipe 16, touches the surface of the cooling/collection device 15 installed therein, and precipitates ultrafine particles.

適時経過後冷却兼捕集器15を蓋17と共に
取出し、ここに折出付着した超微粒子をかき集
め超微粉を捕集するものである。
After a proper period of time has elapsed, the cooling/collecting device 15 is taken out together with the lid 17, and the ultrafine particles deposited therein are scraped up and the ultrafine particles are collected.

即ち、本発明の物質蒸気発生器の動作原理は、
以下のようである。
That is, the principle of operation of the substance vapor generator of the present invention is as follows:
It is as follows.

始め、中部電極体5と下部電極体4の間に高圧
をかけることによつて生じたアーク放電の芽によ
り直流電源10(3KW〜10KW)による放電が
開始され、放電電流が増加するに従つて中部電極
5の電位は、抵抗11による電圧降下により、放
電は、上部環状電極6との間の主訪電へと移行す
る。
Initially, the arc discharge generated by applying high voltage between the middle electrode body 5 and the lower electrode body 4 causes discharge by the DC power supply 10 (3KW to 10KW), and as the discharge current increases, Due to the voltage drop caused by the resistor 11, the potential of the middle electrode 5 shifts to the main current flow between the middle electrode 5 and the upper annular electrode 6.

放電が始まると蒸発物質蒸気が発生し、ヘリウ
ムガスばかりでなく、物質蒸気自身も、高温のプ
ラズマとなり、大きな電流が流れる。この蒸気の
プラズマがヘリウム…のプラズマとともに、上部
環状電極6の中心ノズル6′から噴出口Jを通つ
て凝集筒2中に吹き出し、凝結して超微粒子を発
生し、その後は前述したように上方排気の助をか
りて、対流により上部の採取筒3へエアロゾルと
して上昇し、この中の冷却兼捕集器15の周辺に
附着採取されるものである。
When the discharge begins, evaporated material vapor is generated, and not only the helium gas but also the material vapor itself turns into high-temperature plasma, causing a large current to flow. This vapor plasma is blown out from the center nozzle 6' of the upper annular electrode 6 through the jet nozzle J into the aggregation tube 2 together with the helium plasma, condenses, and generates ultrafine particles. With the help of exhaust gas, the aerosol rises to the upper sampling tube 3 by convection, and is collected around the cooling/collecting device 15 therein.

実施例 実施例として、本発明の装置によりSiC微粉末
を生成した場合を以下に述べる。
Example As an example, a case where fine SiC powder is produced by the apparatus of the present invention will be described below.

試料は市販のSiC粉末を適当におしかため、約
800℃程度に焼いたものを試料とする。
The sample was a commercially available SiC powder that was suitably shaped.
The sample is one baked at about 800℃.

捕集されるSiC粉末の粒度は、凝結筒内の圧力
と、流すガスの流量即ち第2図abのように圧力
が大きいほど小さく、流量が大きいほど大きくな
る。
The particle size of the collected SiC powder becomes smaller as the pressure in the coagulation cylinder and the flow rate of the flowing gas increases, as shown in FIG. 2ab, and increases as the flow rate increases.

超微粉の生成量は、加えた電力に比例し、不活
性ガス噴射ノズル9より送り込むヘリウムガスの
流量にも依存する。
The amount of ultrafine powder produced is proportional to the applied electric power and also depends on the flow rate of helium gas sent from the inert gas injection nozzle 9.

(第3図グラフ参照)、流量がある一定値以下
では、流量の多いほど収量は大きくなるが、ある
一定値を越すと、それ以上は増えない。この上限
の値は、加える電力が多いほど多い。
(Refer to the graph in Figure 3).When the flow rate is below a certain value, the higher the flow rate, the greater the yield becomes, but when it exceeds a certain value, the yield does not increase any further. The value of this upper limit increases as more power is applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の1実施例の側断面図であ
り、第2図aは、凝結室の圧力と粒度の関係を示
すグラフであり、第2図bは、ヘリウムガス流量
と粒度の関係を示すグラフである。第3図は、不
活性ガス流量と、Sic超微粉生成量の関係を示す
グラフである。 1……物質蒸気発生室、2……凝集筒、3……
採集筒、4……下部環状電極体、5……中部環状
電極体、6……上部環状電極体、6′……電極ノ
ズル、7……下部絶縁体、8……上部絶縁体、9
……不活性ガス噴射ノズル、9′……不活性ガス
供給管、9″……不活性ガス供給バルブ、10…
…直流電源、11……抵抗器、12……高圧電
源、13……圧力計、14……冷却バルブ、15
……冷却捕集器、16……排気バルブ、17……
蓋体。
Figure 1 is a side sectional view of one embodiment of the present invention, Figure 2a is a graph showing the relationship between the pressure in the condensation chamber and particle size, and Figure 2b is a graph showing the relationship between helium gas flow rate and particle size. It is a graph showing a relationship. FIG. 3 is a graph showing the relationship between the inert gas flow rate and the amount of Sic ultrafine powder produced. 1...Matter vapor generation chamber, 2...Coagulation cylinder, 3...
Collection cylinder, 4... Lower annular electrode body, 5... Middle annular electrode body, 6... Upper annular electrode body, 6'... Electrode nozzle, 7... Lower insulator, 8... Upper insulator, 9
...Inert gas injection nozzle, 9'...Inert gas supply pipe, 9''...Inert gas supply valve, 10...
...DC power supply, 11...Resistor, 12...High voltage power supply, 13...Pressure gauge, 14...Cooling valve, 15
...Cooling collector, 16...Exhaust valve, 17...
Lid body.

