JPS63204222A - Light beam scanner - Google Patents

Light beam scanner

Info

Publication number
JPS63204222A
JPS63204222A JP3704387A JP3704387A JPS63204222A JP S63204222 A JPS63204222 A JP S63204222A JP 3704387 A JP3704387 A JP 3704387A JP 3704387 A JP3704387 A JP 3704387A JP S63204222 A JPS63204222 A JP S63204222A
Authority
JP
Japan
Prior art keywords
light beam
refractive index
light
laser beam
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3704387A
Other languages
Japanese (ja)
Other versions
JP2560712B2 (en
Inventor
Ken Hirasawa
平澤 憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP62037043A priority Critical patent/JP2560712B2/en
Publication of JPS63204222A publication Critical patent/JPS63204222A/en
Application granted granted Critical
Publication of JP2560712B2 publication Critical patent/JP2560712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To obtain a light beam which has small transmission loss and a flat light quantity distribution in a scanning direction by providing aluminum as the lowermost layer of a light beam inflection mirror, a 1st dielectric layer with a small refractive index as its upper layer part, and a 2nd dielectric layer with a high refractive index as its upper layer part. CONSTITUTION:A laser beam 4 which is deflected through a newly provided cylindrical mirror 9 is incident on the inflection mirror 3 and the electric-field directional component E of the laser beam 4 is made nearly perpendicular to a deflection scanning surface. The inflection mirror 3 has an aluminum film 16 on a glass substrate 15, the SiO2 film 17 with the low refractive index on it, and the TiO2 film 18 with the high refractive index further on it. In this case, the respective films are so formed that nd is nearly lambda/4, where (n) and (d) are the refractive indexes of the SiO2 film and TiO2 film and lambda is the wavelength of the laser beam 4. Consequently, the loss of light laser transmission from a light source to a photosensitive body is reduced and the distribution of the quantity of light incident on the photosensitive body can be uniformed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、レーザビームの走査によって画像を読取る装
置あるいは記録する装置に用いる光ビーム走査装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light beam scanning device used in a device for reading or recording an image by scanning with a laser beam.

[従来の技術] 例えば、レーザプリンタでは、第7図の断面図に示すよ
うな光ビーム走査装置を用いて感光体を露光するように
構成している。すなわち、第7図において、1は光源か
ら発生されたレーザビームを偏向する光ビーム偏向器、
2a、 2bは結像レンズ、3は偏向されたレーザビー
ム4を出射窓5を介して感光体6の走査面に入射する折
り曲げ鏡である。第8図は第7図の構成を光学的に展開
して表わした概念図であり、光源8から発生されたレー
ザビームは偏向器1で偏向され、結像レンズ2a、2b
を介して折り曲げ鏡3に入射される。
[Prior Art] For example, a laser printer is configured to expose a photoreceptor using a light beam scanning device as shown in the cross-sectional view of FIG. That is, in FIG. 7, 1 is a light beam deflector that deflects a laser beam generated from a light source;
2a and 2b are imaging lenses, and 3 is a bending mirror that makes the deflected laser beam 4 enter the scanning surface of the photoreceptor 6 through the exit window 5. FIG. 8 is a conceptual diagram showing the optical development of the configuration shown in FIG. 7, in which a laser beam generated from a light source 8 is deflected by a deflector 1,
The light is incident on the bending mirror 3 via.

このとき、レーザビーム4は有効偏向走査角αで折り曲
げ鏡3の鏡面内で走査されるが、α=0″の走査角中央
を通るレーザど−ムは折り曲げ鏡3に対し入射角βで入
射される。すなわち、折り曲げ鏡3は副走査方向に傾き
角Bで保持されている。
At this time, the laser beam 4 is scanned within the mirror surface of the folding mirror 3 with an effective deflection scanning angle α, but the laser beam passing through the center of the scanning angle of α=0'' is incident on the folding mirror 3 at an incident angle β. That is, the bending mirror 3 is held at an inclination angle B in the sub-scanning direction.

