JPS63205647A - Formation of resist pattern - Google Patents

Formation of resist pattern

Info

Publication number
JPS63205647A
JPS63205647A JP62037845A JP3784587A JPS63205647A JP S63205647 A JPS63205647 A JP S63205647A JP 62037845 A JP62037845 A JP 62037845A JP 3784587 A JP3784587 A JP 3784587A JP S63205647 A JPS63205647 A JP S63205647A
Authority
JP
Japan
Prior art keywords
resist
layer
resist layer
photosensitive layer
cel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62037845A
Other languages
Japanese (ja)
Inventor
Katsuaki Umibe
海部 勝晶
Maki Kosuge
小菅 眞樹
Yoshio Yamashita
山下 吉雄
Takateru Asano
浅野 孝輝
Kenji Kobayashi
健二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Yakuhin Kogyo KK
Oki Electric Industry Co Ltd
Original Assignee
Fuji Yakuhin Kogyo KK
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Yakuhin Kogyo KK, Oki Electric Industry Co Ltd filed Critical Fuji Yakuhin Kogyo KK
Priority to JP62037845A priority Critical patent/JPS63205647A/en
Priority to EP88102382A priority patent/EP0280197A3/en
Priority to US07/159,292 priority patent/US4889795A/en
Publication of JPS63205647A publication Critical patent/JPS63205647A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To improve stability by using a photosensitive layer contg. a thin film forming material which is soluble in both of a nonpolar org. solvent and aq. alkaline soln. at the time of forming a resist pattern by subjecting a photosensitive layer and resist layer to a developing process. CONSTITUTION:The materials which are soluble in both of the nonpolar org. solvent and aq. alkaline soln., more specifically, rosins such as abietic acid and gum rosin essentially consisting of abietic acid are used as the film forming material contained in the photosensitive layer 33 in a process for forming the resist pattern by selectively exposing the resist layer 32 via the photosensitive layer 32 to enhance the contrast of the incident light on the resist layer 32, then subjecting the photosensitive layer 33 and the resist layer 32 to the developing process. Since the rosins are thereby dissolved in an ordinary positive resist type developing soln., the rosins are eventually processed and removed simultaneously at the time of the development and the stability as the soln. in the nonpolar org. solvent is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は半導体集積回路の製造に好適なレジストパタ
ーンの形成方法、特に超微細パターンを高精度で形成す
るレジストパターンの形成方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a resist pattern forming method suitable for manufacturing semiconductor integrated circuits, and particularly to a resist pattern forming method for forming ultra-fine patterns with high precision. .

(従来の技術) 半導体集積回路の高密度化に伴い、集積化すべき回路の
最小パターン寸法もますます微細化され、これに伴って
1μm程度或いははサブミクロン以下の微細レジストパ
ターンを高精度で形成する技術に対する要求が高い。
(Prior art) As the density of semiconductor integrated circuits increases, the minimum pattern dimensions of circuits to be integrated are becoming increasingly finer, and with this, fine resist patterns of about 1 μm or submicron or less can be formed with high precision. There is a high demand for technology to do this.

一般に解像度を高めて高精度でパターニングする手段と
して従来フォトリソグラフィ技術が広く利用されている
が、他に電子線、X線或いはイオンビームを線源として
用いたりソグラフイ技術の開発も行われてきている。し
かし、量産性、経済性或いは作業性を考慮すると、光を
用いたフォトリソグラフィ技術が有利である。
In general, photolithography technology has been widely used as a means of increasing resolution and patterning with high precision, but other lithography technologies have also been developed that use electron beams, X-rays, or ion beams as radiation sources. . However, in consideration of mass production, economy, and workability, photolithography technology using light is advantageous.