Claims (1)

【特許請求の範囲】 1 金属酸化物及び炭火物並びに半導体物質で高
融点の超硬物質を不活性ガス雰囲気中で、且つ、
凝結場所とは分離した個所において、上記物質を
アークプラズマスパツタリングし、その高密度蒸
気を生ぜしめ、高温プラズマ状態のこれら蒸気を
放電用の陽極をかねるノズルより別室の凝結場所
に噴出させて超微粒粉を発生せしめることを特徴
とするアークプラズマスパツタリングを利用した
超微粒粉の製造法。 2 凝結用容器下方の被処理物の凝結場所とは分
離した密閉個所に被処理物質の載置部を設け、こ
れを陰極として上方適宜位置の陽極より放電を生
ぜしめるようにし、陽極中央に設けた噴出口より
該物質のアークプラズマを上方の凝結容器中に噴
出せしめることにより発生した超微粒子を同容器
上部に設けた冷却捕集器により適宜採取し得るよ
うにしたことを特徴とするアークプラズマスパツ
タリングを利用した超微粉の製造装置。
[Claims] 1. Metal oxides, charcoal pyrotechnic materials, and semiconducting superhard substances with high melting points in an inert gas atmosphere, and
At a location separate from the condensation location, the above substances are sputtered with arc plasma to generate high-density vapor, and these vapors in a high-temperature plasma state are spouted to the condensation location in a separate room from a nozzle that also serves as an anode for discharge. A method for producing ultrafine powder using arc plasma sputtering, which is characterized by generating ultrafine powder. 2. A place for placing the material to be treated is provided in a sealed area separate from the place where the material to be treated is condensed below the condensation container, and this is used as a cathode to generate electric discharge from an anode located at an appropriate position above. The arc plasma is characterized in that the ultrafine particles generated by ejecting the arc plasma of the substance from the ejection port into the condensation container above can be appropriately collected by a cooling collector provided at the upper part of the container. Ultrafine powder production equipment using sputtering.
JP4014380A 1980-03-29 1980-03-29 Production of ultra-fine powder and particle utilizing arc plasma sputtering and its device Granted JPS56136635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4014380A JPS56136635A (en) 1980-03-29 1980-03-29 Production of ultra-fine powder and particle utilizing arc plasma sputtering and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4014380A JPS56136635A (en) 1980-03-29 1980-03-29 Production of ultra-fine powder and particle utilizing arc plasma sputtering and its device

Publications (2)

Publication Number Publication Date
JPS56136635A JPS56136635A (en) 1981-10-26
JPS6320571B2 true JPS6320571B2 (en) 1988-04-28

Family

ID=12572547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4014380A Granted JPS56136635A (en) 1980-03-29 1980-03-29 Production of ultra-fine powder and particle utilizing arc plasma sputtering and its device

Country Status (1)

Country Link
JP (1) JPS56136635A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261601A (en) * 1985-09-09 1987-03-18 Shigeki Yatani Method for forming particles by sputtering
JPH0791573B2 (en) * 1986-06-24 1995-10-04 エヌオーケー株式会社 Magnetic fluid manufacturing method
JP2765957B2 (en) * 1989-06-23 1998-06-18 三洋電機株式会社 Thin film forming method and thin film forming apparatus
CN1090548C (en) * 1999-12-23 2002-09-11 武汉大学 Synthesizing method of metal-in-carbon and metal-in-carbon carbide nanometer micropowder
CN103962567B (en) * 2014-05-31 2015-10-21 金堆城钼业股份有限公司 A kind of preparation method of spherical molybdenum powder and equipment
CN104117685B (en) * 2014-07-30 2016-08-24 金堆城钼业股份有限公司 A kind of preparation method of sodium molybdate doped molybdenum
CN110935885A (en) * 2019-11-11 2020-03-31 山西中磁尚善科技有限公司 Flaky metal grinding process

Also Published As

Publication number Publication date
JPS56136635A (en) 1981-10-26

Similar Documents

Publication Publication Date Title
US20070077191A1 (en) Method and apparatus for refining silicon using an electron beam
JPS63230866A (en) Vacuum vapor deposition method and apparatus by arc discharge between anode and cathode
WO1999024173A1 (en) A method and apparatus for producing nanoparticles at a high rate
KR20180135760A (en) An appratus for producing nano powders and a method of producing using the same
JPS6320571B2 (en)
JPH06157016A (en) Production of carbon nanotube
TWI223677B (en) Method and apparatus for forming polycrystalline particles
JPH0122729B2 (en)
RU2707673C1 (en) Method of forming coating from cubic tungsten carbide
KR20200056073A (en) Manufacturing apparatus and manufacturing method of nanopowder using DC arc plasma and apparatus for manufacturing the same
JPH0250901A (en) Method for removing oxides from metal powders
KR20200015209A (en) A [process and system for producing iron nitride nano powders and the iron nitride nano powers produced by the process
JPH07138009A (en) Device for producing fullerene and method for recovering the same
JPH0724205A (en) Sublimating method
JPS60224706A (en) Production of ultrafine metallic particles
RU2001104766A (en) METHOD FOR PRODUCING FINE METAL POWDERS AND DEVICE FOR ITS IMPLEMENTATION
JP2002029718A (en) Method and device for producing fullerene and carbon nanotube
JPH0867503A (en) Production of hydrogenated titanium superfine particle
US3399052A (en) Barium powder getter production method
JP2004139913A (en) Ion beam generating device, ion beam generating method, ion processing device, and ion processing method
RU2167743C2 (en) Device for production of ultradispersed powders
JPS6211896B2 (en)
JPS58133307A (en) Preparation of ultrafine particle
US20090008842A1 (en) Method and apparatus for producing metallic ultrafine particles
RU2068400C1 (en) Method and device for production of ultradispersed powder