JPH05206036A - Film formation method and film formation apparatus - Google Patents

Film formation method and film formation apparatus

Info

Publication number
JPH05206036A
JPH05206036A JP1499192A JP1499192A JPH05206036A JP H05206036 A JPH05206036 A JP H05206036A JP 1499192 A JP1499192 A JP 1499192A JP 1499192 A JP1499192 A JP 1499192A JP H05206036 A JPH05206036 A JP H05206036A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
substrate
nozzle
gas
film
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1499192A
Other languages
Japanese (ja)
Other versions
JP3126787B2 (en )
Inventor
Katsunobu Aoyanagi
Takashi Meguro
Kazunari Ozasa
一成 尾笹
多加志 目黒
克信 青柳
Original Assignee
Rikagaku Kenkyusho
理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PURPOSE: To make it possible to from a thin film having an excellent in-plane uniformity, ALE condition, crystal quality, acute steepness of heterointerface, and others without damaging a substrate.
CONSTITUTION: A substrate 3 is arranged in a vacuum chamber 1 which is evacuated at a given degree of vacuum and heated. At the same time, with a gas ejection mechanism having a nozzle 6 arranged toward the substrate 3, and a high-speed switching valve 8 which provided near the nozzle 6, a material gas is ejected to the substrate 3 intermittently or continuously to grow crystals on the surface of the substrate 3 for the formation of a film.
COPYRIGHT: (C)1993,JPO&Japio

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、GaAsの薄膜等を、 The present invention relates to the GaAs of the thin film or the like,
気相成長により形成する成膜方法および成膜装置に関する。 It relates to a method for forming a film and a film forming apparatus for forming a vapor deposition.

【0002】 [0002]

【従来の技術】従来から、基板表面に、例えばGaAs Heretofore, the surface of the substrate, for example, GaAs
の薄膜等を成膜する方法として、真空チャンバ内に設けた基板を加熱し、この真空チャンバ内に所定の原料ガスを導入して、熱分解により基板表面に結晶を成長させて成膜する方法や、荷電粒子を用いて基板表面に結晶を成長させ、成膜する方法等が知られている。 How a method of forming a thin film or the like, heating the substrate provided in the vacuum chamber, and introducing a predetermined raw material gas into the vacuum chamber, a film is formed by growing a crystal on the substrate surface by thermal decomposition and grown crystals on the substrate surface using a charged particle, a method for forming and the like are known.

【0003】 [0003]

【発明が解決しようとする課題】しかしながら、上述した方法のうち、荷電粒子を用いた従来の成膜方法では、 [SUMMARY OF THE INVENTION However, among the methods described above, in the conventional deposition method using a charged particle,
数十eV〜数百eV以上のエネルギーを有する荷電粒子が基板に作用するため、基板が損傷を受けるという問題がある。 Since the charged particles having several tens eV~ over several hundreds eV energy is applied to the substrate, the substrate is a problem that damaged. また、熱分解を用いた従来の成膜方法では、このような問題は起きないが、原料ガスの切り替えを速やかに行うことが困難であり、ヘテロ界面の急俊性が損なわれたり、反応の制御性が悪く、面内均一性、ALE条件、結晶の質等を改善することが望まれている。 Further, in the conventional deposition method using the thermal decomposition, such a problem does not occur, it is difficult to switch the feed gas quickly, or suddenly Shun of the hetero interface is impaired, the reaction controllability is poor, surface uniformity, ALE conditions, it is desired to improve the quality or the like of the crystals.

【0004】本発明は、かかる従来の事情に対処してなされたもので、基板に損傷を与えることなく、面内均一性、ALE条件、結晶の質、ヘテロ界面の急俊性等が良好な薄膜を形成することのできる成膜方法および成膜装置を提供しようとするものである。 [0004] The present invention, according to the conventional circumstances has been made in addressing, without damaging the substrate, in-plane uniformity, ALE conditions, quality of crystals, sudden Shun, etc. of the hetero interface is good it is intended to provide a film forming method and film forming apparatus capable of forming a thin film.

