JP2727572B2 - Optical scanning device - Google Patents

Optical scanning device

Info

Publication number
JP2727572B2
JP2727572B2 JP63186533A JP18653388A JP2727572B2 JP 2727572 B2 JP2727572 B2 JP 2727572B2 JP 63186533 A JP63186533 A JP 63186533A JP 18653388 A JP18653388 A JP 18653388A JP 2727572 B2 JP2727572 B2 JP 2727572B2
Authority
JP
Japan
Prior art keywords
optical
scanning
laser beam
polarized
scanned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63186533A
Other languages
Japanese (ja)
Other versions
JPH0235413A (en
Inventor
浩 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16190158&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2727572(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63186533A priority Critical patent/JP2727572B2/en
Publication of JPH0235413A publication Critical patent/JPH0235413A/en
Application granted granted Critical
Publication of JP2727572B2 publication Critical patent/JP2727572B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光走査装置に関し、特にレーザー光束を回転
多面鏡等の光偏向器を介して記録媒体面である被走査面
を光走査し、記録や読取り等を行うようにした例えば電
子写真プロセスを有するレーザービームプリンター(LB
P)等の装置に好適な光走査装置に関するものである。
Description: BACKGROUND OF THE INVENTION The present invention relates to an optical scanning device, and more particularly, to an optical scanning device that optically scans a scanning surface, which is a recording medium surface, with a laser beam through an optical deflector such as a rotary polygon mirror. For example, a laser beam printer (LB) having an electrophotographic process for recording and reading
The present invention relates to an optical scanning device suitable for devices such as P).

(従来の技術) 従来よりレーザービームプリンター(LBP)等の光走
査装置においては、レーザー光束を用いて記録媒体面上
を光走査して画像の読み込みや読み出しを行っている。
2. Description of the Related Art Conventionally, in an optical scanning device such as a laser beam printer (LBP), an image is read or read by optically scanning a recording medium surface using a laser beam.

一般に多くのLBP等ではレーザー発振器からのレーザ
ー光束をコリメーターレンズにより平行光束とし、回転
多面鏡である光偏向器の反射面に入射させている。そし
て光偏向器の反射面によって反射させたレーザー光束を
F−θ特性を有する走査レンズ等で集光し、ミラーで反
射させた後ドラム状態光体である被走査面上に導光して
いる。
Generally, in many LBPs and the like, a laser beam from a laser oscillator is converted into a parallel beam by a collimator lens and is incident on a reflection surface of an optical deflector which is a rotating polygon mirror. The laser beam reflected by the reflection surface of the optical deflector is condensed by a scanning lens or the like having F-θ characteristics, reflected by a mirror, and then guided on a surface to be scanned, which is a drum-state light body. .

そしてモーター等により光偏向器を回転させることに
より被走査面上を光走査している。
The optical deflector is rotated by a motor or the like to optically scan the surface to be scanned.

この装置においては走査レンズの透過率の角度特性に
よって走査端は中心部に比べて光強度が減少し、例えば
第6図に示すようなシェーディングと呼ばれる光強度の
角度依存性が生じてくる。
In this apparatus, the light intensity at the scanning end is lower than that at the center due to the angular characteristics of the transmittance of the scanning lens, and for example, an angle dependency of the light intensity called shading as shown in FIG. 6 occurs.

従来このようなシェーディング補正は該シェーディン
グ補正データを光走査装置内のメモリーに記憶してお
き、光走査装置内の走査位置検出手段によって検出した
信号に同期させて、該シェーディング補正データに基づ
いて、例えばレーザー光源の注入電流を制御することに
よって被走査面上で一様な光量分布を得ていた。
Conventionally, such shading correction stores the shading correction data in a memory in the optical scanning device, synchronizes with a signal detected by a scanning position detection unit in the optical scanning device, and based on the shading correction data, For example, a uniform light intensity distribution has been obtained on the surface to be scanned by controlling the injection current of the laser light source.

