JPS63204717A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPS63204717A
JPS63204717A JP3850887A JP3850887A JPS63204717A JP S63204717 A JPS63204717 A JP S63204717A JP 3850887 A JP3850887 A JP 3850887A JP 3850887 A JP3850887 A JP 3850887A JP S63204717 A JPS63204717 A JP S63204717A
Authority
JP
Japan
Prior art keywords
gas
raw material
grown
substrate
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3850887A
Other languages
Japanese (ja)
Inventor
Akio Yamaguchi
昭夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3850887A priority Critical patent/JPS63204717A/en
Publication of JPS63204717A publication Critical patent/JPS63204717A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a steep junction by a method wherein raw gas is jetted out and reflected in reverse direction from the gas introducing tube provided on the substrate to be grown, a gas stream is converted to forward direction, it is abutted on the substrate to be grown, and the planar distribution of a grown layer is made uniform. CONSTITUTION:Raw gas is introduced from a gas introducing tube, the raw gas is contacted to the reverse current head 11 of a tip part, the gas is jetted out in reverse direction (in the upward direction at an angle of 20 deg. against gas lead-in direction axis). Then, the raw gas jetted out in reverse direction is contacted to an umbrella type gas reflecting plate 12, it is converted into forward direction, abutted on a wafer 3, thermally decomposed, and the prescribed crystal layer is grown. Then, when the growth of crystal is stopped, a gas reflecting plate 12 is moved upward by a magnet 13. When the raw gas jetted out in the reverse direction by striking a counterflow head 11 strikes the reflection plate 12 and the shoulder part of the reaction tube 1, it in reflected toward outside, it comes in between the liner tube 2 and the reaction tube 1 and discharged from the air exhausting hole between the reaction tube 2 and the liner tube 2. Accordingly, the opening and the closing of a vale 10 and the switching of a magnet 13 are combined, and the switching can be conducted instantaneously by operating the magnet.

Description

【発明の詳細な説明】 [概要] 縦型の気相成長装置であって、被成長基板の上に設けた
ガス導入管から原料ガスを逆方向に噴出させる。更に、
その逆方向に噴出した原料ガスを反射させて、順方向に
ガス流を変換して被成長基板に当接させる。且つ、所望
手段によって反射方向の角度を変えて、原料ガスが素早
く被成長基板に当接しないにように図る。このように構
成した気相成長装置は、成長層の面内分布が均一になっ
て、且つ、急峻な接合が得られる。
[Detailed Description of the Invention] [Summary] This is a vertical vapor phase growth apparatus in which raw material gas is ejected in the opposite direction from a gas introduction pipe provided on a growth target substrate. Furthermore,
The raw material gas ejected in the opposite direction is reflected, converting the gas flow in the forward direction and bringing it into contact with the growth substrate. In addition, the angle of the reflection direction is changed by a desired means to prevent the raw material gas from coming into contact with the growth substrate too quickly. In the vapor phase growth apparatus configured in this manner, the in-plane distribution of the grown layer becomes uniform, and a steep junction can be obtained.

[産業上の利用分野] 本発明は気相成長装置(CVD装互)の構造改善に関す
る。
[Industrial Application Field] The present invention relates to structural improvement of a vapor phase growth apparatus (CVD apparatus).

半導体装置を製造する場合、半導体基板上に他の半導体
層や異質の材料層を成長する気相成長法が用いられてお
り、これは半導体装置の製造における最も基礎的な重要
技術である。
When manufacturing semiconductor devices, a vapor phase growth method is used to grow another semiconductor layer or a layer of a different material on a semiconductor substrate, and this is the most basic and important technology in manufacturing semiconductor devices.

このような気相成長法のうち、例えば、最近、有機金属
熱分解気相成長法(MOCV D : MetalOr
ganic Chemical Vapour Dep
osition )が開発されており、これは有機金属
ガスを原料ガスとして、それを熱分解させて結晶成長す
る方法で、低温成長の可能な方法である。その他、従前
からの無機反応ガスを熱分解させて結晶成長する方法等
、種々の気相成長法が知られている。
Among such vapor phase growth methods, for example, metal organic pyrolysis vapor phase growth (MOCVD) has recently been developed.
Ganic Chemical Vapor Dep
A method has been developed in which crystal growth is performed by thermally decomposing organic metal gas as a raw material gas, and is a method capable of low-temperature growth. In addition, various vapor phase growth methods are known, such as a conventional method of thermally decomposing an inorganic reaction gas to grow crystals.