このような光ビーム走査装置において、折り曲げ鏡3は
、従来、ガラス基板の上にアルミニウム膜を形成し、そ
の保護膜として低屈折率の誘電体層例えばS i02を
数ionmの膜厚で形成した表面反射鏡で構成されてい
る。一方、レーザビーム4はその偏向方向(電界成分方
向)Eが第7図に示すように偏向走査面に対して略垂直
になるようにS偏光によって偏向される。これは、偏向
器1におけるレーザビームの入射角の変化に対し、S偏
向の方がP偏向に比べて反射率が高く、しかも変動が少
ないためである。
In such a light beam scanning device, the bending mirror 3 has conventionally been formed by forming an aluminum film on a glass substrate, and as a protective film for the aluminum film, a dielectric layer having a low refractive index, such as Si02, is formed with a thickness of several ion meters. It consists of a surface reflector. On the other hand, the laser beam 4 is deflected by S-polarized light so that its deflection direction (electric field component direction) E is substantially perpendicular to the deflection scanning plane as shown in FIG. This is because the reflectance of the S-polarization is higher than that of the P-polarization, and the change in the angle of incidence of the laser beam on the deflector 1 is smaller than that of the P-polarization.

[発明が解決しようとする問題点] ところが、折り曲げ鏡3を上記のような構成の表面反射
鏡で構成した場合、レーザビーム4のα=0″の偏向方
向を非偏向走査方向Yまたは偏向走査方向Xに一致させ
折り曲げ鏡3の傾き角βをβ−45′″としてもその反
射率Rは第9図の特性カーブ73に示すように非偏向走
査方向Yについて80%程度しかならず、また偏向走査
方向Xについては走査角αの増加につれて反射率Rが低
下する傾向となり、光源8から感光体6に至るまでのレ
ーザビーム4の伝達損失が大きいという問題がある。そ
の結果、光源8の光ωを増加させたり、感光体6の回転
速度を低く制御しなければならなくなるという問題が生
じる。
[Problems to be Solved by the Invention] However, when the bending mirror 3 is constituted by a surface reflecting mirror having the above-mentioned configuration, the deflection direction of the laser beam 4 at α=0'' can be changed to the non-deflection scanning direction Y or the deflection scanning direction. Even if the bending mirror 3 is aligned with the direction In the scanning direction X, the reflectance R tends to decrease as the scanning angle α increases, and there is a problem in that the transmission loss of the laser beam 4 from the light source 8 to the photoreceptor 6 is large. As a result, a problem arises in that it is necessary to increase the light ω of the light source 8 or to control the rotational speed of the photoreceptor 6 to be low.

なお、第9図は30nmの5i02層をアルミニウム上
に形成した時の反射率特性を示すものである。
Incidentally, FIG. 9 shows the reflectance characteristics when a 30 nm thick 5i02 layer is formed on aluminum.

本発明は上記のような問題に鑑み、光ビームの伝達損失
がすくなく、かつ走査方向における光量分布が平坦な光
ビームを得ることができる光ビーム走査装置を提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a light beam scanning device that can obtain a light beam with little transmission loss and a flat light quantity distribution in the scanning direction. .

[問題点を解決するための手段] 本発明は、n=誘電体層の屈折率、d=層厚、λ=光ビ
ーム波長としたとき、光ビーム折り曲げ鏡は最下層にア
ルミニウム、その上層部にnd=略λ/4となるように
形成された低屈折率の第1の誘電体層を有し、さらにそ
の上層部にnd−路λ/4となるように形成された高屈
折率の第2の誘電体層を有する構造としたものである。
[Means for Solving the Problems] The present invention provides that, where n = refractive index of the dielectric layer, d = layer thickness, and λ = light beam wavelength, the light beam bending mirror has aluminum in the bottom layer and aluminum in the upper layer. It has a first dielectric layer with a low refractive index formed so that nd=approximately λ/4, and a high refractive index dielectric layer formed on the upper layer so as to have an nd path of λ/4. This structure has a second dielectric layer.

[作用] 2つの誘電体層の相互屈折作用によって入射光ビームに
対する反射率が増加し、また反射率分布もほぼ均一にな
る。
[Function] The mutual refraction of the two dielectric layers increases the reflectance for the incident light beam, and also makes the reflectance distribution substantially uniform.

[実施例] 第1図は本発明による光ビーム走査装置の一実施例を示
す斜視図であり、第2図はその側断面図である。
[Embodiment] FIG. 1 is a perspective view showing an embodiment of a light beam scanning device according to the present invention, and FIG. 2 is a side sectional view thereof.

これらの図において、第7図の従来構成と同一部分は同
一記号で表わしているが、この実施例においては折り曲
げ鏡3に対しては新たに設けたシリンドリカルミラー9
を介して偏向されたレーザビーム4が入射されるように
なっている。
In these figures, parts that are the same as those in the conventional configuration shown in FIG.
A deflected laser beam 4 is made incident through the laser beam.