しかしながらこの方法はメモリーや演算回路等の多く
の電気回路を必要とし、装置全体が複雑化する傾向があ
った。
However, this method requires many electric circuits such as a memory and an arithmetic circuit, and the whole apparatus tends to be complicated.

(発明が解決しようとする問題点) 本発明は走査用光束としてレーザー光束を用い、光偏
向器と被走査面との間の光路中に配置した光学要素の1
つであるミラーや透過部材の偏光特性を入射レーザー光
束の偏光状態に応じて適切に設定することにより、被走
査面全体にわたり、均一な光量で光走査することのでき
る簡易な構成の光走査装置の提供を目的とする。
(Problems to be Solved by the Invention) The present invention uses a laser beam as a scanning beam, and is one of optical elements arranged in an optical path between an optical deflector and a surface to be scanned.
An optical scanning device with a simple configuration that can perform optical scanning with a uniform amount of light over the entire surface to be scanned by appropriately setting the polarization characteristics of the mirror and the transmission member according to the polarization state of the incident laser beam. The purpose is to provide.

(問題点を解決する為の手段) 直線偏光のレーザー光束を導光手段により光偏向器に
導光し、該光偏向器で偏向させたレーザー光束を走査レ
ンズと光学部材を介して被走査面上に導光して光走査す
る際、該走査レンズの光軸上に相当するレーザー光束を
偏向方向が該光学部材に対してP偏光方向に偏光した状
態で入射させる場合には該光学部材のP偏光とS偏光の
反射又は透過特性XP、XSがXP<XSとなるようにし、逆に
該光学部材に対してS偏光方向に偏光した状態で入射さ
せる場合にはXP>XSとなるように該光学部材の反射又は
透過特性を構成したことである。
(Means for Solving the Problems) A linearly polarized laser beam is guided to an optical deflector by a light guide, and the laser beam deflected by the optical deflector is scanned via a scanning lens and an optical member. When light is guided upward and optically scanned, a laser beam corresponding to the optical axis of the scanning lens is incident on the optical member in a state where the deflection direction is polarized in the P polarization direction. When the reflection or transmission characteristics X P and X S of the P-polarized light and the S-polarized light are set such that X P <X S, and when the light is incident on the optical member while being polarized in the S-polarized direction, X P > such that X S is that which constitutes the reflection or transmission characteristics of the optical Faculty member.

(実施例) 第1図は本発明をLBPに適用したときの一実施例の要
部概略図である。
(Embodiment) FIG. 1 is a schematic view of a main part of an embodiment when the present invention is applied to an LBP.

図中1は半導体レーザー等のレーザー発振器、2はコ
リメーターレンズであり、レーザー発振器1からのレー
ザー光束を平行光束としている。3はシリンドリカルレ
ンズであり後述する被走査面上の走査方向と直角方向
(副走査方向7b)に屈折力を有している。
In FIG. 1, reference numeral 1 denotes a laser oscillator such as a semiconductor laser, and 2 denotes a collimator lens. The laser beam from the laser oscillator 1 is a parallel beam. Reference numeral 3 denotes a cylindrical lens having a refractive power in a direction (sub-scanning direction 7b) perpendicular to a scanning direction on a surface to be described later.

4は回転多面鏡より成る光偏向器であり、矢印4a方向
に一定速度で回転している。5はf−θ特性を有する走
査レンズ、6はミラーであり、後述するように入射する
レーザー光束の偏光状態によりP偏光とS偏光の偏光反
射特性が設定されている。
Reference numeral 4 denotes an optical deflector comprising a rotating polygon mirror, which rotates at a constant speed in the direction of arrow 4a. Reference numeral 5 denotes a scanning lens having f-θ characteristics, and reference numeral 6 denotes a mirror. The polarization reflection characteristics of P-polarized light and S-polarized light are set according to the polarization state of the incident laser beam as described later.

7はドラム状感光体8等の被走査面である。 Reference numeral 7 denotes a surface to be scanned such as the drum-shaped photoconductor 8.

