JP2682430B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2682430B2
JP2682430B2 JP6022979A JP2297994A JP2682430B2 JP 2682430 B2 JP2682430 B2 JP 2682430B2 JP 6022979 A JP6022979 A JP 6022979A JP 2297994 A JP2297994 A JP 2297994A JP 2682430 B2 JP2682430 B2 JP 2682430B2
Authority
JP
Japan
Prior art keywords
exposure
photoresist film
film
semiconductor device
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6022979A
Other languages
Japanese (ja)
Other versions
JPH07235467A (en
Inventor
武 大藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6022979A priority Critical patent/JP2682430B2/en
Publication of JPH07235467A publication Critical patent/JPH07235467A/en
Application granted granted Critical
Publication of JP2682430B2 publication Critical patent/JP2682430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特に微細パターンの形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a fine pattern.

【0002】[0002]

【従来の技術】半導体装置の製造工程における露光方法
は、光源から出射した光をレンズで集束し、マスクに照
射し、マスクを透過した光を対物レンズで集光してウェ
ハ上に結像する。この結像によりウェハ上にあらかじめ
塗布されていたフォトレジスト膜が露光され、溶解速度
差が生じるため現像工程においてパターンが形成される
というものである。
2. Description of the Related Art In an exposure method in a semiconductor device manufacturing process, light emitted from a light source is focused by a lens, irradiated onto a mask, and light transmitted through the mask is focused by an objective lens to form an image on a wafer. . Due to this image formation, the photoresist film previously coated on the wafer is exposed and a difference in dissolution rate occurs, so that a pattern is formed in the developing process.

【0003】この様な露光光学系によって得られる解像
度Rは一般に R=k1 (λ/NA) で表される。ここでλは露光波長、NAはレンズの開口
数、k1 はプロセスによって決まる定数である。
The resolution R obtained by such an exposure optical system is generally represented by R = k 1 (λ / NA). Here, λ is the exposure wavelength, NA is the numerical aperture of the lens, and k 1 is a constant determined by the process.

【0004】近年デバイス寸法の縮小化に伴い、解像度
の向上(Rを小とする)が重要な課題となってきてい
る。k1 の値は0.6が限界といわれ、またNAにも限
界があるため、解像度Rを向上させるために最近ではも
っぱら露光波長λの短波長化が進められている。例え
ば、KrFエキシマレーザによる波長248nmの光が
用いられるようになってきている。
In recent years, with the reduction in device dimensions, improvement of resolution (smaller R) has become an important issue. It is said that the value of k 1 is limited to 0.6, and NA is also limited. Therefore, in order to improve the resolution R, the exposure wavelength λ has been shortened in recent years. For example, light having a wavelength of 248 nm generated by a KrF excimer laser has come to be used.

【0005】ところで上記露光光学系の焦点深度DOF
は次式によって表されることが知られている。
The depth of focus DOF of the above-mentioned exposure optical system
Is known to be represented by the following equation.

【0006】DOF=k2 (λ/NA2 ) ここでk2 はプロセスによって決まる定数である。この
式から分るように、露光光の短波長化にともない、焦点
深度は必然的に小さくなる。従ってリソグラフィーに於
いて焦点深度を向上させることは極めて重要な課題とな
ってきた。これまでに焦点深度の拡大方法として様々な
方法が提案されている。
DOF = k 2 (λ / NA 2 ) where k 2 is a constant determined by the process. As can be seen from this formula, the depth of focus is inevitably reduced as the wavelength of the exposure light is shortened. Therefore, improving the depth of focus in lithography has become an extremely important issue. Various methods have been proposed so far as methods for expanding the depth of focus.

【0007】例えばIEEEエレクトロン デバイス
レターズ(EFECTRON DEVICE LETT
ERS)VOL.EDL−8,NO.4 APRIL1
987 P179では図2に示すように、マスク12と
対物レンズ13を介してフォトレジスト層に対して光軸
上の異なる複数の位置で段階的に露光させて、焦点位置
14(14A〜14C)をずらし、実質的に露光光学系
の焦点深度を増大させる方法(FLEX法)が提案され
ている。この場合、3μmずつ焦点をずらして露光する
事によって、焦点深度はi線(365nm)で3μmか
ら8μmと2.7倍に改善されている。
For example, an IEEE electron device
Letters (EFECTRON DEVICE LETT
ERS) VOL. EDL-8, NO. 4 APRIL1
In 987 P179, as shown in FIG. 2, the focal point 14 (14A to 14C) is exposed through the mask 12 and the objective lens 13 stepwise at different positions on the optical axis with respect to the photoresist layer. There has been proposed a method (FLEX method) of shifting the exposure optical system to substantially increase the depth of focus. In this case, the depth of focus is improved by 2.7 times from 3 μm to 8 μm at the i-line (365 nm) by shifting the focus by 3 μm and exposing.