かかるフォトリソグラフィ技術によるレジストパターン
の形成方法としては菖々の提案がなされているが、例え
ば文献アイ イーイーイーエレクトロン デバイXL/
ターズ(IEEE ElectronDevice  
Letters) 、 EDL−4,1983,PI3
−−16に開示されたコントラスト エンハンストフォ
トリソグラフィ技術(Contrast、 Enhan
ced Photolithography、 Q下C
EPL技術と略称する)によれば、簡単なプロセスの付
加により高解像度のレジストパターンが形成出来るとさ
れ注目されている。
A number of proposals have been made as methods for forming resist patterns using such photolithography techniques, but for example, in the literature IEE Electron Device XL/
IEEE Electron Device
Letters), EDL-4, 1983, PI3
--Contrast enhanced photolithography technology disclosed in 16 (Contrast, Enhan
ced Photolithography, Q lower C
EPL technology (abbreviated as EPL technology) is attracting attention because it is capable of forming high-resolution resist patterns by adding simple processes.

以下、このCEPL技術の原理につき第2図を参照して
説明する。
The principle of this CEPL technology will be explained below with reference to FIG.

第2図(A)〜(E)はCEPL技術の原理を説明する
ための工程図であり、各図は断面図として概略的に示し
である。
FIGS. 2A to 2E are process diagrams for explaining the principle of CEPL technology, and each figure is schematically shown as a sectional view.

まず、第2図(A)に示すように、シリコンウニ八(シ
リコン基板)11上にパターニングすべき下層レジスト
層重2を設け、この下層レジスト層lz上にコントラス
トエンハンストlit (ContrastEnhan
cement  Layer)と称する薄膜状の感光層
13 (以下、CEL層とも称する)を設ける。
First, as shown in FIG. 2(A), a lower resist layer 2 to be patterned is provided on a silicon substrate 11, and a contrast enhancement layer 2 is formed on this lower resist layer lz.
A thin film-like photosensitive layer 13 (hereinafter also referred to as a CEL layer) called a cement layer is provided.

とのCEL層は最初は露光波長に対する吸収が大きいが
、光照射によって漂白され露光量が大となるに従って、
吸収が小さくなり透過率が高くなる材料で形成されてい
る◇ ところで、光がフォトマスク14を通過すると、光の回
折及びフォーカシング効果によって光源に対しマスク1
4の陰の領域に光が達するため、フォトマスク14の後
方の光強度分布は第2図(B)に示すような状態となる
。その結果フォトマスクの投影光像のコントラストが下
層レジスト@12のコントラスト閾値よりも低くなって
しまい、充分満足し得る解像度でレジストパターニング
を行うことが出来ない。
Initially, the CEL layer has a large absorption at the exposure wavelength, but as it is bleached by light irradiation and the amount of exposure increases,
◇ By the way, when light passes through the photomask 14, the light diffraction and focusing effect cause the mask 1 to move toward the light source.
Since the light reaches the shaded region 4, the light intensity distribution behind the photomask 14 becomes as shown in FIG. 2(B). As a result, the contrast of the projected light image of the photomask becomes lower than the contrast threshold of the lower resist@12, making it impossible to perform resist patterning with a sufficiently satisfactory resolution.

このCEPLでは、上記第2図(B)に示すフォトマス
ク14の光像をCEL膜13を介して下層レジスト層1
2に投影することによってレジスト層12の選択的露光
を行う。このようにすると、第2図(C)のように光の
ドーズ量(露光量)が多くてCEL膜13が漂白された
部分13mと、該ドーズ量が少なくて未漂白となる部分
13bとが形成される。この光の強度分布に応じた漂白
(ブリーチング: Bleaching)の差により、
とのCEL膜13の透過率が部分的に太き(変わり、従
って理想的な場合には透過光の強度分布が第2図(D)
に示すような状態となる。この結果かかるCEL膜13
を透過した光はそのコントラストが増強(エンハンスト
)されることになる。このコントラストが増強された光
がレジスト層12に照射されることによってレジスト層
12の選択露光が行われ、その後の現像処理により、第
2図(E)に示すような綺麗でシャープな例えばポジ型
レジストパターン12aが形成されるのである。
In this CEPL, the optical image of the photomask 14 shown in FIG. 2(B) is transmitted to the lower resist layer 1 through the CEL film 13.
Selective exposure of the resist layer 12 is performed by projecting onto the photoresist layer 2. In this way, as shown in FIG. 2(C), a portion 13m where the CEL film 13 is bleached due to a large dose of light (exposure amount) and a portion 13b where the dose is small and is unbleached. It is formed. Due to the difference in bleaching depending on the intensity distribution of this light,
The transmittance of the CEL film 13 is partially thick (changes), so in an ideal case, the intensity distribution of transmitted light is as shown in Figure 2 (D).
The situation will be as shown below. As a result, the CEL film 13
The contrast of the light that passes through it will be enhanced. By irradiating the resist layer 12 with this contrast-enhanced light, selective exposure of the resist layer 12 is performed, and the subsequent development process produces a beautiful, sharp, for example, positive type image as shown in FIG. 2(E). A resist pattern 12a is thus formed.