本実施例では光偏向器4の回転に伴って、被走査面7
の走査方向l〜−l間を矢印7aの方向に光走査してい
る。
In this embodiment, as the light deflector 4 rotates, the scanning surface 7
The optical scanning is performed in the direction of arrow 7a between the scanning directions 1 to -1.

本実施例ではミラー6にはレーザー光束の偏光方向が
走査レンズ5の軸上の場合にのみP偏光状態となるよう
に入射している。これは被走査面7でのレーザー光束の
スポット形状等の制約から偏光方向が決められる場合が
多い。
In this embodiment, the laser beam is incident on the mirror 6 so as to be in the P-polarized state only when the polarization direction of the laser beam is on the axis of the scanning lens 5. In many cases, the polarization direction is determined by restrictions such as the spot shape of the laser beam on the surface 7 to be scanned.

一方光偏向器4によってレーザー光束が被走査面7を
走査レンズ5の軸上から軸外にかけて順次光走査してい
くとレーザー光束の偏光方向はP偏光からずれていき、
これは走査角度が増えるに従い増加し、S偏光成分の割
合が増加してくる。
On the other hand, when the laser deflector 4 sequentially scans the scanned surface 7 from the axis of the scanning lens 5 to the off-axis by the laser deflector 4, the polarization direction of the laser beam deviates from the P-polarized light.
This increases as the scanning angle increases, and the ratio of the S-polarized light component increases.

第2図はこのときのレーザー光束のミラー6への入射
状態を示す構成図である。
FIG. 2 is a configuration diagram showing a state in which the laser beam is incident on the mirror 6 at this time.

同図においてはx軸、y軸を含む平面を主走査方向を
含む平面としている。走査用光束が点Aから原点Oに向
ってx軸(軸上光束と同一方向)と角度αをもって進行
しているとする。このときレーザー光束の偏光方向は矢
印bに示す方向のz軸に平行な方向である。ミラー6を
含む平面は同図の斜線で示すようにx軸と角度φをもっ
て配置されている。P偏光成分を含む平面はミラー6の
法線と点Aと点Oを含む平面である。この平面HAの方程
式は同図に示す記号を用いると x−y/tan α+tanφ・z=0 ……(1) となる。この平面HAの法線ベクトルをAとすると A=(1,−1/tan α,tan φ) ……(2) となる。
In the figure, a plane including the x-axis and the y-axis is a plane including the main scanning direction. It is assumed that the scanning light beam travels from the point A to the origin O at an angle α with the x-axis (the same direction as the on-axis light beam). At this time, the polarization direction of the laser beam is a direction parallel to the z-axis indicated by the arrow b. The plane including the mirror 6 is arranged at an angle φ with respect to the x-axis as shown by oblique lines in FIG. The plane including the P-polarized light component is a plane including the normal line of the mirror 6 and points A and O. The equation of the plane HA is expressed as xy / tan α + tan φz = 0 using the symbols shown in FIG. If the normal vector of the plane HA is A, then A = (1, −1 / tan α, tan φ) (2).

一方レーザー光束の進行方向(AO)と矢印bで示す振
動方向を含む平面HBは x−y/tan α=0 ……(3) となる。同様に法線ベクトルをBとすると B=(1,−1/tanα,0) となる。S偏光成分の割合を求める為には平面HAと平面
HBとがなす角θのSIN成分を求める必要がある。この為
にベクトルA,Bの内積を計算すると となる。一般的に角度φは45度にする場合が多いことか
ら、この値を代入して となる。
On the other hand, a plane HB including the traveling direction (AO) of the laser beam and the vibration direction indicated by the arrow b is xy / tan α = 0 (3). Similarly, if the normal vector is B, B = (1, −1 / tanα, 0). To find the ratio of S-polarized component, use the plane HA and plane
It is necessary to find the SIN component of the angle θ formed by HB. For this reason, when calculating the inner product of the vectors A and B, Becomes In general, the angle φ is often set to 45 degrees. Becomes

走査角αを変化させたときのS偏光の割合を第3図に
示す。
FIG. 3 shows the ratio of S-polarized light when the scanning angle α is changed.