しかし、このような気相成長法によって化合物半導体デ
バイスを製造する場合、できるだけ急峻な接合が得られ
、且つ、成長層の面内分布が均一なことが望まれている
However, when manufacturing a compound semiconductor device by such a vapor phase growth method, it is desired that a junction be as steep as possible and that the in-plane distribution of the grown layer be uniform.

[従来の技術] 最近、例えば、RHT (Resonance Het
ero  bipolar Transistor)が
開発されており、そのRHTはベース幅が僅か召人程度
であり、その接合遷移領域が10人ないし20人程度に
なるように形成することが重要である。しかし、このよ
うな急峻な接合遷移領域を形成することは、現在、分子
線エピタキシャル成長(MBE)法で検討されているも
のの、MBE法はオーバルディ入りト(0νal de
fec t)が発生し易い欠点があり、必ずしも満足な
ものは得られていない。従って、MOCVD法による可
能性が検討されている。
[Prior Art] Recently, for example, RHT (Resonance Het)
ero bipolar transistor) has been developed, and it is important to form the RHT so that the base width is only about 100 cm, and the junction transition region is about 10 to 20 people. However, although the formation of such a steep junction transition region is currently being investigated using molecular beam epitaxial growth (MBE), the MBE method
There is a drawback that fect) is likely to occur, and a satisfactory result has not always been obtained. Therefore, the possibility of using the MOCVD method is being considered.

さて、従来のMOCVD法で結晶成長するMOCVD装
置の概要断面図を第2図に示している。
Now, FIG. 2 shows a schematic cross-sectional view of an MOCVD apparatus for growing crystals using the conventional MOCVD method.

同図において、1は縦型反応管、2はライナー管。In the figure, 1 is a vertical reaction tube, and 2 is a liner tube.

3はウェハー(被成長基板)、4はウェハーを加熱しな
がら回転するサセプタ、5はヒータ、6は排気口、7は
原料ガス供給口、8はガス導入管。
3 is a wafer (substrate to be grown), 4 is a susceptor that rotates while heating the wafer, 5 is a heater, 6 is an exhaust port, 7 is a source gas supply port, and 8 is a gas introduction pipe.

9はガス噴射ヘッド、10はバルブで、反応管、ライナ
ー管、導入管などはすべて透明石英材である。
9 is a gas injection head, 10 is a valve, and the reaction tube, liner tube, introduction tube, etc. are all made of transparent quartz material.

尚、ライナー管2は反応管1の汚れを防ぐために配設さ
れる遮蔽管で、成長処理毎にライナー管2の内部に原料
ガス分解生成物が付着するから、1回の成長処理ごとに
交換されるものである。
Note that the liner tube 2 is a shielding tube installed to prevent the reaction tube 1 from becoming contaminated, and since raw material gas decomposition products adhere to the inside of the liner tube 2 during each growth process, it must be replaced after each growth process. It is something that will be done.

このようなMOCVD装置を用いて、例えば、InP基
板上にInP結晶層およびInGaAs結晶層を連続成
長させる場合、基板の温度を700℃、減圧度を76T
orr (1/10気圧)程度にして、InP層からI
nGaAs層に変換する時には原料ガスを切り換えて成
長する。その原料ガスとしては、例えば、Inソースに
はトリメチルインジウム(TM I ; In(CB、
)。
For example, when continuously growing an InP crystal layer and an InGaAs crystal layer on an InP substrate using such a MOCVD apparatus, the temperature of the substrate is 700°C and the degree of vacuum is 76T.
orr (1/10 atmosphere), and remove I from the InP layer.
When converting into an nGaAs layer, the source gas is changed and the growth is performed. As the raw material gas, for example, trimethylindium (TMI; In(CB,
).

)、Gaソースにはトリメチルガリウム(TMG;Ga
(CHI)、)、 Pソースにはフォスフイン(PH3
)、Asソースにはアルシン(AsH3)が用いられ、
キャリアガスには純化した水素(H2)が用いられる。
), the Ga source is trimethyl gallium (TMG; Ga
(CHI), ), P source contains phosphine (PH3
), arsine (AsH3) is used as the As source,
Purified hydrogen (H2) is used as the carrier gas.