そして、この実施例においてもレーザビーム4の電界方
向成分Eは図示のように偏向走査面に対して略垂直であ
る。
Also in this embodiment, the electric field direction component E of the laser beam 4 is substantially perpendicular to the deflection scanning plane as shown.

折り曲げ鏡3の構成は第3図の断面図に示すようにガラ
ス基板15の上にアルミニウム膜16を形成し、その上
に低屈折率の5i02膜17を、さらに高屈折率のTi
02M18を形成している。この場合5102膜、 T
iO2膜の屈折率をn、dを層厚、λをレーザビーム4
の波長とすると、それぞれの膜はnd=略λ/4となる
ように形成されている。
The structure of the bending mirror 3 is as shown in the cross-sectional view of FIG.
02M18 is formed. In this case 5102 membrane, T
The refractive index of the iO2 film is n, d is the layer thickness, and λ is the laser beam 4.
When the wavelength is , each film is formed so that nd=approximately λ/4.

一方、この実施例における折り曲げ鏡3の有効走査角=
30°であり、偏向装置3によるレーザビーム4の走査
角の中央(α=0°)を通るセンタ光ビームの折曲げ鏡
3への入射角βは略50°である。
On the other hand, the effective scanning angle of the bending mirror 3 in this embodiment =
The incident angle β of the center light beam passing through the center of the scanning angle of the laser beam 4 by the deflection device 3 (α=0°) on the bending mirror 3 is approximately 50°.

α、βとα=0°以外のレーザビームの入射角θ1との
関係は、第4図に示すように、βが増加すればθ1も増
加するが、θ1のαの変化による変動量は減少する。
The relationship between α, β and the incident angle θ1 of a laser beam other than α=0° is shown in Figure 4, as shown in Figure 4, as β increases, θ1 also increases, but the amount of variation in θ1 due to changes in α decreases. do.

一方、偏向と関係する入射面(入射光と反射光とを含む
面)と偏向走査面に垂直な面とのなす角度ψは、第6図
に示すようにβとαとの関係で変化するが、この角度φ
は反射率RをRp (p偏向成分の反射率)とR6(S
偏向成分の反射率)の合成として計算する式に用いる。
On the other hand, the angle ψ between the incident plane (the plane containing the incident light and reflected light) and the plane perpendicular to the deflection scanning plane, which is related to deflection, changes depending on the relationship between β and α, as shown in Figure 6. However, this angle φ
is the reflectance R, Rp (reflectance of p polarization component) and R6 (S
It is used in the formula to calculate the composition of the reflectance of the deflection components.

具体的にはR=COS  φ・Rp+sin 2φ−R
s−(1)によって合成反射率を求める。
Specifically, R=COS φ・Rp+sin 2φ−R
The combined reflectance is determined by s-(1).

第6図は従来の折り曲げ鏡と本発明における折り曲げ鏡
の反射率特性を示した図であり、19は5i02(n=
1.45>、nd=30nmの膜をアルミニウムに形成
した従来例の反射率特性であり、80%と低い値を示し
ているのに対し、20で示す本発明の反射率特性は従来
に比べて反射率を10%増加させ、しかも反射率分布が
フラットになっていることがわかる。
FIG. 6 is a diagram showing the reflectance characteristics of the conventional folding mirror and the folding mirror of the present invention, and 19 is 5i02 (n=
1.45>, nd = 30 nm film formed on aluminum, which shows a low value of 80%, whereas the reflectance characteristics of the present invention, shown as 20, are lower than the conventional example. It can be seen that the reflectance was increased by 10% and the reflectance distribution became flat.

この反射率は、従来におけるS偏向を特徴とする特性2
1の反射率とほぼ同じであり、また反射率分布もよりフ
ラットになっている。
This reflectance is based on the conventional characteristic 2 characterized by S-polarization.
The reflectance is almost the same as that of No. 1, and the reflectance distribution is also flatter.

なお、第6図の記号は以下のことを意味している。Note that the symbols in FIG. 6 mean the following.

5i02は従来の30nm膜厚の折曲げ鏡、1−(−1
は本発明による折曲げ鏡の反射率を示し、また添字p−
sはP偏向の反射率、S偏向の反射率を表し、Xは走査
中央(α−0” )でS偏向となるように設定された系
、Yは同様にp偏向設定の系を表わしている。
5i02 is a conventional folding mirror with a film thickness of 30 nm, 1-(-1
indicates the reflectance of the folding mirror according to the invention, and the subscript p-
s represents the reflectance of P polarization and the reflectance of S polarization, X represents a system set to have S polarization at the scanning center (α-0''), and Y represents a system similarly set to p polarization. There is.