【0008】[0008]

【発明が解決しようとする課題】上述した従来のリソグ
ラフィー工程における段階的露光方法は微細パターンの
転写においては次のような問題点を抱えている。すなわ
ち、複数の位置で露光させるため露光装置が複雑になっ
たり、多数回露光するために露光時間が長くなる。ま
た、焦点深度は大きくなるものの光学像を平均化するた
め、最適焦点位置に於ける光学コントラストが小さくな
るなどの欠点があった。
The above-mentioned conventional stepwise exposure method in the lithography process has the following problems in transferring a fine pattern. That is, the exposure apparatus is complicated because the exposure is performed at a plurality of positions, and the exposure time is long because the exposure is performed many times. Further, although the depth of focus increases, the optical images are averaged, so that there is a drawback that the optical contrast at the optimum focus position decreases.

【0009】本発明の目的は、露光時における焦点深度
を容易に大きくできる半導体装置の製造方法を提供する
ことにある。
An object of the present invention is to provide a method of manufacturing a semiconductor device which can easily increase the depth of focus during exposure.

【0010】[0010]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板上に形成された被加工膜上に第1
のフォトレジスト膜を形成する工程と、この第1のフォ
トレジスト膜上に露光光により蒸発し膜厚を減少させる
第2のフォトレジスト膜を形成する工程と、前記第1お
よび第2のフォトレジスト膜を同時に露光する工程とを
含むことを特徴とするものである。
According to a method of manufacturing a semiconductor device of the present invention, a first process is performed on a film to be processed formed on a semiconductor substrate.
The step of forming a photoresist film, the step of forming a second photoresist film on the first photoresist film, which is evaporated by exposure light to reduce the film thickness, and the first and second photoresists. And a step of simultaneously exposing the film.

【0011】[0011]

【実施例】次に本発明について図面を参照して説明す
る。図1(a)〜(c)は本発明の一実施例を説明する
ための半導体チップの断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. 1A to 1C are cross-sectional views of a semiconductor chip for explaining an embodiment of the present invention.

【0012】まず図1(a)に示すように、シリコン基
板1上に絶縁膜や導電体膜等の被加工膜2を形成したの
ち、第1のフォトレジスト膜3を塗布する。第1のフォ
トレジスト膜3はDeep−UVに感光するレジスト、
例えば米国OCG社のポジ型化学増幅レジストCAMP
6で厚さ約0.7μmに形成する。次にこの第1のフォ
トレジスト膜3上に露光光により蒸発する第2のフォト
レジスト膜4を0.5μm程度の厚さに塗布する。この
第2のフォトレジストは例えば、ポリマー エンジニア
リング アンド サイエンス(Polymer Eng
ineering and Science)De
c.,No.18,pp1012−1018,1983
に紹介されている、PPA(polyphthalal
dehyde)に3重量%のトリフェニルスルホニウム
(triphenylsulfonium)等の酸発生
剤を含む材料である。
First, as shown in FIG. 1A, a processed film 2 such as an insulating film or a conductor film is formed on a silicon substrate 1, and then a first photoresist film 3 is applied. The first photoresist film 3 is a deep-UV sensitive resist,
For example, positive type chemically amplified resist CAMP from OCG Inc.
6 to form a thickness of about 0.7 μm. Next, a second photoresist film 4 which is evaporated by exposure light is applied on the first photoresist film 3 to a thickness of about 0.5 μm. This second photoresist is, for example, Polymer Engineering and Science (Polymer Eng.
inering and Science) De
c. , No. 18, pp1012-1018, 1983.
PPA (polyphtalal)
3% by weight of an acid generator such as triphenylsulfonium.