このような有機金属ガスは低温度での分解が可能で、急
峻な接合には適した方法である。
Such organometallic gases can be decomposed at low temperatures and are suitable for steep bonding.

[発明が解決しようとする問題点] ところで、縦型MOCVD装置によって減圧成長させる
と、排気によって原料ガスの交換が速くくなり急峻な接
合には好都合であるが、減圧中であるから原料ガス相互
の衝突が少なく、基板(ウェハー)の中央部に多く成長
し、周囲部には少なく成長する膜厚分布の不均一が生じ
ると云う傾向がある。これは減圧度が高くなるほど、そ
の傾向は甚だしくなる。
[Problems to be Solved by the Invention] By the way, when growth is performed under reduced pressure using a vertical MOCVD apparatus, the exchange of source gases becomes faster due to exhaust gas, which is convenient for steep bonding. There is a tendency for non-uniform film thickness distribution to occur, with less collisions and more growth at the center of the substrate (wafer) and less growth at the periphery. This tendency becomes more severe as the degree of pressure reduction increases.

従って、例えば、第2図に示すようなMOCVD装置を
用いて、ガス噴射ヘッド9を設け、ウェハー面に一様に
原料ガスが当接するように図っている。そうすれば、膜
厚分布の不均一は相当解消される。
Therefore, for example, an MOCVD apparatus as shown in FIG. 2 is used, and a gas injection head 9 is provided so that the raw material gas uniformly contacts the wafer surface. In this way, non-uniformity in film thickness distribution can be considerably eliminated.

しかし、そうすると、逆にガス噴射ヘッド9を設けたた
めに、原料ガスの切り換えが速くできずに切れが悪くな
って、急峻な接合に不適当になり、折角の減圧中でのM
OCVD法の利点が減殺されることになる。
However, since the gas injection head 9 was provided, the raw material gas could not be switched quickly and the cutting would be poor, making it unsuitable for steep joining.
The advantages of the OCVD method will be diminished.

本発明はこれらの問題点を減少させる気相成長装置を提
案するものである。
The present invention proposes a vapor phase growth apparatus that reduces these problems.

[問題点を解決するための手段] その目的は、原料ガスを被成長基板(ウェハー)とは逆
の方向に噴出させ、更に、逆方向に噴出した原料ガスを
反射させて順方向にガス流を変換して被成長基板に当接
させ、且つ、所望手段によって前記反射の角度を変える
ことによって原料ガスの反射方向を変えて、該原料ガス
が瞬時に被成長基板に当接しないにように構成した気相
成長装置によって達成される。
[Means for solving the problem] The purpose is to eject source gas in the opposite direction to the growth substrate (wafer), and then reflect the ejected source gas in the opposite direction to create a gas flow in the forward direction. The source gas is brought into contact with the growth substrate by converting it, and the reflection direction of the source gas is changed by changing the angle of reflection by a desired means so that the source gas does not instantly contact the growth substrate. This is achieved by the constructed vapor phase growth apparatus.

[作用] 即ち、本発明にかかるM OCV D装置は、原料ガス
をガス導入管から逆方向に噴出させ、更に、その逆方向
に噴出した原料ガスを反射させて、順方向にガス流を変
換してウェハーに当接させる。
[Function] That is, the MOCVD device according to the present invention jets the raw material gas in the opposite direction from the gas introduction pipe, and further reflects the raw material gas jetted in the opposite direction to convert the gas flow in the forward direction. and bring it into contact with the wafer.

且つ、ガス切り換え時には、他からの手段番こよって反
射角度を変えて、原料ガスが瞬時にウェハーに当接しな
いにようにする。そうすれば、ガス噴射ヘッドと同様に
ウェハーの全面にシャワー状に原料ガスが当接して、成
長層の分布が均一になり、且つ、原料ガスの切り換えが
速くできるから、急峻な接合が得られる。
Moreover, when switching gases, the reflection angle is changed depending on the other means so that the raw material gas does not come into contact with the wafer instantly. In this way, the raw material gas will come into contact with the entire surface of the wafer in a shower-like manner, similar to a gas injection head, and the distribution of the growth layer will be uniform, and the raw material gas can be switched quickly, resulting in steep bonding. .

[実施例] 以下、図面を参照して実施例によって詳細に説明する。[Example] Hereinafter, embodiments will be described in detail with reference to the drawings.