【0005】 [0005]

【課題を解決するための手段】すなわち、本発明の成膜方法は、所定の真空度に設定した真空チャンバ内に基板を配設して加熱するとともに、前記基板に向けて配置されたノズルおよびこのノズルに近接して設けられた開閉弁を有するガス射出機構によって、前記基板に向けて所定の原料ガスを断続的あるいは連続的に噴出させ、前記基板面に結晶を成長させて成膜を行うことを特徴とする。 Means for Solving the Problems That is, the film formation method of the present invention is to heat by disposing the substrate in a vacuum chamber set at a predetermined degree of vacuum, a nozzle and disposed toward the substrate by the gas injection mechanism having a closing valve which is provided close to the nozzle, a film is formed a predetermined raw material gas intermittently or continuously jetted, crystals are grown on the substrate surface toward the substrate it is characterized in.

【0006】また、本発明の成膜装置は、所定の真空度に設定可能に構成された真空チャンバと、前記真空チャンバ内に配設され、成膜を行う基板を支持および加熱する基板支持機構と、前記基板に向けて配置されたノズルおよびこのノズルに近接して設けられた開閉弁を有し、 Further, film formation apparatus of the present invention, a vacuum chamber which is capable of setting a predetermined degree of vacuum is disposed within the vacuum chamber, a substrate support mechanism for supporting and heating a substrate for forming a film If, having an opening and closing valve provided in close proximity to the nozzle and the nozzle disposed toward the substrate,
前記基板に向けて所定の原料ガスを断続的あるいは連続的に噴出させるガス射出機構とを具備したことを特徴とする。 Characterized by comprising a gas injection mechanism for intermittently or continuously jetted predetermined raw material gas toward the substrate.

【0007】 [0007]

【作用】上記構成の本発明の成膜方法および成膜装置では、ノズルに近接して設けられた開閉弁を開閉することにより、ノズルから基板に向けて断続的あるいは連続的に勢い良く、原料ガスを噴出させる。 [Action] In the film forming method and film forming apparatus of the present invention constructed as described above, by opening and closing the on-off valve provided adjacent to the nozzle, intermittent or continuous vigorously toward the substrate from the nozzle, the raw material jetting gas. すなわち、この原料ガスは、ガス供給配管内の圧力と、真空チャンバ内の圧力との差によって基板方向に大きな速度を持つ分子だけが引き出され、進行方向の運動エネルギーの成分が、 That is, the raw material gas, the pressure in the gas supply pipe, only molecules with a large velocity in the substrate direction by the difference between the pressure in the vacuum chamber is withdrawn, the component in the traveling direction of the kinetic energy,
これと垂直な運動エネルギーの成分に比べて非常に大きな指向性の高い、ガス流として(断続供給の場合は高密度の短時間分子パルスとして)基板に供給される。 This high very big directivity as compared to components in the vertical kinetic energy, (in the case of intermittent feed dense short as molecular pulse) as the gas stream is supplied to the substrate.

【0008】すなわち、本発明によれば、図3に示すように、ノズルから射出するガス分子は、進行方向の速度成分についてはある値を中心とする比較的狭い分布(a)を示し、進行方向と垂直な速度成分(b)についてはほぼゼロである。 [0008] That is, according to the present invention, as shown in FIG. 3, the gas molecules ejected from the nozzle, a relatively narrow distribution centered a certain value for the velocity component in the traveling direction (a), proceeds is almost zero for a direction perpendicular velocity component (b). これに対して、熱分解を用いた従来の方法による場合、原料ガスを真空チャンバ内に供給するノズルと、開閉弁との間等の配管内において、ガス分子の進行方向の速度成分が減少し、図4に示すように、進行方向の速度成分(a)および進行方向と垂直な速度成分(b)ともに、不揃いな広い分布となっている。 In contrast, when the conventional method using the thermal decomposition, a nozzle for supplying a raw material gas into the vacuum chamber, the inside of the pipe, such as between the opening and closing valve, reduces the traveling direction of the velocity component of the gas molecules as shown in FIG. 4, the traveling direction of the velocity component (a) and the traveling direction perpendicular velocity component (b) together, and has a irregular wide distribution.