ところで、低屈折率誘電体膜としては5i02以外にH
(lF2、^1203等を用いていることができ、また
高屈折率誘電体膜としてはTiO2以外にSiO、Ce
O2、TiO等を用いることができる。
By the way, as a low refractive index dielectric film, H
(lF2, ^1203, etc. can be used, and as a high refractive index dielectric film, in addition to TiO2, SiO, Ce
O2, TiO, etc. can be used.

このように本実施例によれば、光源から感光体までの光
ビーム伝達損失を減少させ、感光体への入射光量分布を
均一化することができる。これによって、光源光量を低
下させて低コスト化が可能となり、また平坦な光量分布
により高画質が得られ、さらに記録/読取り速度の向上
が可能となる。
As described above, according to this embodiment, the light beam transmission loss from the light source to the photoreceptor can be reduced, and the distribution of the amount of light incident on the photoreceptor can be made uniform. This makes it possible to reduce the cost by lowering the amount of light from the light source, to obtain high image quality due to the flat light amount distribution, and to improve the recording/reading speed.

[発明の効果] 以上の説明から明らかなように本発明によれば光ビーム
の伝達損失が少なく、かつ走査方向における光量分布が
平坦な光ビームを得ることができる。これによって、光
源の低コスト化と記録/読取り速度の向上を図ることが
できるという効果が得られる。
[Effects of the Invention] As is clear from the above description, according to the present invention, it is possible to obtain a light beam with little transmission loss and a flat light amount distribution in the scanning direction. This has the effect of reducing the cost of the light source and improving the recording/reading speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光ビーム走査装置の一実施例を示
す斜視図、第2図は第1図の側断面図、第3図は第1図
における折り曲げ鏡の構成を示す断面図、第4図および
第5図は折曲げ鏡に対する光ビーム入射角と走査角との
関係を示す説明図、第6図は折り曲げ鏡の反射率特性を
示す特性図、第7図は従来の光ビーム走査装置の構成を
示す側断面図、第8図は第7図の光学的展開図、第9図
は従来の折り曲げ鏡の反射率特性を示す特性図である。 1・・・光ビーム偏向器、2a、2b・・・結像レンズ
、3・・・折り曲げ鏡、4・・・レーザビーム、5・・
・出射窓、6・・・感光体、8・・・光源、9・・・シ
リンドリカルミラー、15・・・ガラス基板、16・・
・アルミニウム膜、第9 図
1 is a perspective view showing an embodiment of a light beam scanning device according to the present invention, FIG. 2 is a side sectional view of FIG. 1, and FIG. 3 is a sectional view showing the configuration of the bending mirror in FIG. Figures 4 and 5 are explanatory diagrams showing the relationship between the angle of incidence of the light beam on the folding mirror and the scanning angle, Figure 6 is a characteristic diagram showing the reflectance characteristics of the folding mirror, and Figure 7 is the conventional light beam scanning. FIG. 8 is an optical development view of FIG. 7, and FIG. 9 is a characteristic diagram showing the reflectance characteristics of a conventional bending mirror. DESCRIPTION OF SYMBOLS 1... Light beam deflector, 2a, 2b... Imaging lens, 3... Bending mirror, 4... Laser beam, 5...
- Output window, 6... Photoreceptor, 8... Light source, 9... Cylindrical mirror, 15... Glass substrate, 16...
・Aluminum film, Fig. 9

Claims (2)