第1図(al、 (blは本発明にかかるMOCVD装
置の概要断面図を示しており、同図(alは原料ガスを
ウェハー(被成長基板)に当接させている状態を図示し
、同図(b)は原料ガスをウェハーから外している状態
を図示している。これらの図において、11は逆さ円錐
形の逆流ヘッド(第1部材)、12はガス導入管の周囲
に配置した傘状部分をもち、上下に可動するガス反射板
(第2部材)、13はマグネットであって、その他の第
2図と同一部材には同一記号が付けである。
Figures 1 (al) and (bl) show a schematic cross-sectional view of the MOCVD apparatus according to the present invention; Figure (b) shows the state in which the source gas is removed from the wafer. In these figures, 11 is an inverted conical backflow head (first member), and 12 is an umbrella placed around the gas introduction pipe. A vertically movable gas reflecting plate (second member) 13 is a magnet, and other members that are the same as those in FIG. 2 are given the same symbols.

本発明にかかるMOCVD装置は第1図のように構成し
、成長する際には、まず、第1図ta>のような状態に
して、原料ガスをガス導入管より導入し、その先端部の
逆流ヘッド11に原料ガスを当てて逆方向(ガス導入管
軸に対し20°の角度で上向き方向)に噴出させる。次
に、逆方向に噴出した原料ガスは傘状のガス反射板12
に当って順方向に方向を換え、ウェハー3に当接して、
熱分解して所定の結晶層を成長する。次いで、成長を止
める場合、マグネット13によりガス反射板12(石英
材内部に強磁性体を有する)を上方に移動させて、第1
図(blのような状態にする。そうすると、逆流ヘッド
11に当って逆方向に噴出した原料ガスがガス反射板1
2および反応管lの上部の肩部に当たると、外側の方向
に反射してライナー管2と反応管1との間に入り、反応
管2とライナー管2との間から排気口に排出される。従
って、バルブ10の開閉とマグネット13の切換えとを
組み合わせ、マグネットの操作によって瞬時に切り換え
することができる。そのため、遷移領域を急峻な接合に
して、且つ、成長時にはシャワー状に原料ガスをウェハ
〜に当接させるため、均一な膜厚分布が得られる。
The MOCVD apparatus according to the present invention is constructed as shown in Fig. 1, and when growing, firstly, in the state shown in Fig. The raw material gas is applied to the backflow head 11 and ejected in the opposite direction (upward at an angle of 20° with respect to the gas introduction tube axis). Next, the raw material gas ejected in the opposite direction is transferred to an umbrella-shaped gas reflecting plate 12.
When it hits the wafer 3, it changes direction in the forward direction and hits the wafer 3,
A predetermined crystal layer is grown by thermal decomposition. Next, when stopping the growth, the gas reflection plate 12 (having a ferromagnetic material inside the quartz material) is moved upward by the magnet 13, and the first
Make the state as shown in figure (bl). Then, the raw material gas that hits the backflow head 11 and blows out in the opposite direction will flow through the gas reflection plate 1.
When it hits the upper shoulders of the reaction tubes 2 and 1, it is reflected outward and enters between the liner tube 2 and the reaction tube 1, and is discharged from between the reaction tube 2 and the liner tube 2 to the exhaust port. . Therefore, the opening and closing of the valve 10 and the switching of the magnet 13 can be combined, and the switching can be performed instantaneously by operating the magnet. Therefore, since the transition region is formed into a steep junction and the raw material gas is brought into contact with the wafer in a shower during growth, a uniform film thickness distribution can be obtained.