【0009】このように、指向性の高い高密度のガス流によって成膜を行うと、基板に損傷を与えることがなく、良質な薄膜を形成することができる。 [0009] Thus, when a film is formed by high directivity dense gas flow, without damaging the substrate, it is possible to form a high-quality thin film.

【0010】すなわち、他のガス分子がほとんどない状態で、運動エネルギーの高い所定のガス分子を基板面に供給することができるので、マイグレーションを促進させることができ、質の良い結晶を成長させることができる。 [0010] That is, in the absence most other gas molecules, since a high specific gas molecules kinetic energy can be supplied to the substrate surface, it is possible to accelerate the migration, to grow good quality crystals can. また、断続供給の場合にはガス分子が基板面に到達する時間の制御性が高くなるので、反応時間の位相が揃った状態で成膜を行うことができ、面内均一性、ALE Further, since the high controllability of the time the gas molecules reaching the substrate surface in the case of intermittent feed, it is possible to form a film in a state in which phases are aligned in the reaction time, in-plane uniformity, ALE
条件の改善を図ることができる。 It is possible to improve the conditions. さらに、原料供給の高速切り替えを行うことができ、ヘテロ界面の急俊性を向上させることができる。 Furthermore, it is possible to perform high-speed switching of material supply, it is possible to improve the rapid Shun of the hetero interface.

【0011】なお、原料ガスとしては、例えば、3族原料の場合、トリメチルガリウム等の有機金属あるいは塩化ガリウム等の塩化物、5族原料の場合、アルシンやホスフィン等の水素化物、トリメチル砒素等の有機金属、 [0011] As the raw material gas, for example, in the case of group III material, organometallic or chlorides, such as gallium chloride, such as trimethyl gallium, if the group V material, a hydride such as arsine or phosphine, such as trimethyl arsenic organic metal,
塩化砒素等の塩化物等を用いることができる。 It can be used chlorides such as arsenic chloride.

【0012】 [0012]

【実施例】以下、本発明の一実施例を図面を参照して説明する。 EXAMPLES The following will be described with reference to the drawings an embodiment of the present invention.

【0013】図1は、本発明の一実施例の装置の構成を示すもので、図において符号1は縦断面がほぼ円形に形成された円筒状の真空チャンバを示している。 [0013] Figure 1 shows the configuration of an apparatus of an embodiment of the present invention, reference numeral 1 in the figure shows a cylindrical vacuum chamber which longitudinal section is formed in a substantially circular shape. この真空チャンバ1には、真空ポンプ(図示せず)等に接続された排気配管2が配設されており、内部を所定の真空度に設定することができるよう構成されている。 This vacuum chamber 1, an exhaust pipe 2 connected to a vacuum pump (not shown) or the like is disposed, and is configured to be able to set the internal to a predetermined degree of vacuum.

【0014】また、上記真空チャンバ1内には、加熱用ヒータ(図示せず)を備え、基板3を保持しつつ、この基板3を加熱可能に構成されたホルダ4が設けられており、このホルダ4の周囲には、液体窒素によって冷却可能に構成された液体窒素シュラウド5が設けられている。 [0014] The aforementioned vacuum chamber 1, provided with a heater (not shown), while holding the substrate 3, the holder 4 is configured to be heated is provided the substrate 3, this around the holder 4, the liquid nitrogen shroud 5 which is configured to be cooled is provided by liquid nitrogen.