(発明が解決しようとする問題点) しかしながらかかる従来のCEPLプロセスの場合は、
後記する本発明の第1図に対応させた第3図から明らか
なように、露光後のレジスト層現像に先立ってCEL層
の除去のための別設の作業工程が必要であった。
(Problems to be solved by the invention) However, in the case of such a conventional CEPL process,
As is clear from FIG. 3, which corresponds to FIG. 1 of the present invention described later, a separate work step was required to remove the CEL layer prior to developing the resist layer after exposure.

第3図でこれを説明すると、基板31上に下層レジスト
層32及びCEL膜33をこの順に設け(同図A、B)
、次にフォトマスク34を介して紫外線40の照射を行
い上述と同様に露光部分32a、33m及び未露光部分
32b、33bとする(同図C)。
To explain this with reference to FIG. 3, a lower resist layer 32 and a CEL film 33 are provided in this order on a substrate 31 (A and B in the same figure).
Next, ultraviolet rays 40 are irradiated through the photomask 34 to form exposed portions 32a, 33m and unexposed portions 32b, 33b in the same manner as described above (FIG. 3C).

次に同図りのようにCEL層33 (33a、33b)
を除去した後レジスト層32の現像を行うのである(同
図E)。
Next, as shown in the same figure, the CEL layer 33 (33a, 33b)
After removing the resist layer 32, the resist layer 32 is developed (see E in the figure).

即ち上記レジスト層の現像はアルカリ水溶液で行うのに
対し、CELの除去は有機溶剤で行うため上記別工程が
付加され複雑であるという欠点があった。
That is, while the development of the resist layer is carried out with an alkaline aqueous solution, the removal of CEL is carried out with an organic solvent, which has the disadvantage that the above-mentioned separate process is added and complicated.

他方上記CEL[33の除去工程を省略すべく用いる塗
布溶液を水溶性にした報告もあるが、この場合光漂白剤
としてジアゾニウム塩を含み、該ジアゾニウム塩が水溶
液中で不安定であることから 該塗布溶液が長期間の安
定性に欠ける他の問題点かあった。
On the other hand, there are reports that the coating solution used is made water-soluble in order to omit the above-mentioned CEL[33 removal step, but in this case it contains a diazonium salt as a photobleaching agent, and the diazonium salt is unstable in an aqueous solution. Another problem was that the coating solution lacked long-term stability.

本発明はかかる作業工程の複雑性及びCEL層に月いら
れる塗布溶液の不安定性の問題点を解消する優れたレジ
ストパターンの形成方法を提供するにある。
The object of the present invention is to provide an excellent resist pattern forming method that solves the problems of the complexity of the work process and the instability of the coating solution applied to the CEL layer.

(問題点を解決するための手段) この発明は、レジスト層に入射する光のコントラストを
高めろ感光層を介してこのレジスト層を選択的に露光し
、然る後これら感光層及びレジスト層の現像処理を行っ
てレジストパターンを形成すろコントラストエンハンス
トリソグラフィプロセスにおいて、上述のCEL膜に含
まれる膜形成材料として無極性有機溶剤及びアルカリ水
溶液の双方に可溶な材料、具体的にはアビエチン酸、ア
ビエチン酸を主成分として含むガムロジンなどのロジン
類を月いることを特徴とするレジストパターンの形成方
法である。
(Means for Solving the Problems) This invention selectively exposes this resist layer to light through a photosensitive layer to increase the contrast of light incident on the resist layer, and then exposes the photosensitive layer and the resist layer. In the contrast-enhanced lithography process in which a resist pattern is formed by a development process, materials soluble in both non-polar organic solvents and alkaline aqueous solutions, specifically abietic acid and abietin, are used as film-forming materials contained in the above-mentioned CEL film. This method of forming a resist pattern is characterized by using a rosin such as gum rosin containing acid as a main component.