このMOCVD装置を用いて結晶層を成長した具体例を
説明する。面方向(100)のn” −InP基板上に
アンドープrnPiiとInGaAs層を連続成長させ
るために、基板温度700℃、減圧度76Torrにし
て次のような原料ガスを用いた。InソースはTMI、
GaソースはTMG、PソースはPH3,へSソースは
ASH3,キャリアガスはH2として、■属原料ガスに
対する■属原料ガスとのモル比を70にする。まず、M
OCVD装置を第2図(alの状態にして、H2とPH
3とを流入し、次いで、TMIを流入する。次に、TM
Iを止めると同時に、装置を第2図(blの状態にする
。その状態でPH,を止め切り換えて、AsH3を流し
た後、装置を第2図(a)の状態に戻して、TMIとT
MGとを流入する。このようにして成長した結果、直径
21ンφのウェハーの直径方向の膜厚分布の変動は±5
%以内になり、InP層とInGaAs層との遷移領域
幅が10人程度の極めて急峻な接合面を得ることができ
た。
A specific example of growing a crystal layer using this MOCVD apparatus will be described. In order to continuously grow undoped rnPii and InGaAs layers on an n''-InP substrate in the (100) plane direction, the following source gases were used at a substrate temperature of 700°C and a reduced pressure of 76 Torr.The In source was TMI;
The Ga source is TMG, the P source is PH3, the S source is ASH3, and the carrier gas is H2, and the molar ratio of the group II raw material gas to the group II raw material gas is set to 70. First, M
Set the OCVD equipment to the state shown in Figure 2 (al) and set H2 and PH.
3 and then TMI. Next, TM
At the same time as stopping I, the device is placed in the state shown in Figure 2 (bl). In that state, PH is stopped and switched to flow AsH3, then the device is returned to the state shown in Figure 2 (a), and TMI and T
MG flows in. As a result of growing in this way, the variation in the film thickness distribution in the diametrical direction of a wafer with a diameter of 21 mm was ±5.
%, and an extremely steep junction surface with a transition region width of about 10 layers between the InP layer and the InGaAs layer could be obtained.

このように、本発明にかかるMOCVD装置は非常に品
質の良い結晶層が成長する高性能な装置になる。
As described above, the MOCVD apparatus according to the present invention is a high-performance apparatus that can grow a crystal layer of very high quality.

[発明の効果] 以上の説明から明らかなように、本発明にかかる気相成
長装置によれば、面内分布が均一化して、且つ、極めて
急峻な接合をもった結晶層が成長でき、半導体装置の性
能向上に大きく寄与するものである。
[Effects of the Invention] As is clear from the above description, according to the vapor phase growth apparatus of the present invention, a crystal layer with uniform in-plane distribution and extremely steep junctions can be grown, and a semiconductor This greatly contributes to improving the performance of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al、 (b)は本発明にかかるMOC,VD
装置の断面図、 第2図は従来のMOCVD装置の断面図である。 図において、 1は反応管、     2はライナー管、3はウェハー
、     4はサセプタ、5はヒータ、      
6は排気口、7は原料ガス供給口、 8はガス導入管、
9はガス噴射ヘッド、 10はバルブ、11は逆流ヘッ
ド、   12はガス反射板、13はマグネット を示している。 従来d1閂Q(VD襞工 第2図 ″D家1
FIG. 1 (al) and (b) show MOC and VD according to the present invention.
Cross-sectional view of apparatus FIG. 2 is a cross-sectional view of a conventional MOCVD apparatus. In the figure, 1 is a reaction tube, 2 is a liner tube, 3 is a wafer, 4 is a susceptor, 5 is a heater,
6 is an exhaust port, 7 is a raw material gas supply port, 8 is a gas introduction pipe,
9 is a gas injection head, 10 is a valve, 11 is a backflow head, 12 is a gas reflection plate, and 13 is a magnet. Conventional d1 bolt Q (VD fold work diagram 2 "D house 1

Claims (2)