【0015】また、真空チャンバ1内には、上記ホルダ3に向けて突出する如く、2 つのノズル6が設けられている。 Further, the vacuum chamber 1, as to protrude toward the holder 3, two nozzles 6 are provided. これらのノズル6は、いわゆる断熱膨脹ノズルであって、図2にその横断面を示すように、ガス通路6a These nozzles 6 is a so-called adiabatic expansion nozzle, as shown the cross-section in FIG. 2, the gas passage 6a
には、隘路6bが形成されており、この隘路6bの両側には、隘路6bに向けてガス通路断面が徐々に小さくなるようテーパ部6c、6dが形成されている。 , The bottleneck 6b are formed on both sides of the narrow path 6b, the tapered portion 6c so that the gas passage section gradually decreases toward the narrow path 6b, 6d are formed. さらに、 further,
これらのノズル6にはそれぞれガス供給配管7が接続されており、ガス供給配管7には、ノズル6に近接して高速開閉バルブ8が介挿されている。 Each of these nozzle 6 is connected to a gas supply pipe 7, the gas supply pipe 7, high-speed on-off valve 8 in proximity to the nozzle 6 is inserted.

【0016】なお、この高速開閉バルブ8としては、1 [0016] It should be noted that, as this high-speed opening and closing valve 8, 1
ミリ秒ないし10ミリ秒程度の時間で開閉可能なものを使用する。 It is no milliseconds to use those capable of opening and closing at about 10 milliseconds. また、ノズル6と高速開閉バルブ8とはできるだけ近接して配置し、少なくともこれらの間が直線的に結ばれ、高速開閉バルブ8の開閉に伴って、ガス供給配管7側からノズル6側へ、これらの間の圧力差によって噴出するガス分子の噴出方向の運動エネルギーが損なわれないようにする必要がある。 Further, it disposed as close as possible to the nozzle 6 and the high-speed opening and closing valve 8, at least tied is linearly between them, with the opening and closing of the high-speed opening and closing valve 8, to the nozzle 6 side from the gas supply pipe 7 side, kinetic energy of the jet direction of the gas molecules ejected by a pressure difference between them is necessary to prevent impaired.

【0017】このように構成されたノズル6等のガス供給機構は、供給するガス種の数に応じて設けられるものであり、例えば3 種類のガスを供給しながら成膜を実施する場合は、3 つ設ける必要がある。 The gas supply mechanism of such nozzle 6 or the like which is configured as described above, which is provided according to the number of gas species supplied, when carrying out the deposition while supplying, for example, three types of gas, three it is necessary to provide.

【0018】以下、上記構成の装置を用いて、断続的に原料供給を行って、基板3上にGaAsの薄膜を形成する場合について説明する。 [0018] Hereinafter, by using the apparatus of the above configuration, by performing the intermittent raw material supply, the case of forming a GaAs thin film on the substrate 3.

【0019】まず、一方のガス供給配管7に、トリメチルガリウム(C 39 Ga)を供給することのできる原料ガス供給源を接続し、もう一方のガス供給配管7に、 [0019] First, one of the gas supply pipe 7, connecting the raw material gas supply source capable of supplying trimethylgallium (C 3 H 9 Ga), the other of the gas supply pipe 7,
アルシン(AsH 3 )を供給することのできる原料ガス供給源を接続する。 Connecting the source gas supply source capable of supplying arsine (AsH 3). なお、トリメチルガリウムの場合、 In the case of trimethyl gallium,
原料ガス供給源からの圧力は、0.1 〜0.2 気圧程度となる。 Pressure from the material gas supply source is of the order of 0.1 to 0.2 atm. また、アルシンについては、0.1 〜20気圧程度となる。 As for arsine, and about 0.1 to 20 atm.

【0020】そして、ホルダ4に基板3を配置して、この基板3を200 〜600 ℃に加熱し、高速開閉バルブ8を所定パルス幅、例えば50ミリ秒以下程度となるように、 [0020] Then, by placing the substrate 3 on the holder 4, heating the substrate 3 to 200 to 600 ° C., high-speed opening and closing valve 8 a predetermined pulse width, for example, as a degree less than 50 ms,
交互に断続的に開閉する。 Intermittently opened and closed alternately. すると、図1に模式的に示すように、トリメチルガリウムガス分子の分子パルス1 Then, as shown schematically in Figure 1, molecules pulse 1 of trimethylgallium gas molecules
0、アルシンガス分子の分子パルス11が、交互に基板3表面に到達し、基板3上にGaAsの薄膜が形成される。 0, molecular pulse 11 of arsine gas molecules, alternately reach the substrate 3 surface, GaAs thin film is formed on the substrate 3.