(作  用) 本発明においては、上記のCEL膜形成材料として無極
性有機溶剤及びアルカリ水溶液に可溶な材料を用いたこ
とにより、これが通常のポジ型レジストの現像液に溶解
するので現像時に同時に処理除去されることになり、又
無機性有機溶剤中にあって溶液としての安定性が著しく
高くなる。
(Function) In the present invention, by using a material soluble in a non-polar organic solvent and an alkaline aqueous solution as the above-mentioned CEL film forming material, it dissolves in a normal positive resist developer, so it can be used simultaneously during development. It will be removed by processing, and its stability as a solution in an inorganic organic solvent will be significantly increased.

(実 施 例) 以下、図面を参照してこの発明の実施例につき説明する
(Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the drawings.

尚以下の実施例では、この発明の範囲内の好ましい特定
の条件及び数値例で説明するが、それらは単なる例示で
あって、特に限定して説明していない限りこの発明がそ
れらに限定されるものではない。
In the following examples, preferred specific conditions and numerical examples within the scope of the present invention will be explained, but these are merely illustrative, and the present invention is not limited to them unless specifically limited. It's not a thing.

実施例1 この例では膜形成材料として中国ロジンを用いた。Example 1 In this example, Chinese rosin was used as the film forming material.

先づSi基板(シリコンウニへ)31上にレジスト材(
長瀬産業社、NPR−820)をスピンナーで塗布した
のちホットプレート上で105℃、60秒間ベーキング
を行い膜厚0.9μmの下層レジスト膜32を形成した
First, a resist material (
NPR-820 (manufactured by Nagase Sangyo Co., Ltd.) was applied using a spinner, and then baked on a hot plate at 105° C. for 60 seconds to form a lower resist film 32 with a thickness of 0.9 μm.

次に中国ロジン1.0g及び光漂白剤α−(4−ジエチ
ルアミノフェニル)−N−フェニルニトロン1.0gを
モノクロロベンゼン10.0gに溶解して得たCEL塗
布溶液をスピンナーで上記レジスト層32上に塗布し、
膜厚0.7μmのCEL膜33を感光層として形成した
Next, a CEL coating solution obtained by dissolving 1.0 g of Chinese rosin and 1.0 g of the photobleach α-(4-diethylaminophenyl)-N-phenylnitrone in 10.0 g of monochlorobenzene was applied to the resist layer 32 using a spinner. Apply to
A CEL film 33 having a thickness of 0.7 μm was formed as a photosensitive layer.

次に、とのCEL膜33を介して下層レジスト層32に
対し、フォトマスク34のマスクパターンを介して水銀
ランプからの約350〜450nm帯域の波長の紫外@
40でドーズ量を500 mJ/dとして照射を行った
(第1図(C))。波長領域を350〜450 nmの
範囲としたのは、この波長領域外ではレジストの感度が
低下し、かつ、CELの吸収スペクトル特性及びブリー
チング特性が悪くなってしまうからである。また、露光
装置としては、パーキンエルマー社製の商品番号500
HTの1: 1反射投影型露光装置を用いた。図中紫外
11i1140で露光されたCEL膜33及びレジスト
膜32の部分を33a及び32&でそれぞれ示し、また
、未露光部を33b及び32bでそれぞれ示す。
Next, ultraviolet light in the wavelength range of approximately 350 to 450 nm from a mercury lamp is applied to the lower resist layer 32 through the CEL film 33 and through the mask pattern of the photomask 34.
Irradiation was carried out at a dose of 500 mJ/d at 40 mJ/d (Fig. 1(C)). The reason why the wavelength range is set to 350 to 450 nm is that the sensitivity of the resist decreases outside this wavelength range, and the absorption spectrum characteristics and bleaching characteristics of CEL deteriorate. In addition, the exposure device is PerkinElmer product number 500.
An HT 1:1 reflection projection exposure system was used. In the figure, portions of the CEL film 33 and resist film 32 exposed to ultraviolet light 11i1140 are indicated by 33a and 32&, respectively, and unexposed portions are indicated by 33b and 32b, respectively.