【特許請求の範囲】[Claims] (1)縦型気相成長装置の反応管内において、被成長基
板の上部に配置したガス導入管から、原料ガスを被成長
基板とは逆の方向に噴出させ、更に、逆方向に噴出した
原料ガスを反射させて順方向にガス流を変換して被成長
基板に当接させ、且つ、所望手段によつて前記反射の角
度を変えることによつて原料ガスの反射方向を変えて、
該原料ガスが瞬時に被成長基板に当接しないにように構
成したことを特徴とする気相成長装置。
(1) In the reaction tube of a vertical vapor phase growth apparatus, raw material gas is ejected from the gas introduction tube placed above the growth substrate in the opposite direction to the growth substrate, and the raw material is further ejected in the opposite direction. changing the direction of reflection of the raw material gas by reflecting the gas and converting the gas flow in a forward direction so as to contact the growth substrate, and changing the angle of the reflection by a desired means;
A vapor phase growth apparatus characterized in that the source gas is configured so that it does not instantly contact a substrate to be grown.
(2)原料ガスを流入するガス導入管の先端部に逆さ円
錐形の第1部材を配設し、先端部より噴射した原料ガス
を該第1部材に当てて逆方向に噴出させ、且つ、逆方向
に噴出した原料ガスを前記ガス導入管の周囲に配置した
傘状の第2部材に当てて順方向に反射させて原料ガスの
ガス流を変換して被成長基板に当接させ、更に、該第2
部材を被成長基板より遠ざける方向に移動させることに
よつて反射方向の角度を変えて、該被成長基板の周囲に
設けたライナー管の外に瞬時に流出するように構成した
ことを特徴とする特許請求の範囲第1項記載の気相成長
装置。
(2) disposing a first member in the shape of an inverted cone at the tip of the gas introduction pipe into which the raw material gas flows, and making the raw material gas injected from the tip hit the first member and eject in the opposite direction; The raw material gas ejected in the opposite direction is applied to a second umbrella-shaped member disposed around the gas introduction pipe and reflected in the forward direction to convert the gas flow of the raw material gas and brought into contact with the growth substrate, and further , the second
The method is characterized in that by moving the member away from the growth substrate, the angle of the reflection direction is changed so that the reflection instantly flows out of the liner tube provided around the growth substrate. A vapor phase growth apparatus according to claim 1.
JP3850887A 1987-02-20 1987-02-20 Vapor growth device Pending JPS63204717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3850887A JPS63204717A (en) 1987-02-20 1987-02-20 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3850887A JPS63204717A (en) 1987-02-20 1987-02-20 Vapor growth device

Publications (1)

Publication Number Publication Date
JPS63204717A true JPS63204717A (en) 1988-08-24

Family

ID=12527210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3850887A Pending JPS63204717A (en) 1987-02-20 1987-02-20 Vapor growth device

Country Status (1)

Country Link
JP (1) JPS63204717A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382015A (en) * 1989-08-24 1991-04-08 Toshiba Corp Vapor growth device for semiconductor
JP2006261330A (en) * 2005-03-16 2006-09-28 Furukawa Co Ltd Growing chamber structure of vapor phase growing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382015A (en) * 1989-08-24 1991-04-08 Toshiba Corp Vapor growth device for semiconductor
JP2006261330A (en) * 2005-03-16 2006-09-28 Furukawa Co Ltd Growing chamber structure of vapor phase growing device
JP4554407B2 (en) * 2005-03-16 2010-09-29 古河機械金属株式会社 Growth chamber structure of vapor phase growth equipment

Similar Documents

Publication Publication Date Title
JP3156326B2 (en) Semiconductor growth apparatus and semiconductor growth method using the same
US5637146A (en) Method for the growth of nitride based semiconductors and its apparatus
KR101598911B1 (en) Vapor phase growing apparatus and vapor phase growing method
JP2002316892A (en) Vapor phase epitaxial growth system
JPH05206036A (en) Film formation method and film formation apparatus
JPS63204717A (en) Vapor growth device
JPH03263818A (en) Metal organic vapor growth apparatus
JP3198956B2 (en) GaN thin film vapor deposition method and thin film vapor deposition apparatus
JP2773772B2 (en) Crystal growth equipment
JPS6060714A (en) Vapor-phase epitaxial crowing method for i-v group compound semiconductor
JPH01290221A (en) Semiconductor vapor growth method
JPS63204718A (en) Organic metal vapor growth device
JP2003100642A (en) Vapor phase thin film epitaxial growth system and vapor phase thin film epitaxial growth method
JP2567228B2 (en) Epitaxial growth method for semiconductor crystals
JPH1145858A (en) Compound semiconductor vapor growth equipment and its method
JP3668802B2 (en) Thin film formation method by atomic layer growth
JPH1098000A (en) Epitaxial growth system for semiconductor crystal
JP2732622B2 (en) (III)-(V) Group Compound Semiconductor Vapor Phase Growth Method
JPH02311A (en) Semiconductor manufacturing equipment
JPH0697071A (en) Method of forming quantum line and quantum box by the growth of atomic layer
JPH04192323A (en) Manufacture of semiconductor device
JPS61284915A (en) Thin film vapor growth apparatus
JP2000351694A (en) Method of vapor-phase growth of mixed crystal layer and apparatus therefor
JPH06132227A (en) Vapor growth method
JPH04254493A (en) Vapor growth method