同図から明らかのように走査角αが増加するとS偏光
成分の割合が増加する。ミラーの反射率RはP偏光成分
の反射率RPとS偏光成分の反射率RSとの合成であるか
ら、その値は前述した変数θを関数として で表わされる。(4)式より反射率RはRP=RSであれば
R=RP=RSとなるがRP≠RSのときは(4)式に合成した
値となる。
As can be seen from the figure, as the scanning angle α increases, the ratio of the S-polarized light component increases. Since the reflectivity R of the mirror is the synthesis of the reflectivity R S of the reflectance R P and S-polarized component of the P-polarized component, the value variable θ described above as a function Is represented by From the equation (4), the reflectance R is R = RP = RS when R P = RS , but when R PRS , the reflectance R is a value combined with the equation (4).

本実施例ではこのときの関係を利用することにより、
反射率RP、RSの値をミラー作成時の成膜条件等により制
御し、RP<RSとなるようにして、走査角αの増加に伴っ
て合成の反射率Rを増加させている。
In this embodiment, by utilizing the relationship at this time,
The values of the reflectances R P and R S are controlled according to the film forming conditions at the time of forming the mirror, so that R P <R S and the combined reflectance R is increased with the increase of the scanning angle α. I have.

これにより被走査面上におけるシェーディングを補正
している。
Thus, shading on the surface to be scanned is corrected.

例えば走査角αを最大30度とすると、θ=26.6度とな
る。今、RP=60%、RS=90%とすると(4)式より反射
率R=66%となる。
For example, if the scanning angle α is 30 degrees at the maximum, θ = 26.6 degrees. Now, assuming that R P = 60% and R S = 90%, the reflectance R = 66% from equation (4).

この方法を用いることにより第4図に示すように被走
査面上の端部光量を10%程度補正している。
By using this method, the edge light amount on the surface to be scanned is corrected by about 10% as shown in FIG.

第5図は本発明をLBPに適用したとき他の一実施例の
概略図である。
FIG. 5 is a schematic diagram of another embodiment when the present invention is applied to an LBP.

本実施例では半導体レーザー12からのレーザー光束を
コリメーターレンズ13で平行光束とし、シリンドリカル
レンズ14で一次元方向に集光させて回転多面鏡より成る
光偏向器11に導光している。そして光偏向器11で偏向さ
れたレーザー光束をf−θ特性を有する走査レンズ15で
集光し、ミラー16で反射させた後、防塵ガラス17を介し
てドラム状態光体から成る被走査面18上に入射させてい
る。
In the present embodiment, a laser beam from a semiconductor laser 12 is converted into a parallel beam by a collimator lens 13, condensed in a one-dimensional direction by a cylindrical lens 14, and guided to an optical deflector 11 composed of a rotating polygon mirror. Then, the laser beam deflected by the optical deflector 11 is condensed by a scanning lens 15 having f-θ characteristics, reflected by a mirror 16, and then passed through a dustproof glass 17 to a scanning surface 18 formed of a drum-state light body. It is incident on the top.

被走査面18上の光走査は第1図に示す実施例と同様に
光偏向器を回転させることにより行っている。
Optical scanning on the scanned surface 18 is performed by rotating the optical deflector in the same manner as in the embodiment shown in FIG.

防塵ガラス17は現像器等からのトナーや紙粉等が走査
光学系ユニット内に入るのを防止する為に設けられてい
る。又、防塵ガラスには反射光防止の為の反射防止膜が
施されている。
The dustproof glass 17 is provided to prevent toner, paper dust, and the like from a developing device or the like from entering the scanning optical system unit. The dustproof glass is provided with an antireflection film for preventing reflected light.