【特許請求の範囲】[Claims] (1)光ビーム発生器、光ビーム偏向器及び偏向された
光ビームを被走査面へ導く光ビーム折り曲げ鏡とを有す
る光ビーム走査装置において、n=誘電体層の屈折率、
d=層厚、λ=光ビーム波長としたとき、前記光ビーム
折り曲げ鏡は最下層にアルミニュウム、その上層部にn
d=略λ/4となるように形成された低屈折率の第1の
誘電体層と、さらにその上層部にnd=略λ/4となる
ように形成された高屈折率の第2の誘電体層とを積層し
て形成されていることを特徴とする光ビーム走査装置。
(1) In a light beam scanning device having a light beam generator, a light beam deflector, and a light beam bending mirror that guides the deflected light beam to a surface to be scanned, n=refractive index of the dielectric layer;
When d=layer thickness and λ=light beam wavelength, the light beam bending mirror has aluminum in the bottom layer and n in the upper layer.
A first dielectric layer with a low refractive index formed so that d=approximately λ/4, and a second dielectric layer with a high refractive index formed so that nd=approximately λ/4 on the upper layer thereof. A light beam scanning device characterized in that it is formed by laminating a dielectric layer.
(2)光ビーム偏向器に入射する光ビームの偏向方向(
電界成分方向)が偏向走査面に略垂直であり、光ビーム
折曲げ鏡への有効偏向走査角αの中央(α=0°)を通
る光ビームの光ビーム折り曲げ鏡への入射角をβとした
とき、 β/α≧1.0 の関係に構成されていることを特徴とする特許請求の範
囲第(1)項記載の光ビーム走査装置。
(2) Deflection direction of the light beam incident on the light beam deflector (
The direction of electric field component) is approximately perpendicular to the deflection scanning plane, and the incident angle to the light beam bending mirror of the light beam passing through the center of the effective deflection scanning angle α (α = 0°) to the light beam bending mirror is β. The light beam scanning device according to claim 1, wherein the light beam scanning device is configured to satisfy the relationship β/α≧1.0.
JP62037043A 1987-02-20 1987-02-20 Optical beam scanning device Expired - Lifetime JP2560712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62037043A JP2560712B2 (en) 1987-02-20 1987-02-20 Optical beam scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62037043A JP2560712B2 (en) 1987-02-20 1987-02-20 Optical beam scanning device

Publications (2)

Publication Number Publication Date
JPS63204222A true JPS63204222A (en) 1988-08-23
JP2560712B2 JP2560712B2 (en) 1996-12-04

Family

ID=12486571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62037043A Expired - Lifetime JP2560712B2 (en) 1987-02-20 1987-02-20 Optical beam scanning device

Country Status (1)

Country Link
JP (1) JP2560712B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100323440B1 (en) * 1995-09-12 2002-06-20 부르크하르트 한스, 게르네트 자무엘 Aluminum reflector with complex reflectance enhancement surface layer
EP2565595A1 (en) * 2011-06-28 2013-03-06 KROHNE Messtechnik GmbH Buoyant body for displaying a fill level

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172624A (en) * 1983-03-23 1984-09-29 Hitachi Ltd Optical deflecting scanner
JPS6016059A (en) * 1983-07-07 1985-01-26 Canon Inc Picture forming device
JPS6128903A (en) * 1984-07-20 1986-02-08 Canon Inc Reflector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172624A (en) * 1983-03-23 1984-09-29 Hitachi Ltd Optical deflecting scanner
JPS6016059A (en) * 1983-07-07 1985-01-26 Canon Inc Picture forming device
JPS6128903A (en) * 1984-07-20 1986-02-08 Canon Inc Reflector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100323440B1 (en) * 1995-09-12 2002-06-20 부르크하르트 한스, 게르네트 자무엘 Aluminum reflector with complex reflectance enhancement surface layer
EP2565595A1 (en) * 2011-06-28 2013-03-06 KROHNE Messtechnik GmbH Buoyant body for displaying a fill level

Also Published As

Publication number Publication date
JP2560712B2 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
US5459601A (en) Optical scanner for reducing shading
US7190498B2 (en) Optical scanning apparatus and image forming apparatus using the same
JPH02293809A (en) Optical scanner
JP2007025165A (en) Optical scanner and image forming apparatus
JP4817668B2 (en) Optical scanning device
KR20080007841A (en) Polygon mirror and laser scanning unit having the same and image forming apparatus having the same
JP2001337285A (en) Optical scanner
JPH0519191A (en) Optical scanning device
JPS63204222A (en) Light beam scanner
US8872872B2 (en) Optical scanning apparatus, including an adjustor, and image forming apparatus
JPH05303049A (en) Optical scanner for reducing shading
JP2727572B2 (en) Optical scanning device
JP2018101028A (en) Optical scanner and image forming apparatus using the same
JPH11326807A (en) Optical scanning optical system
JP2979754B2 (en) Optical scanning device
JP2002023083A (en) Optical scanning device
JP2524453Y2 (en) Laser beam scanning device
JP2002090675A (en) Optical scanner
JPH11109269A (en) Multibeam scanning optical device
KR20040084012A (en) Optical scanning apparatus
JP7387358B2 (en) Optical scanning device and image forming device
JP2001183597A (en) Optical scanner
JP3254312B2 (en) Optical scanning device
JP2002006245A (en) Optical scanner
KR20100073756A (en) Laser scanning unit and image forming apparatus employing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term