【0013】次に図1(b)に示すように、この基板上
に例えば波長248nmのエキシマレーザ光を用いる縮
小投影露光機等を用いてマスクパターンに応じた強度の
露光光(DUV)6を対物レンズ5を介して照射する。
このとき第2のフォトレジスト膜4は露光光6によって
分解し蒸発する。このとき露光光の光の強度分布は、微
細なマスクパターンでは、中心部が大きい釣り鐘状にな
っているため、第2のフォトレジスト膜4の露光部の膜
厚は薄くなって凹型になる。第2のフォトレジスト膜4
の屈折率は一般のフォトレジスト膜と同様に1以上であ
るため図1(b)に示したように、入射光6は屈折によ
りほぼ垂直に入射して第1のフォトレジスト膜3を露光
する。その結果、露光時の焦点をずらして露光する従来
のFLEX法と同等に、焦点深度DOFが2倍以上にな
る。
Next, as shown in FIG. 1B, an exposure light (DUV) 6 having an intensity corresponding to the mask pattern is formed on the substrate by using a reduction projection exposure machine or the like using an excimer laser light having a wavelength of 248 nm. Irradiate through the objective lens 5.
At this time, the second photoresist film 4 is decomposed by the exposure light 6 and evaporated. At this time, the intensity distribution of the exposure light has a bell shape with a large central portion in the fine mask pattern, so that the exposed portion of the second photoresist film 4 has a thin film thickness and is concave. Second photoresist film 4
1 has a refractive index of 1 or more as in a general photoresist film, the incident light 6 is incident almost vertically by refraction to expose the first photoresist film 3 as shown in FIG. 1B. . As a result, the depth of focus DOF is doubled or more, which is equivalent to that of the conventional FLEX method in which the focus is shifted during exposure.

【0014】この後、露光光6によって、同時に露光さ
れた2層のフォトレジスト膜は露光後のベーク(PE
B)工程で115度で60秒間熱処理される。この熱処
理工程において第2のフォトレジスト膜4は蒸発するた
め第1のフォトレジスト膜3の現象は全く支障無く行わ
れ、図1(c)に示したように、微細なパターン7が転
写されたマスクが得られる。以下この第1のフォトレジ
スト膜3からなるマスクを用い被加工膜2をパターニン
グする。
After that, the two-layer photoresist film simultaneously exposed by the exposure light 6 is baked (PE) after the exposure.
In step B), heat treatment is performed at 115 degrees for 60 seconds. In this heat treatment step, the second photoresist film 4 evaporates, so that the phenomenon of the first photoresist film 3 is performed without any trouble, and the fine pattern 7 is transferred as shown in FIG. 1C. A mask is obtained. Thereafter, the film 2 to be processed is patterned by using the mask made of the first photoresist film 3.

【0015】このように本実施例によれば、248nm
の短波長を用いる従来の露光方法における焦点深度1μ
mを2μm以上に改善できるため、被加工膜に1μmの
段差があった場合でも十分な焦点深度で露光を行うこと
ができる。更に露光時に第2のフォトレジスト膜の膜厚
が減少するため、フォトレジスト膜内で生じる多重反射
の影響が低減され、定在波効果によるパターン寸法の変
動が軽減されるという効果もある。また本実施例におい
ては、従来の例で示したような機械的にウェハをずらし
て焦点深度を拡大する方法とは異なり、露光装置は通常
のもので良く、かつスループットが低下しないという特
徴がある。
As described above, according to this embodiment, 248 nm
Depth of focus 1μ in conventional exposure method using short wavelength
Since m can be improved to 2 μm or more, exposure can be performed with a sufficient depth of focus even when there is a step of 1 μm in the film to be processed. Further, since the thickness of the second photoresist film is reduced at the time of exposure, the effect of multiple reflection occurring in the photoresist film is reduced, and the variation of the pattern dimension due to the standing wave effect is also reduced. Further, in the present embodiment, unlike the method of mechanically shifting the wafer to increase the depth of focus as shown in the conventional example, the exposure apparatus may be a normal one and the throughput is not deteriorated. .

【0016】上記実施例では第1のレジストにポジ型レ
ジストを用いたが、ネガ型のSNR−248レジスト
(シプレイ社)をもちいても同様の効果が得られる。
Although a positive resist was used as the first resist in the above embodiment, the same effect can be obtained by using a negative SNR-248 resist (Chipley Co.).