本実施例ではこの反射防止膜を施す際に第1図に示し
た折り返しミラー6の反射特性と同様にP偏光成分とS
偏光成分の透過率TP、TSを制御することにより、即ち透
過特性を周辺部で高く、中心部で低くなるようにして被
走査面上に光量分布が均一となるようにしている。
In this embodiment, when this antireflection film is applied, the P-polarized light component and the S-polarized light component are reflected in the same manner as the reflection characteristics of the folding mirror 6 shown in FIG.
By controlling the transmittances T P and T S of the polarized light components, that is, the transmission characteristics are high in the peripheral portion and low in the central portion so that the light amount distribution is uniform on the surface to be scanned.

尚、第1図に示す実施例において走査レンズ5の軸上
に相当するレーザー光束の偏光状態がミラー6に対して
S偏光状態で入射する場合にはP偏光成分とS偏光成分
の反射率RP、RSがRP>RSとなるようにすれば前述と同様
に被走査面上を全体にわたり均一な光量分布で光走査す
ることができる。
In the embodiment shown in FIG. 1, when the polarization state of the laser beam corresponding to the axis of the scanning lens 5 is incident on the mirror 6 in the S polarization state, the reflectance R of the P polarization component and the S polarization component is obtained. If P and R S are set so that R P > R S , optical scanning can be performed with a uniform light amount distribution over the entire surface to be scanned, as described above.

(発明の効果) 本発明によれば前述の如く光偏向器と被走査面との間
の光路中に配置する光学部材の反射又は透過偏光特性と
適切に設定することにより、レーザー注入電流を制御す
るといった電気的に複雑な回路を用いずに被走査面全体
にわたり、均一な光量分布で光走査することのできる簡
易な構成の光走査装置を達成することができる。
(Effects of the Invention) According to the present invention, the laser injection current is controlled by appropriately setting the reflection or transmission polarization characteristics of the optical member disposed in the optical path between the optical deflector and the surface to be scanned as described above. Thus, it is possible to achieve an optical scanning device having a simple configuration capable of performing optical scanning with a uniform light amount distribution over the entire surface to be scanned without using an electrically complicated circuit.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明をLBPに適用したときの一実施例の要部
概略図、第2図はレーザー光束とミラーとの関係を示す
説明図、第3図は走査角とS偏光成分との関係を示す説
明図、第4図は反射率と走査角との関係を示す説明図、
第5図は本発明の他の一実施例の要部概略図、第6図は
被走査面における走査角とシェーディングとの関係を示
す説明図である。 図中、1、12はレーザー発振器、2、13はコリメーター
レンズ、3、14はシリンドリカルレンズ、4、11は光偏
向器、5、15は走査レンズ、6、16はミラー、17は防塵
ガラス、8、18はドラム状感光体、7は被走査面、であ
る。
FIG. 1 is a schematic view of a main part of an embodiment when the present invention is applied to an LBP, FIG. 2 is an explanatory view showing a relationship between a laser beam and a mirror, and FIG. FIG. 4 is an explanatory diagram showing the relationship, FIG. 4 is an explanatory diagram showing the relationship between the reflectance and the scanning angle,
FIG. 5 is a schematic diagram of a main part of another embodiment of the present invention, and FIG. 6 is an explanatory diagram showing a relationship between a scanning angle on a surface to be scanned and shading. In the figure, 1 and 12 are laser oscillators, 2 and 13 are collimator lenses, 3 and 14 are cylindrical lenses, 4 and 11 are optical deflectors, 5 and 15 are scanning lenses, 6, 16 are mirrors, and 17 is dustproof glass. , 8, and 18 are drum-shaped photosensitive members, and 7 is a surface to be scanned.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】直線偏光のレーザー光束を導光手段により
光偏向器に導光し、該光偏向器で偏向させたレーザー光
束を走査レンズと光学部材を介して被走査面上に導光し
て光走査する光走査装置において、該走査レンズの光軸
上に相当するレーザー光束を偏光方向が該光学部材に対
してP偏光方向に偏光した状態で入射させる場合には該
光学部材のP偏光とS偏光の反射又は透過特性XP、XS
XP<XSとなるようにし、逆に該光学部材に対してS偏光
方向に偏光した状態で入射させる場合にはXP>XSとなる
ように該光学部材の反射又は透過特性を構成したことを
特徴とする光走査装置。
A linearly polarized laser beam is guided by a light guide to an optical deflector, and the laser beam deflected by the optical deflector is guided onto a surface to be scanned via a scanning lens and an optical member. In the optical scanning device for optically scanning the optical member, when the laser beam corresponding to the optical axis of the scanning lens is incident on the optical member with the polarization direction polarized in the P polarization direction, the P-polarized light of the optical member reflection or transmission characteristics of the S-polarized light X P, X S is
<Made to be X S, X P in case of incident in the state of polarized in S-polarization direction to the optical Faculty member Conversely> X P constituting the reflection or transmission characteristics of the optical faculty member such that X S An optical scanning device, comprising:
JP63186533A 1988-07-26 1988-07-26 Optical scanning device Expired - Lifetime JP2727572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63186533A JP2727572B2 (en) 1988-07-26 1988-07-26 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63186533A JP2727572B2 (en) 1988-07-26 1988-07-26 Optical scanning device