【0021】このように、本実施例では、ノズル6(断熱膨脹ノズル)の直前で高速開閉バルブ8を開閉するので、ガス供給配管7内の圧力と、真空チャンバ1内の圧力との差によってガス分子が加速され、図3に示したように、進行方向の運動エネルギーの成分が、これと垂直な運動エネルギーの成分に比べて非常に大きな指向性の高い、高密度の短時間分子パルスが基板3に供給される。 [0021] Thus, in this embodiment, since opening and closing the high-speed opening and closing valve 8 in the previous nozzle 6 (adiabatic expansion nozzle), the pressure in the gas supply pipe 7, the difference between the pressure in the vacuum chamber 1 gas molecules are accelerated, as shown in FIG. 3, component in the traveling direction of the kinetic energy, which the very high a large directivity as compared to components in the vertical kinetic energy, a high density of short molecules pulse supplied to the substrate 3. なお、この時の分子パルス(ガス分子)の持つエネルギーは、100meV〜1 eV程度であると推定される。 Incidentally, the energy of this time the molecules pulses (gas molecules) is estimated to be about 100meV~1 eV. これは、従来の荷電粒子を用いた結晶成長および、熱分解による結晶成長の中間のエネルギー領域である。 This crystal growth and using a conventional charged particle, is an intermediate energy region of the crystal growth due to thermal decomposition.

【0022】したがって、他のガス分子がほとんどない状態で、運動エネルギーの高い所定のガス分子を基板3 [0022] Thus, in the absence most other gas molecules, a higher predetermined gas molecules kinetic energy substrate 3
に供給することができるので、マイグレーションを促進させることができ、質の良い結晶を成長させることができる。 Can be supplied to, it is possible to accelerate the migration, it is possible to grow good quality crystals. また、ガス分子が基板3に到達する時間の制御性が高くなるので、反応時間の位相が揃った状態で成膜を行うことができ、面内均一性、ALE条件の改善を図ることができる。 Further, since the gas molecules becomes higher controllability of time to reach the substrate 3, it is possible to form a film in a state in which phases are aligned reaction time, it is possible to achieve in-plane uniformity, improved ALE conditions . さらに、原料供給の高速切り替えを行うことができ、ヘテロ界面の急俊性を向上させることができる。 Furthermore, it is possible to perform high-speed switching of material supply, it is possible to improve the rapid Shun of the hetero interface.

【0023】 [0023]

【発明の効果】以上説明したように、本発明の成膜方法および成膜装置によれば、基板に損傷を与えることがなく、また、マイグレーションの促進により、良好な結晶を得ることができる。 As described in the foregoing, according to the film forming method and film forming apparatus of the present invention, without damaging the substrate and, by promoting the migration, it is possible to obtain good crystallinity. 断続供給の場合には、さらに、反応の時間位相が揃うので、面内均一性およびALE条件の改善を計ることができるとともに、原料ガスを高速で切り替えることができるので、ヘテロ界面の急峻性を確保することができる。 In the case of intermittent supply, further, the time phase of the reaction are aligned, it is possible to improve the in-plane uniformity and ALE conditions, it is possible to switch the source gas at a high speed, the steepness of the hetero interface it can be ensured.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の一実施例の成膜装置の構成を示す図。 Diagram illustrating the configuration of a film formation apparatus of an embodiment of the present invention; FIG.

【図2】図1の成膜装置の要部構成を拡大して示す図。 FIG. 2 shows an enlarged main part configuration of the film deposition apparatus of FIG.

【図3】本発明方法におけるガス分子の運動エネルギーの状態を説明するための図。 View for explaining a state of kinetic energy of the gas molecules in [3] the method of the present invention.