この紫外線照射により、フォトマスク34の光透過領域
から直接CEL膜33に照射される光の光量は450 
mJ/adであるのでその部分での光透過率は約95%
程度となる。しかし、マスク34によって光が遮断され
る領域では光量が少なくなるので、両頭域の境界から光
の陰となるCEL膜33の部分での透過率は急激に低下
し、マスクの陰の中心付近では透過率は零に近くなり、
従ってとのCEL膜33を介して光の照射を受けるレジ
スト層32の部分32mと、受けないレジスト層32の
部分32bとの境界での光強度はシャープにすなわち実
質的に階段的に変化する。
Due to this ultraviolet irradiation, the amount of light directly irradiated onto the CEL film 33 from the light transmission area of the photomask 34 is 450.
mJ/ad, so the light transmittance at that part is about 95%.
It will be about. However, since the amount of light decreases in the area where the light is blocked by the mask 34, the transmittance in the part of the CEL film 33 that is shaded from the light from the boundary between the two head areas decreases rapidly, and near the center of the mask's shadow, the light intensity decreases. The transmittance is close to zero,
Therefore, the light intensity at the boundary between the portion 32m of the resist layer 32 that is irradiated with light through the CEL film 33 and the portion 32b of the resist layer 32 that is not irradiated changes sharply, that is, substantially stepwise.

上記露光終了後、CEL膜33の剥離工程を行うことな
く直ちにメタルフリーの現像液(長瀬産業社838)を
用い35秒間現像を行った。上記CEL膜33は現像開
始後瞬時に溶解除去され、レジスト層32の現像が開始
され、露光部分32Bが除去されかつ未露光部32bが
残存して第1図(D)に示すようなポジ型レジストパタ
ーンが形成された。
After the above-mentioned exposure was completed, development was immediately performed for 35 seconds using a metal-free developer (Nagase Sangyo Co., Ltd. 838) without performing a step of peeling off the CEL film 33. The CEL film 33 is instantly dissolved and removed after the start of development, development of the resist layer 32 is started, and the exposed portion 32B is removed and the unexposed portion 32b remains, resulting in a positive type film as shown in FIG. 1(D). A resist pattern was formed.

得られたレジストパターンの断面形状を走査型電子顕微
鏡で観察したところ1.5μmのライブンドスペースヨ
リモ大キいパターンでは、パターンの側壁部が基板面に
対し垂直に近い急峻な状態で形成されておす、°従って
断面形状がほぼ矩形の綺麗でシャープなレジストパター
ンが得られた。また、1μmのラインアンドスペースも
得られた。
When the cross-sectional shape of the obtained resist pattern was observed using a scanning electron microscope, it was found that in the large pattern of 1.5 μm living space, the sidewalls of the pattern were formed in a steep state almost perpendicular to the substrate surface. Therefore, a clean and sharp resist pattern with an almost rectangular cross-sectional shape was obtained. Moreover, a line and space of 1 μm was also obtained.

比較例1 実施例1のCEL膜をレジスト層上に設けない外は全く
同様に露光、現像その他の処理でパターン形成を行った
。尚、露光量は100 mJ/cdとした。
Comparative Example 1 A pattern was formed by exposure, development, and other treatments in exactly the same manner as in Example 1, except that the CEL film was not provided on the resist layer. Note that the exposure amount was 100 mJ/cd.

得られたレジストパターンを走査型電子顕微鏡で同様に
して観察したところ、パターンの側壁部の基板面に対す
る傾斜は実施例1のパターンよりも緩く、断面形状がほ
ぼ台形に近く、また実施例1はどには綺麗でシャープな
レジストパターンが得られなかった。また、1μmのラ
インアンドスペースを得ようとすると、レジスト層の膜
厚が実施例1の場合の膜厚の半分以下となってしまい、
レジスト層としての機能が期待できないことがわかった
When the obtained resist pattern was similarly observed with a scanning electron microscope, it was found that the slope of the side wall of the pattern with respect to the substrate surface was gentler than that of the pattern of Example 1, and the cross-sectional shape was almost trapezoidal. However, a clean and sharp resist pattern could not be obtained. In addition, when trying to obtain a line and space of 1 μm, the thickness of the resist layer becomes less than half the thickness of Example 1.
It was found that the function as a resist layer could not be expected.

実施例2 中国ロジン1.Og及び光漂白剤a−(4−ジエチルア
ミノフェニル) −N−(3’ 、 4’−ジクロ四フ
ェニル)ニトロン0.5gをモノクロロベンゼン7.0
6に溶解してCEL#L布Saを得、この溶液を実施例
1と同様にしてレジスト層32上に塗布し、膜厚0.7
μmのCEL膜33を感光層として形成した。
Example 2 Chinese Rosin 1. 0.5 g of photobleach a-(4-diethylaminophenyl)-N-(3',4'-dichlorotetraphenyl)nitrone and 7.0 g of monochlorobenzene.
6 to obtain CEL#L cloth Sa, and this solution was applied on the resist layer 32 in the same manner as in Example 1 to give a film thickness of 0.7
A CEL film 33 having a thickness of μm was formed as a photosensitive layer.

次にこのCEL膜33を介して下層レジスト層32に対
し、フォトマスク34のマスクパターンをN1kon 
NSR1505GgA型縮小投影型露光層置装露光した
。そして実施例1の如< CEL膜33の剥離工程に直
ちに実施例1と同様の現像を行った。得られたレジスト
パターンの断面形状を走査型電子a黴鏡で観察して調べ
たところ、やはりパターンの側壁部が基板面に対し垂直
に近い断面形状がほぼ矩形で0.6μmのラインアンド
スペースのII麗でシャープなレジストパターンが得ら
れた。
Next, the mask pattern of the photomask 34 is applied to the lower resist layer 32 through this CEL film 33.
Exposure was carried out using an NSR1505GgA reduction projection type exposure layer apparatus. Immediately after the step of peeling off the CEL film 33, the same development as in Example 1 was performed. When we examined the cross-sectional shape of the obtained resist pattern by observing it with a scanning electron microscope, we found that the cross-sectional shape of the sidewall of the pattern, which is perpendicular to the substrate surface, was almost rectangular and had a line-and-space of 0.6 μm. II A beautiful and sharp resist pattern was obtained.

比較例2 実施例2のCEL膜をレジスト層上に設けずに、同一材
料のレジスト層に対し、実施例2と同様の露光、現像そ
の他の処理でパターン形成を行った。
Comparative Example 2 A pattern was formed on a resist layer made of the same material by the same exposure, development, and other treatments as in Example 2, without providing the CEL film of Example 2 on the resist layer.

尚、露光量は1001TIJ/(!Ilとした。Note that the exposure amount was 1001 TIJ/(!Il).

得られたレジストパターンを走査型電子顕微鏡で同様に
して観察したところ、パターンの側壁部の基板面に対す
る傾斜が緩く、断面形状がほぼ台形に近く、0.7μm
のパターンは形成出来たが、0.6μmのパターンは形
成出来なかった。
When the obtained resist pattern was similarly observed using a scanning electron microscope, it was found that the sidewalls of the pattern had a gentle slope with respect to the substrate surface, the cross-sectional shape was almost trapezoidal, and the diameter was 0.7 μm.
A pattern of 0.6 μm could not be formed.

(発明の効果) 以上詳細に説明したように、本発明によれば上記CEL
薄膜形成材料としてアルカリ水溶液に可溶なロジン類等
を用いたことにより、該CEL膜に対して別途除去工程
を付加することなく露光後直ちに現像を行うことが可能
となり作業工程が単純化され、しかも用いる塗布溶液は
無極性有機溶剤が用いられていることにより光漂白剤の
分解を起こすことなく極めて安定なものとなり従って長
時間の保存に充分耐える等上記の問題を解消し得ろ。
(Effects of the Invention) As explained in detail above, according to the present invention, the CEL
By using a rosin or the like that is soluble in an alkaline aqueous solution as a thin film forming material, it is possible to develop the CEL film immediately after exposure without adding a separate removal process, which simplifies the work process. Furthermore, since the coating solution used is a non-polar organic solvent, it becomes extremely stable without causing decomposition of the photobleaching agent, and therefore can sufficiently withstand long-term storage, thereby solving the above-mentioned problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこのレジストパターンの形成方法の工程説明図
、第2図はCEPL原理説明図、第3図は従来方法の工
程説明図である。 31・・・基板、32・・・レジスト層、33・・・C
EL膜(感光層)、34・・・フォトマスク、32m 
、 33m・・・露光部、32b、33b、1.末露光
部。 第1図 第2図 第3図
FIG. 1 is a process explanatory diagram of this resist pattern forming method, FIG. 2 is an explanatory diagram of the principle of CEPL, and FIG. 3 is a process explanatory diagram of a conventional method. 31...Substrate, 32...Resist layer, 33...C
EL film (photosensitive layer), 34... Photomask, 32m
, 33m... exposure section, 32b, 33b, 1. End exposed area. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] レジスト層に入射する光のコントラストを高める感光層
を介して前記レジスト層を選択的に露光し、然る後前記
感光層及びレジスト層の現像処理を行ってレジストパタ
ーンを形成するに当たり、アビエチン酸、アビエチン酸
を主成分として含むガムロジン等のロジン類等無極性有
機溶剤及びアルカリ水溶液双方に可溶な薄膜形成材料を
含む感光層を用いたことを特徴とするレジストパターン
の形成方法。
Abietic acid, A method for forming a resist pattern, comprising using a photosensitive layer containing a thin film-forming material soluble in both a nonpolar organic solvent such as a rosin such as gum rosin containing abietic acid as a main component and an alkaline aqueous solution.
JP62037845A 1987-02-23 1987-02-23 Formation of resist pattern Pending JPS63205647A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62037845A JPS63205647A (en) 1987-02-23 1987-02-23 Formation of resist pattern
EP88102382A EP0280197A3 (en) 1987-02-23 1988-02-18 Process for forming photoresist pattern
US07/159,292 US4889795A (en) 1987-02-23 1988-02-23 Process for forming photoresist pattern using contrast enhancement layer with abietic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62037845A JPS63205647A (en) 1987-02-23 1987-02-23 Formation of resist pattern

Publications (1)

Publication Number Publication Date
JPS63205647A true JPS63205647A (en) 1988-08-25

Family

ID=12508871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62037845A Pending JPS63205647A (en) 1987-02-23 1987-02-23 Formation of resist pattern

Country Status (1)

Country Link
JP (1) JPS63205647A (en)

Similar Documents

Publication Publication Date Title
JP2000331928A (en) Lithographic method
US4889795A (en) Process for forming photoresist pattern using contrast enhancement layer with abietic acid
JPH0664341B2 (en) Manufacturing method of semiconductor device
US6420101B1 (en) Method of reducing post-development defects in and around openings formed in photoresist by use of non-patterned exposure
JP2010181872A (en) Method for manufacturing photomask, pattern transfer method, treatment device for photomask substrate, and thin film patterning method
TW200305055A (en) Photo-mask, manufacturing method thereof and method for manufacturing a semiconductor device using the same
JP2524993B2 (en) Method of forming resist pattern
JPH0567049B2 (en)
JPS63205647A (en) Formation of resist pattern
JP2002006478A (en) Mask for exposure and method for producing the same
JP3475309B2 (en) Method for manufacturing phase shift photomask
JPH01231039A (en) Material for photodecolorizable layer and method for forming pattern by using same
JP2503211B2 (en) Resist pattern formation method
KR100274751B1 (en) Method for forming chemically amplified photoresist pattern
JPS62269946A (en) Resist pattern forming method
JP3241809B2 (en) Method for manufacturing photomask having phase shift layer
JPH11297607A (en) Pattern forming method
JPS62269947A (en) Resist pattern forming method
JPS6378523A (en) Formation of pattern
WO2010001525A1 (en) Pattern forming method
JPH01231038A (en) Material for photodecolorable layer and pattern forming method by using said material
JP3484557B2 (en) Method for manufacturing phase shift photomask
JPH0550845B2 (en)
JP2682430B2 (en) Method for manufacturing semiconductor device
JPS5848919A (en) Preparation of semiconductor device