Publications (2)

Publication Number Publication Date
JPH0235413A JPH0235413A (en) 1990-02-06
JP2727572B2 true JP2727572B2 (en) 1998-03-11

Family

ID=16190158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63186533A Expired - Lifetime JP2727572B2 (en) 1988-07-26 1988-07-26 Optical scanning device

Country Status (1)

Country Link
JP (1) JP2727572B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115793B2 (en) 2008-01-18 2012-02-14 Canon Kabushiki Kaisha Optical scanning device and image forming apparatus using the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304770A (en) * 1993-05-14 1994-04-19 Kabushiki Kaisha Komatsu Seisakusho Nozzle structure for plasma torch
US20050185236A1 (en) 2004-02-18 2005-08-25 Genichiro Kudo Optical scanning apparatus
JP5228331B2 (en) * 2007-02-13 2013-07-03 株式会社リコー Optical scanning apparatus, image forming apparatus, and multicolor image forming apparatus
JP5493386B2 (en) * 2009-02-25 2014-05-14 富士ゼロックス株式会社 Exposure apparatus, image forming apparatus, and exposure control program
JP5724932B2 (en) 2012-04-06 2015-05-27 コニカミノルタ株式会社 Laser scanning optical system
JP6071914B2 (en) * 2014-01-30 2017-02-01 京セラドキュメントソリューションズ株式会社 Optical scanning device and image forming apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140116A (en) * 1987-11-27 1989-06-01 Ricoh Co Ltd Scanning optical system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115793B2 (en) 2008-01-18 2012-02-14 Canon Kabushiki Kaisha Optical scanning device and image forming apparatus using the same

Also Published As

Publication number Publication date
JPH0235413A (en) 1990-02-06

Similar Documents

Publication Publication Date Title
Urbach et al. Laser scanning for electronic printing
CA1301511C (en) Aspheric lens for polygon mirror tilt error correction and scanbow correction in an electrophotographic printer
JP2727572B2 (en) Optical scanning device
JPH035562B2 (en)
JP4817668B2 (en) Optical scanning device
EP0523636A2 (en) Scanning optical apparatus
JPH08110488A (en) Optical scanning device
JPH01909A (en) Optical device in image forming apparatus
JPH07294837A (en) Optical scanner
JPH0387813A (en) Scanning type optical device
JP2970053B2 (en) Optical scanning device
JP2979754B2 (en) Optical scanning device
JP2000241727A (en) Optical scanner
JPH0519186A (en) Scanning optical device
JPH0651223A (en) Deflection scanning device
JPH0274915A (en) Optical device
JP2935464B2 (en) Optical scanning device
JPS6350683B2 (en)
JPH07174996A (en) Raster-output-scanner image system
JPH1026732A (en) Optical scanner and image forming device using this scanner
JPH06324280A (en) Hologram scanning optical system
JPH03197916A (en) Optical device
JPH0894952A (en) Optical scanner
JPH01910A (en) Optical device in image forming apparatus
JPH01195404A (en) Optical-beam scanner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11