【図4】従来方法におけるガス分子の運動エネルギーの状態を説明するための図。 4 is a diagram for explaining the state of the kinetic energy of the gas molecules in a conventional manner.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 真空チャンバ 2 排気配管 3 基板 4 ホルダ 5 液体窒素シュラウド 6 ノズル 7 ガス供給配管 8 高速開閉バルブ 10 トリメチルガリウムガス分子の分子パルス 11 アルシンガス分子の分子パルス 1 vacuum chamber 2 exhaust pipe 3 substrate 4 holder 5 molecules pulses of molecules pulse 11 arsine gas molecules of the liquid nitrogen shroud 6 nozzle 7 gas supply pipe 8 fast closing valve 10 trimethylgallium gas molecules

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 所定の真空度に設定した真空チャンバ内に基板を配設して加熱するとともに、前記基板に向けて配置されたノズルおよびこのノズルに近接して設けられた開閉弁を有するガス射出機構によって、前記基板に向けて所定の原料ガスを断続的あるいは連続的に噴出させ、前記基板面に結晶を成長させて成膜を行うことを特徴とする成膜方法。 With heating by arranging the substrate to 1. A vacuum chamber was set to a predetermined degree of vacuum, gas having a closing valve which is provided in proximity to the arranged nozzles and the nozzle toward the substrate by injection mechanism, intermittently or continuously ejecting predetermined raw material gas toward the substrate, film forming method characterized in that a film is formed crystals are grown on the substrate surface.
  2. 【請求項2】 所定の真空度に設定可能に構成された真空チャンバと、 前記真空チャンバ内に配設され、成膜を行う基板を支持および加熱する基板支持機構と、 前記基板に向けて配置されたノズルおよびこのノズルに近接して設けられた開閉弁を有し、前記基板に向けて所定の原料ガスを断続的あるいは連続的に噴出させるガス射出機構とを具備したことを特徴とする成膜装置。 A vacuum chamber wherein is capable of setting a predetermined degree of vacuum is disposed within the vacuum chamber, a substrate support mechanism for supporting and heating a substrate for forming a film, toward the substrate placed by having the nozzle and the opening and closing valve provided in close proximity to the nozzle, forming, characterized by comprising a gas injection mechanism for intermittently or continuously jetted predetermined raw material gas toward the substrate membrane device.
JP1499192A 1992-01-30 1992-01-30 Film forming method and a film forming apparatus Expired - Fee Related JP3126787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1499192A JP3126787B2 (en) 1992-01-30 1992-01-30 Film forming method and a film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1499192A JP3126787B2 (en) 1992-01-30 1992-01-30 Film forming method and a film forming apparatus

Publications (2)

Publication Number Publication Date
JPH05206036A true true JPH05206036A (en) 1993-08-13
JP3126787B2 JP3126787B2 (en) 2001-01-22

Family

ID=11876413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1499192A Expired - Fee Related JP3126787B2 (en) 1992-01-30 1992-01-30 Film forming method and a film forming apparatus

Country Status (1)

Country Link
JP (1) JP3126787B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576062B2 (en) 2000-01-06 2003-06-10 Tokyo Electron Limited Film forming apparatus and film forming method
US6866746B2 (en) 2002-01-26 2005-03-15 Applied Materials, Inc. Clamshell and small volume chamber with fixed substrate support
US6868859B2 (en) 2003-01-29 2005-03-22 Applied Materials, Inc. Rotary gas valve for pulsing a gas
US6994319B2 (en) 2003-01-29 2006-02-07 Applied Materials, Inc. Membrane gas valve for pulsing a gas
US7713582B2 (en) 2002-10-08 2010-05-11 Hitachi Kokusai Electric Substrate processing method for film formation
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US7860597B2 (en) 2001-07-27 2010-12-28 Applied Materials, Inc. Atomic layer deposition apparatus
US8187970B2 (en) 2001-07-25 2012-05-29 Applied Materials, Inc. Process for forming cobalt and cobalt silicide materials in tungsten contact applications
US9032906B2 (en) 2005-11-04 2015-05-19 Applied Materials, Inc. Apparatus and process for plasma-enhanced atomic layer deposition
US9051641B2 (en) 2001-07-25 2015-06-09 Applied Materials, Inc. Cobalt deposition on barrier surfaces