【0017】[0017]

【発明の効果】以上説明したように本発明は、半導体製
造工程のリソグラフィー工程において、被加工膜上に塗
布した第1のフォトレジスト膜上にさらに、露光光によ
って蒸発する第2のフォトレジスト膜を塗布することに
よって、露光中に第2のフォトレジスト膜に凹レンズが
形成されるため焦点深度を拡大できるという効果を有し
ている。
As described above, according to the present invention, in the lithography process of the semiconductor manufacturing process, the second photoresist film which is evaporated by the exposure light is further formed on the first photoresist film applied on the film to be processed. By applying the above method, a concave lens is formed on the second photoresist film during the exposure, so that the depth of focus can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を説明するための半導体チッ
プの断面図。
FIG. 1 is a sectional view of a semiconductor chip for explaining one embodiment of the present invention.

【図2】従来の露光方法を説明するための図。FIG. 2 is a diagram for explaining a conventional exposure method.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 被加工膜 3 第1のフォトレジスト膜 4 第2のフォトレジスト膜 5 対物レンズ 6 露光光 7 パターン 11 露光光 12 マスク 13 対物レンズ 14 焦点位置 1 Silicon Substrate 2 Processed Film 3 First Photoresist Film 4 Second Photoresist Film 5 Objective Lens 6 Exposure Light 7 Pattern 11 Exposure Light 12 Mask 13 Objective Lens 14 Focus Position

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板上に形成された被加工膜上に
第1のフォトレジスト膜を形成する工程と、この第1の
フォトレジスト膜上に露光光により蒸発し膜厚を減少さ
せる第2のフォトレジスト膜を形成する工程と、前記第
1および第2のフォトレジスト膜を同時に露光する工程
とを含むことを特徴とする半導体装置の製造方法。
1. A step of forming a first photoresist film on a film to be processed formed on a semiconductor substrate, and a second step of evaporating the first photoresist film on the first photoresist film by exposure light to reduce the film thickness. And a step of exposing the first and second photoresist films at the same time, the method of manufacturing a semiconductor device.
【請求項2】 露光光源にエキシマレーザを用いる請求
項1記載の半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein an excimer laser is used as an exposure light source.
【請求項3】 露光後第2のフォトレジスト膜を熱処理
して除去する工程を有する請求項1記載の半導体装置の
製造方法。
3. The method for manufacturing a semiconductor device according to claim 1, further comprising a step of heat-treating and removing the second photoresist film after exposure.
JP6022979A 1994-02-22 1994-02-22 Method for manufacturing semiconductor device Expired - Lifetime JP2682430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6022979A JP2682430B2 (en) 1994-02-22 1994-02-22 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6022979A JP2682430B2 (en) 1994-02-22 1994-02-22 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH07235467A JPH07235467A (en) 1995-09-05
JP2682430B2 true JP2682430B2 (en) 1997-11-26

Family

ID=12097682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6022979A Expired - Lifetime JP2682430B2 (en) 1994-02-22 1994-02-22 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2682430B2 (en)

Also Published As

Publication number Publication date
JPH07235467A (en) 1995-09-05

Similar Documents

Publication Publication Date Title
US6015650A (en) Method for forming micro patterns of semiconductor devices
US5532090A (en) Method and apparatus for enhanced contact and via lithography
TWI387998B (en) A lithography method
US20080292991A1 (en) High fidelity multiple resist patterning
JP2996127B2 (en) Pattern formation method
KR101238925B1 (en) Solid immersion lens lithography
US20060292501A1 (en) Lithography process with an enhanced depth-on-focus
CN108983546A (en) Method for photolithography
JP2000315647A (en) Formation of resist pattern
US20060189147A1 (en) Pattern forming method and semiconductor device manufacturing method
JP2002075857A (en) Resist pattern forming method
JP2682430B2 (en) Method for manufacturing semiconductor device
JP3415335B2 (en) Method for manufacturing multi-stage etching type substrate
JP3475309B2 (en) Method for manufacturing phase shift photomask
JP3214455B2 (en) Projection exposure method
JP3638266B2 (en) Manufacturing method of semiconductor device
US6548384B2 (en) Method for performing lithographic process to a multi-layered photoresist layer
JP2002164280A (en) Exposure method
JP2000056476A (en) Resist pattern forming method
JP3173100B2 (en) Projection exposure equipment
JP3837846B2 (en) Manufacturing method of semiconductor device
JPH11251536A (en) Manufacture of semiconductor device
KR100464654B1 (en) Method for forming contact hole of semiconductor device
JPS6156867B2 (en)
JPH0562894A (en) Forming method for fine pattern

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970708