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576062B2 (en) 2000-01-06 2003-06-10 Tokyo Electron Limited Film forming apparatus and film forming method
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US9051641B2 (en) 2001-07-25 2015-06-09 Applied Materials, Inc. Cobalt deposition on barrier surfaces
US8187970B2 (en) 2001-07-25 2012-05-29 Applied Materials, Inc. Process for forming cobalt and cobalt silicide materials in tungsten contact applications
US9209074B2 (en) 2001-07-25 2015-12-08 Applied Materials, Inc. Cobalt deposition on barrier surfaces
US7860597B2 (en) 2001-07-27 2010-12-28 Applied Materials, Inc. Atomic layer deposition apparatus
US8027746B2 (en) * 2001-07-27 2011-09-27 Applied Materials, Inc. Atomic layer deposition apparatus
US9031685B2 (en) 2001-07-27 2015-05-12 Applied Materials, Inc. Atomic layer deposition apparatus
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US6866746B2 (en) 2002-01-26 2005-03-15 Applied Materials, Inc. Clamshell and small volume chamber with fixed substrate support
US7713582B2 (en) 2002-10-08 2010-05-11 Hitachi Kokusai Electric Substrate processing method for film formation
US6868859B2 (en) 2003-01-29 2005-03-22 Applied Materials, Inc. Rotary gas valve for pulsing a gas
US6994319B2 (en) 2003-01-29 2006-02-07 Applied Materials, Inc. Membrane gas valve for pulsing a gas
US9032906B2 (en) 2005-11-04 2015-05-19 Applied Materials, Inc. Apparatus and process for plasma-enhanced atomic layer deposition

Also Published As

Publication number Publication date Type
JP3126787B2 (en) 2001-01-22 grant

Similar Documents

Publication Publication Date Title
US4989542A (en) Apparatus for synthesizing diamond
US5469806A (en) Method for epitaxial growth of semiconductor crystal by using halogenide
Ozeki et al. New approach to the atomic layer epitaxy of GaAs using a fast gas stream
US20060263522A1 (en) Apparatus for chemical vapor deposition (CVD) with showerhead and method thereof
US20010009693A1 (en) Thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotubes using the same
US4869924A (en) Method for synthesis of diamond and apparatus therefor
US6066204A (en) High pressure MOCVD reactor system
US20140251954A1 (en) Pulsed remote plasma method and system
US5288327A (en) Deflected flow in chemical vapor deposition cell
US5637146A (en) Method for the growth of nitride based semiconductors and its apparatus
US4392453A (en) Molecular beam converters for vacuum coating systems
US5342660A (en) Method for plasma jet deposition
US4761269A (en) Apparatus for depositing material on a substrate
US5626922A (en) Plasma processing method
US5166092A (en) Method of growing compound semiconductor epitaxial layer by atomic layer epitaxy
US5730802A (en) Vapor growth apparatus and vapor growth method capable of growing good productivity
US4989541A (en) Thin film forming apparatus
US5204144A (en) Method for plasma deposition on apertured substrates
US20060260750A1 (en) Plasma processing apparatuses and methods
Sato et al. Site‐controlled growth of nanowhiskers
US6027564A (en) Low vacuum vapor process for producing epitaxial layers
US4911102A (en) Process of vapor growth of gallium nitride and its apparatus
US4471003A (en) Magnetoplasmadynamic apparatus and process for the separation and deposition of materials
US4800105A (en) Method of forming a thin film by chemical vapor deposition
US20010047764A1 (en) Method and apparatus for improved chemical vapor deposition processes using tunable temperature controlled gas injectors

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees