JPH11109269A - Multibeam scanning optical device - Google Patents

Multibeam scanning optical device

Info

Publication number
JPH11109269A
JPH11109269A JP28805497A JP28805497A JPH11109269A JP H11109269 A JPH11109269 A JP H11109269A JP 28805497 A JP28805497 A JP 28805497A JP 28805497 A JP28805497 A JP 28805497A JP H11109269 A JPH11109269 A JP H11109269A
Authority
JP
Japan
Prior art keywords
light
light source
scanned
wavelength
scanning optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28805497A
Other languages
Japanese (ja)
Inventor
Kazumi Kimura
一己 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP28805497A priority Critical patent/JPH11109269A/en
Publication of JPH11109269A publication Critical patent/JPH11109269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multibeam scanning optical device almost uniformizing the distribution of a light quantity on a surface to be scanned and obtaining an image with high quality. SOLUTION: In this optical device, plural light beams transmitted from a light source means 2 having plural light emitting parts are introduced to a deflecting means 4, plural light beams deflected/reflected by the deflecting means are introduced to a surface to be scanned 6 through an image forming optical system 5 and the surface to be scanned 6 is simultaneously scanned with the plural light beams. In this case, a light quantity adjusting means 1 having the spectral transmissivity characteristic of P polarization, in which transmissivity in a wavelength shorter than the wavelength of the light source is higher than that of the wavelength of light source and transmissivity in a wavelength longer than the wavelength of the light source is lower than that, is provided in an optical path between the light source means 2 and the surface to be scanned 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はマルチビーム走査光
学装置に関し、特に被走査面上での光量分布が略一定と
なるように光量調整手段を光路内、もしくは光偏向器の
各偏向面に設けることにより、高画質な画像が得られる
ようにした、例えば電子写真プロセスを有するレーザー
ビームプリンタ(LBP)やデジタル複写機等の装置に
好適なマルチビーム走査光学装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-beam scanning optical device, and more particularly to providing a light amount adjusting means in an optical path or on each deflecting surface of an optical deflector so that a light amount distribution on a surface to be scanned is substantially constant. The present invention relates to a multi-beam scanning optical device which can obtain a high-quality image and is suitable for a device such as a laser beam printer (LBP) or a digital copying machine having an electrophotographic process.

【0002】[0002]

【従来の技術】従来よりレーザービームプリンタ等のマ
ルチビーム走査光学装置においては複数の発光部を有す
る光源手段(マルチレーザ)から光変調され射出した複
数の光ビームを、例えば回転多面鏡(ポリゴンミラー)
より成る光偏向器により周期的に偏向させ、fθ特性を
有する結像光学系(fθレンズ系)によって感光性の記
録媒体(感光ドラム)面上にスポット状に収束させ、そ
の面上を複数の光束で同時に光走査して画像記録を行な
っている。
2. Description of the Related Art Conventionally, in a multi-beam scanning optical device such as a laser beam printer or the like, a plurality of light beams emitted from a light source means (multi-laser) having a plurality of light-emitting portions are modulated by, for example, a rotating polygon mirror (polygon mirror). )
The light is deflected periodically by an optical deflector composed of an optical deflector and converged in the form of a spot on a photosensitive recording medium (photosensitive drum) surface by an imaging optical system (fθ lens system) having fθ characteristics. Image recording is performed by light scanning simultaneously with a light beam.

【0003】図6は従来のマルチビーム光走査光学装置
の要部概略図である。同図においてマルチレーザ(光源
手段)62から光変調され射出した複数の光ビームは集
光光学系63の一要素を構成するコリメーターレンズに
より略平行光束に変換され、副走査断面内にのみ所定の
屈折力を有する同じく集光光学系63の一要素を構成す
るシリンドリカルレンズに入射している。シリンドリカ
ルレンズに入射した複数の略平行光束のうち主走査断面
内においてはそのまま略平行光束の状態で射出する。ま
た副走査断面内においては集束してポリゴンミラーから
成る光偏向器64の偏向面64aにほぼ線像として結像
している。そして光偏向器64の偏向面64aで反射角
(=入射角)θ1 〜θ2 の範囲で偏向反射された複数の
光束を主走査方向と副走査方向とで異なるパワーを有す
る結像光学系(fθレンズ)65を介して被走査面とし
ての感光ドラム面66上に導光し、該光偏向器64を矢
印A方向に回転させることによって、該感光ドラム面6
6上を複数の光ビームで矢印B方向(主走査方向)に同
時に光走査して画像情報の記録を行なっている。同図に
おいてマルチレーザ62からの光ビームは2本でている
が、同図では1本のみの光ビームを記す。
FIG. 6 is a schematic view of a main part of a conventional multi-beam optical scanning optical device. In the figure, a plurality of light beams emitted from the multi-laser (light source means) 62 after being modulated are converted into substantially parallel light beams by a collimator lens constituting one element of the condensing optical system 63, and are predetermined only within the sub-scan section. Incident on a cylindrical lens which also constitutes one element of the condensing optical system 63 having the refractive power of Of the plurality of substantially parallel light beams incident on the cylindrical lens, the light beams are emitted as they are in the state of substantially parallel light beams in the main scanning section. In the sub-scan section, the light is converged and formed as a substantially linear image on the deflecting surface 64a of the optical deflector 64 composed of a polygon mirror. The imaging optical system having different power reflection angle by the deflecting surface 64a of the optical deflector 64 a plurality of light beams deflected reflected in the range of (= incident angle) theta 1 through? 2 in the main scanning direction and the subscanning direction (Fθ lens) 65 to guide the light onto a photosensitive drum surface 66 as a surface to be scanned, and rotate the optical deflector 64 in the direction of arrow A, thereby forming the photosensitive drum surface 6.
The image information is recorded by simultaneously performing optical scanning on arrow 6 in the direction of arrow B (main scanning direction) with a plurality of light beams. Although the figure shows two light beams from the multi laser 62, only one light beam is shown in FIG.

【0004】尚、同図においてP0 は軸上像点、P1
2 は各々軸外像点、Oは光偏向器の偏向面上の偏向点
(反射点)Oである。直線OP1 、OP2 で形成される
面を走査面、もしくは主走査面、これに垂直な面を副走
査面と称す。
In FIG. 1, P 0 is an axial image point, P 1 ,
P 2 is an off-axis image point, and O is a deflection point (reflection point) O on the deflection surface of the optical deflector. The plane formed by the straight lines OP 1 and OP 2 is referred to as a scanning plane or a main scanning plane, and a plane perpendicular thereto is referred to as a sub-scanning plane.

【0005】図7は図6に示したマルチレーザの拡大説
明図でる。同図におけるマルチレーザ62は、例えば特
公昭60-33019号で開示されているように同図に示す如く
上下の基板材21,22の間に半導体プロセスで製造さ
れる、所謂活性層23を有し、この活性層23内に2つ
の発光点24,25を有している。マルチレーザ62は
この2つの発光点24,25を結ぶ直線が主走査面に対
して微小角εだけ傾くようにして配置されている。
FIG. 7 is an enlarged explanatory view of the multi-laser shown in FIG. The multi-laser 62 in the figure has a so-called active layer 23 manufactured by a semiconductor process between the upper and lower substrate materials 21 and 22 as shown in the figure, for example, as disclosed in Japanese Patent Publication No. 60-33019. The active layer 23 has two light emitting points 24 and 25. The multi-laser 62 is arranged such that a straight line connecting the two light-emitting points 24 and 25 is inclined by a small angle ε with respect to the main scanning plane.

【0006】またこの種のマルチビーム走査光学装置
は、(イ)ポリゴンミラーとfθレンズとの間の光路内、
(ロ)もしくはfθレンズと感光ドラム面との間の光路
内、に平板ガラス(不図示)を配しており、これにより
(イ)´ポリゴンミラーへのゴミ・ホコリの侵入防止、も
しくはポリゴンミラーの駆動系の騒音が周囲へもれるこ
との防止、(ロ)´fθレンズへのゴミ・ホコリへの侵入
を防止、している。この場合、平板ガラスの両面には反
射防止の為のコーティングが施され、光量の損失、また
フレアー光やゴースト等が発生しないように防止してい
る。
In addition, this type of multi-beam scanning optical device has the following features: (a) an optical path between a polygon mirror and an fθ lens;
(B) Alternatively, a flat glass (not shown) is provided in the optical path between the fθ lens and the photosensitive drum surface.
(A) Prevention of dust and dust from entering the polygon mirror, or preventing noise from the drive system of the polygon mirror from leaking into the surroundings, and (b) preventing dust and dust from entering the fθ lens. ing. In this case, both surfaces of the flat glass are coated with an anti-reflection coating to prevent loss of light amount, flare light, ghost and the like.

【0007】[0007]

【発明が解決しようとする課題】上記従来のマルチビー
ム走査光学装置においては以下に示す問題点を有してい
る。
The above-mentioned conventional multi-beam scanning optical device has the following problems.

【0008】光ビームの偏光面(偏光の振動面)は活
性層に対して平行となるので、図6の矢印Cに示すよう
に、その偏光面は主走査面に対して微小角εだけ傾いて
いる。しかしながらこの微小角εが微小ゆえ、fθレン
ズに入射するときの複数の光ビームの偏光状態はほとん
どP偏光になる。P偏光はフレネル反射により、入射角
度が0°からブリュースター角(55°〜60°位)ま
で透過率が増加するので、軸上像点P0 に対して軸外像
点P1 (及び軸外像点P2 )の光量が増加する傾向にあ
る。
Since the plane of polarization (oscillation plane of polarized light) of the light beam is parallel to the active layer, the plane of polarization is inclined by a small angle ε with respect to the main scanning plane as shown by arrow C in FIG. ing. However, since the small angle ε is small, the polarization state of the plurality of light beams when entering the fθ lens is almost P-polarized. The transmittance of the P-polarized light increases from the incident angle of 0 ° to the Brewster angle (about 55 ° to 60 °) due to Fresnel reflection, so that the off-axis image point P 1 (and the axial image point P 0) The light amount at the outer image point P 2 ) tends to increase.

【0009】fθレンズがガラスレンズで構成される
なら反射防止コートを施すことで反射率を低減すること
は可能になるが、プラスチックレンズで構成される場合
はコーティングを施すことが困難であるので、軸外光量
が増加する傾向にある。
If the fθ lens is formed of a glass lens, it is possible to reduce the reflectance by applying an antireflection coating. However, if the fθ lens is formed of a plastic lens, it is difficult to apply a coating. The off-axis light amount tends to increase.

【0010】fθレンズは主走査面内で正のパワーを
有することから、レンズ中心部より周辺部でのコバが短
く、即ちfθレンズ内の軸上光路より軸外光路の方が短
いので、該fθレンズの内部吸収は軸外の方が小さく、
やはり被走査面上の軸外光量が増加する傾向になる。
Since the fθ lens has a positive power in the main scanning plane, the edge at the peripheral portion is shorter than that at the center of the lens, that is, the off-axis optical path is shorter than the on-axis optical path in the fθ lens. The internal absorption of the fθ lens is smaller off-axis,
Again, the off-axis light amount on the surface to be scanned tends to increase.

【0011】例えば走査角(2θ2 −2θ1 )が60°
程度の場合、上記フレネル反射とfθレンズの内部吸収
により軸上光量に比べて軸外光量は比率(軸外/軸上)
でt´=1.05〜1.15程高くなる。
For example, when the scanning angle (2θ 2 -2θ 1 ) is 60 °
In this case, the off-axis light amount is a ratio (off-axis / on-axis) compared to the on-axis light amount due to the Fresnel reflection and the internal absorption of the fθ lens.
T ′ = 1.05 to 1.15.

【0012】本発明は適切なる分光透過率特性、もしく
は分光反射率特性を有する光量調整手段を光路内、もし
くは光偏向器の各偏向面に設け、被走査面上における光
量分布が略均一となるように構成することにより、高画
質な画像を容易に得ることができるマルチビーム走査光
学装置の提供を目的とする。
According to the present invention, light amount adjusting means having appropriate spectral transmittance characteristics or spectral reflectance characteristics is provided in the optical path or on each deflecting surface of the optical deflector so that the light amount distribution on the surface to be scanned is substantially uniform. With such a configuration, it is an object of the present invention to provide a multi-beam scanning optical device capable of easily obtaining a high-quality image.

【0013】[0013]

【課題を解決するための手段】本発明のマルチビーム走
査光学装置は、 (1) 複数の発光部を有する光源手段から射出する複数の
光ビームを偏向手段に導光し、該偏向手段で偏向反射さ
れた複数の光ビームを結像光学系を介して被走査面上に
導光し、該被走査面上を複数の光ビームで同時に走査す
るマルチレーザー走査光学装置において、該光源手段と
該被走査面との間の光路内に、P偏光の分光透過率特性
が光源波長での透過率に対して、該光源波長より短い波
長では透過率が高く、長い波長では透過率が低い特性を
有する光量調整手段を設けたことを特徴としている。
According to the present invention, there is provided a multi-beam scanning optical apparatus comprising: (1) guiding a plurality of light beams emitted from a light source having a plurality of light-emitting portions to a deflecting means, and deflecting the plurality of light beams by the deflecting means; A multi-laser scanning optical apparatus that guides a plurality of reflected light beams onto a surface to be scanned through an imaging optical system and simultaneously scans the surface to be scanned with a plurality of light beams. In the optical path between the light source and the surface to be scanned, the spectral transmittance characteristic of P-polarized light is such that the transmittance at the wavelength of the light source is higher at the wavelength shorter than the wavelength of the light source, and the transmittance is lower at the longer wavelength. It is characterized in that light amount adjusting means having the same is provided.

【0014】特に(1-1) 前記光量調整手段のP偏光の分
光透過率特性は前記光源波長に対する透過率が軸上ビー
ムより軸外ビームの方が低いことや、(1-2) 前記光量調
整手段は基板部材上に光学多層膜が施されて形成されて
いることや、(1-3) 前記光量調整手段は枠体に対して外
周囲を密着して取り付けられていること、等を特徴とし
ている。
In particular, (1-1) the spectral transmittance characteristic of the P-polarized light of the light amount adjusting means is such that the transmittance with respect to the light source wavelength is lower in the off-axis beam than in the on-axis beam; The adjusting means is formed by applying an optical multilayer film on the substrate member, or (1-3) that the light amount adjusting means is attached to the frame so that the outer periphery thereof is in close contact, and the like. Features.

【0015】(2) 複数の発光部を有する光源手段から射
出する複数の光ビームを偏向手段に導光し、該偏向手段
で偏向反射された複数の光ビームを結像光学系を介して
被走査面上に導光し、該被走査面上を複数の光ビームで
同時に走査するマルチビーム走査光学装置において、該
偏向手段の各偏向面に、P偏光の分光反射率特性が光源
波長での反射率に対して、該光源波長の前後の波長での
反射率が低い特性を有する光量調整手段を設けたことを
特徴としている。
(2) A plurality of light beams emitted from the light source means having a plurality of light emitting portions are guided to the deflecting means, and the plurality of light beams deflected and reflected by the deflecting means are received via the imaging optical system. In a multi-beam scanning optical device that guides light on a scanning surface and simultaneously scans the surface to be scanned with a plurality of light beams, each of the deflecting surfaces of the deflecting means has a spectral reflectance characteristic of P-polarized light at a light source wavelength. It is characterized in that light amount adjusting means having a characteristic that the reflectance at wavelengths before and after the light source wavelength is lower than the reflectance is provided.

【0016】(2-1) 前記光量調整手段のP偏光の分光透
過率特性は前記光源波長に対する反射率が軸上ビームよ
り軸外ビームの方が低いことや、(2-2) 前記光量調整手
段は前記偏向手段の偏向面上に光学多層膜が施されて形
成されていること、等を特徴としている。
(2-1) The spectral transmittance characteristic of the P-polarized light of the light amount adjusting means is such that the reflectance with respect to the wavelength of the light source is lower in the off-axis beam than in the on-axis beam; The means is characterized in that an optical multilayer film is formed on the deflection surface of the deflection means.

【0017】[0017]

【発明の実施の形態】図1は本発明の実施形態1の要部
概略図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view of a main part of a first embodiment of the present invention.

【0018】同図において2は複数の発光部を有する光
源手段(マルチレーザ)であり、前述した従来例と同様
に図7に示す如く上下の基板材21,22との間に半導
体プロセスで製造される、所謂活性層23を有し、この
活性層23内に2つの発光点24,25を有している。
マルチレーザ2はこの2つの発光点24,25を結ぶ直
線が主走査面に対して微小角εだけ傾くようにして配置
されている。
In FIG. 1, reference numeral 2 denotes a light source means (multi-laser) having a plurality of light-emitting portions, which is manufactured by a semiconductor process between upper and lower substrate members 21 and 22 as shown in FIG. In this active layer 23, there are two light emitting points 24 and 25.
The multi-laser 2 is arranged such that a straight line connecting the two light-emitting points 24 and 25 is inclined by a small angle ε with respect to the main scanning plane.

【0019】3は集光光学系であり、光源手段2からか
ら射出された複数の光ビーム(光束)を略平行光束とす
るコリメーターレンズと、副走査断面内にのみ所定の屈
折力を有するシリンドリカルレンズとを有している。シ
リンドリカルレンズはコリメーターレンズを通過した複
数の光ビームを副走査断面内で後述する光偏向器4の偏
向面4aにほぼ線像として結像させている。
Reference numeral 3 denotes a condensing optical system, which has a collimator lens for converting a plurality of light beams (light beams) emitted from the light source means 2 into substantially parallel light beams, and has a predetermined refractive power only in the sub-scan section. And a cylindrical lens. The cylindrical lens forms a plurality of light beams, which have passed through the collimator lens, as substantially linear images on a deflecting surface 4a of an optical deflector 4 described later in a sub-scanning cross section.

【0020】4は偏向手段としての光偏向器であり、例
えば回転多面鏡(ポリゴンミラー)より成っており、モ
ータ等の駆動手段(不図示)により矢印A方向に一定速
度で回転している。
Reference numeral 4 denotes an optical deflector as a deflecting means, which is constituted by, for example, a rotating polygon mirror (polygon mirror), and is rotated at a constant speed in the direction of arrow A by a driving means (not shown) such as a motor.

【0021】1は光量調整手段としての光学フィルター
であり、光偏向器4と感光ドラム面6との間の光路内に
配しており、基板部材(平板ガラス)上に光学多層膜が
施されて形成されている。この光学フィルター1はP偏
光の分光透過率特性が光源波長(光源手段2から射出さ
れる光ビームの波長)での透過率に対して、該光源波長
より短い波長では透過率が高く、長い波長では透過率が
低くなるように設定されている。この光学フィルター1
に入射する光ビームの入射角度が軸上ビームと軸外ビー
ムとで異なることにより、該光学フィルター1の分光透
過率分布が軸上ビームと軸外ビームとで異なる。本実施
形態では後述するように光源の単一波長に対する透過率
を軸上ビームに比べ軸外ビームの方を低く設定してい
る。またこの光学フィルター1は枠体(不図示)に対し
て外周囲を密着して取り付けられており、該光学フィル
ター1の前後の空間を分離する手段として用いている。
Reference numeral 1 denotes an optical filter as light amount adjusting means, which is disposed in an optical path between the light deflector 4 and the photosensitive drum surface 6, and has an optical multilayer film formed on a substrate member (flat glass). It is formed. In this optical filter 1, the spectral transmittance characteristic of P-polarized light is higher at a light source wavelength (wavelength of a light beam emitted from the light source means 2) at a light source wavelength (wavelength of a light beam emitted from the light source means 2). Is set so that the transmittance becomes low. This optical filter 1
Is different between the on-axis beam and the off-axis beam, the spectral transmittance distribution of the optical filter 1 is different between the on-axis beam and the off-axis beam. In this embodiment, as described later, the transmittance of a light source for a single wavelength is set lower for an off-axis beam than for an on-axis beam. The optical filter 1 is attached to a frame (not shown) so that its outer periphery is in close contact with the frame, and is used as a means for separating the space before and after the optical filter 1.

【0022】5は結像光学系であり、fθ特性を有する
fθレンズより成り、光偏向器4の偏向面4aによって
偏向反射された画像情報に基づく光束を被走査面(像
面)としての感光ドラム面6上に結像させている。fθ
レンズ5は単一のプラスチックレンズ(もしくはガラス
レンズ)より形成されている。感光ドラム面6は既知の
電子写真プロセスにより具現化される。
Reference numeral 5 denotes an image forming optical system, which comprises an fθ lens having fθ characteristics, and receives a light beam based on image information deflected and reflected by the deflecting surface 4a of the optical deflector 4 as a surface to be scanned (image surface). An image is formed on the drum surface 6. fθ
The lens 5 is formed from a single plastic lens (or glass lens). The photosensitive drum surface 6 is embodied by a known electrophotographic process.

【0023】P0 は軸上像点、P1 ,P2 は各々軸外像
点、Oは光偏向器の偏向面上の偏向点(反射点)であ
る。尚、直線OP1 、OP2 で形成される面を走査面、
もしくは主走査面、これに垂直な面を副走査面と称す。
P 0 is an on-axis image point, P 1 and P 2 are off-axis image points, and O is a deflection point (reflection point) on the deflection surface of the optical deflector. The surface formed by the straight lines OP 1 and OP 2 is a scanning surface,
Alternatively, the main scanning plane, and a plane perpendicular thereto is referred to as a sub-scanning plane.

【0024】本実施形態において光源手段(マルチレー
ザ)2から光変調され射出した複数の光ビーム(光束)
は集光光学系3の一要素を構成するコリメーターレンズ
により略平行光束に変換され、同じく集光光学系3の一
要素を構成する副走査断面内にのみ所定の屈折力を有す
るシリンドリカルレンズに入射している。シリンドリカ
ルレンズに入射した複数の略平行光束のうち主走査断面
内においてはそのまま略平行光束の状態で射出する。ま
た副走査断面内においては集束して光偏向器4の偏向面
4aにほぼ線像として結像している。そして光偏向器4
の偏向面4aで反射角(=入射角)θ1 〜θ2 の範囲で
偏向反射された複数の光束を光学フィルター1を通し、
主走査方向と副走査方向とで異なるパワーを有する結像
光学系(fθレンズ)5を介して被走査面としての感光
ドラム面6上に導光し、該光偏向器4を矢印A方向に回
転させることによって、該感光ドラム面6上を複数の光
ビームで矢印B方向(主走査方向)に同時に光走査して
画像情報の記録を行なっている。同図においてマルチレ
ーザ2からの光ビームは2本でているが、同図では1本
のみの光ビームを記す。
In the present embodiment, a plurality of light beams (light beams) emitted from the light source means (multi-laser) 2 after being modulated.
Is converted into a substantially parallel light beam by a collimator lens constituting one element of the condensing optical system 3, and is converted into a cylindrical lens having a predetermined refractive power only in the sub-scanning cross section constituting one element of the condensing optical system 3. It is incident. Of the plurality of substantially parallel light beams incident on the cylindrical lens, the light beams are emitted as they are in the state of substantially parallel light beams in the main scanning section. In the sub-scan section, the light is converged and formed as an almost linear image on the deflection surface 4a of the optical deflector 4. And the optical deflector 4
A plurality of light beams deflected and reflected by the deflecting surface 4a in the range of the reflection angle (= incident angle) θ 1 to θ 2 pass through the optical filter 1,
Light is guided onto a photosensitive drum surface 6 as a surface to be scanned through an imaging optical system (fθ lens) 5 having different powers in the main scanning direction and the sub-scanning direction, and the optical deflector 4 is moved in the direction of arrow A. By rotating, the photosensitive drum surface 6 is simultaneously optically scanned in the direction of arrow B (main scanning direction) with a plurality of light beams to record image information. Although the figure shows two light beams from the multi-laser 2, only one light beam is shown in FIG.

【0025】マルチレーザ2は上述の如く上下の基板材
21,22の間に半導体プロセスで製造される、所謂活
性層23を有し、この活性層23内に2つの発光点2
4,25を有し、該2つの発光点24,25を結ぶ直線
が主走査面に対して微小角εだけ傾くようにして配置さ
れている。この為、光ビームの偏光面(偏光の振動面)
は図中矢印Cで示すように主走査面に対してほぼ平行
(厳密には微小角ε傾く)なので、光学フィルター1や
fθレンズ5にはほとんどP偏光で入射する。fθレン
ズ5は前述した如く軸上の透過率に比べ軸外の透過率の
方が高い。この軸上に対する軸外の透過率の比(軸外/
軸上)をt´(>1)とする。この比率t´は前述の如
くt´=1.05〜1.15程である。
The multi-laser 2 has a so-called active layer 23 manufactured by a semiconductor process between the upper and lower substrate members 21 and 22 as described above.
4 and 25, and are arranged such that a straight line connecting the two light emitting points 24 and 25 is inclined by a small angle ε with respect to the main scanning plane. For this reason, the polarization plane of the light beam (polarization vibration plane)
Is almost parallel to the main scanning plane (strictly, inclined by a small angle ε) as shown by an arrow C in the figure, so that almost all of the light enters the optical filter 1 and the fθ lens 5 with P-polarized light. lens 5 has a higher off-axis transmittance than the on-axis transmittance as described above. The ratio of the off-axis transmittance to the on-axis (off-axis /
(On the axis) is defined as t ′ (> 1). The ratio t 'is about 1.05 to 1.15 as described above.

【0026】図2は本実施形態に関わる光学フィルター
1の分光透過率特性を示す説明図である。
FIG. 2 is an explanatory diagram showing the spectral transmittance characteristics of the optical filter 1 according to this embodiment.

【0027】同図においてT0 はP偏光の入射角度0°
に対する分光透過率特性、T1 は入射角度2θ2 −2θ
0 (=2θ0 −2θ1 )に対する分光透過率特性であ
る。使用する光源波長λ0 でのP偏光の透過率はT0
はt0 、T1 (=T2 )ではt1 (=t2 )である。
In the figure, T 0 is an incident angle of P-polarized light of 0 °.
, T 1 is the incident angle 2θ 2 -2θ
It is a spectral transmittance characteristic with respect to 0 (= 2θ 0 -2θ 1 ). The transmittance of P-polarized light at the light source wavelength lambda 0 to be used is T 0 At t 0, T 1 (= T 2) in t 1 (= t 2).

【0028】図1で軸上ビームO−P0 は光学フィルタ
ー1に入射角度0°で入射し、軸外ビームO−P1 は入
射角度2θ0 −2θ1 で入射し、軸外ビームO−P2
入射角度2θ2 −2θ0 でそれぞれ入射する。
The axial beam O-P 0 in Fig. 1 at an incident angle of 0 ° to the optical filter 1, the off-axis beam O-P 1 at an incident angle 2θ 0 -2θ 1, the off-axis beam O- P 2 is incident at an incident angle of 2θ 2 -2θ 0 .

【0029】よってP偏光の軸上ビームO−P0 は光学
フィルター1を図2より透過率t0で透過し、P偏光の
軸外ビームO−P1 ,O−P2 はそれぞれt1 ,t2
透過し、この結果、軸外ビームの光量は軸上ビームに比
べ、 t1 /t0 (=t2 /t0 ) だけ低くなる。
[0029] Thus P axial beam O-P 0 of the polarized light passes through the optical filter 1 in the transmittance t 0 from FIG. 2, the off-axis beam O-P 1, O-P 2 respectively t 1 of the P-polarized light, The light is transmitted at t 2 , and as a result, the light amount of the off-axis beam is lower than that of the on-axis beam by t 1 / t 0 (= t 2 / t 0 ).

【0030】本実施形態においては、 t1 /t0 ×t´≒1 (=t2 /t0 ×t´≒1) となるように各要素を設定している。これにより被走査
面6上での軸上像点P0、軸外像点P1 ,P2 では略同
一光量となり、該被走査面6上での光量分布を略均一に
することができる。
In this embodiment, each element is set so that t 1 / t 0 × t ′ ≒ 1 (= t 2 / t 0 × t ′ ≒ 1). As a result, the on-axis image point P 0 and the off-axis image points P 1 and P 2 on the surface 6 to be scanned have substantially the same light amount, and the light amount distribution on the surface 6 to be scanned can be made substantially uniform.

【0031】具体的には光学フィルター1の多層膜構成
例として、ガラス基板上に該ガラス基板側より順に ガラス+TiO2 (314nm) +SiO2 (189nm) +TiO
2 (314nm)+SiO2 (189nm) +TiO2 (314nm) +S
iO2 (57nm) を両面に施すことにより、光源波長780nmに対し
て、t0 =0.983(入射角0°に対して)、t1
0.897(入射角30°に対して)となり、 t1 /t0 =0.92 となる。このときの分光透過率特性のλ0 =780nm
近傍でのdT/dλ(変化率)は10nm当たり−0.
02である。
Specifically, as an example of a multilayer film configuration of the optical filter 1, a glass + TiO 2 (314 nm) + SiO 2 (189 nm) + TiO 2 is formed on a glass substrate in this order from the glass substrate side.
2 (314 nm) + SiO 2 (189 nm) + TiO 2 (314 nm) + S
By applying iO 2 (57 nm) to both surfaces, for a light source wavelength of 780 nm, t 0 = 0.983 (for an incident angle of 0 °) and t 1 =
0.897 (for an incident angle of 30 °), and t 1 / t 0 = 0.92. At this time, the spectral transmittance characteristic λ 0 = 780 nm
The dT / dλ (change rate) in the vicinity is −0.0 / nm per 10 nm.
02.

【0032】また本実施形態における光学フィルター1
は上述した如く枠体(不図示)に対して外周囲を密着し
て取り付けられており、これによりポリゴンミラー4側
へのゴミ・ホコリ等の侵入を未然に防いでいる。更には
ポリゴンモーターの駆動音を封じ込めている。
The optical filter 1 according to the present embodiment
Is attached to the frame body (not shown) in close contact with the frame as described above, thereby preventing invasion of dust and dirt into the polygon mirror 4 side. Furthermore, the driving sound of the polygon motor is contained.

【0033】尚、光学フィルター1はマルチレーザ2へ
の戻り光の防止のため、副走査面内において光軸に対し
微小角度傾けても上記と同様の効果を得ることができ
る。また光学フィルター1をポリゴンミラー4に近づけ
て奥側に伸ばし、集光光学系3と該ポリゴンミラー4を
結ぶ光路を横断して配置しても良い。これにより更に密
封性を高めることができる。
The same effect as described above can be obtained even if the optical filter 1 is tilted by a small angle with respect to the optical axis in the sub-scanning plane in order to prevent return light to the multi-laser 2. Alternatively, the optical filter 1 may be extended closer to the polygon mirror 4 and extended to the rear side, and may be disposed across the optical path connecting the condensing optical system 3 and the polygon mirror 4. Thereby, the sealing performance can be further improved.

【0034】また光路内に折り返しミラーや別のフィル
ター等が設けられるような場合には、これらすべての光
学要素を結像光学系(fθレンズ)として被走査面上で
の光量分布を算出し、光学フィルター1でキャンセルす
るように該光学フィルター1の分光透過率特性を設定す
れば良い。
When a folding mirror, another filter, or the like is provided in the optical path, all of these optical elements are used as an image forming optical system (fθ lens) to calculate a light amount distribution on the surface to be scanned. What is necessary is just to set the spectral transmittance characteristic of the optical filter 1 so that the optical filter 1 cancels.

【0035】このように本実施形態では上述の如く光偏
向器4と被走査面6との間の光路内に、P偏光の分光透
過率特性が光源波長での透過率に対して、該光源波長よ
り短い波長では透過率が高く、長い波長では透過率が低
い光学フィルター1を設けることにより、被走査面6上
での光量分布を略均一にすることができ、これにより高
画質な画像を容易に得ている。
As described above, in this embodiment, as described above, in the optical path between the light deflector 4 and the surface 6 to be scanned, the spectral transmittance characteristic of P-polarized light is different from that of the light source at the wavelength of the light source. By providing the optical filter 1 having a high transmittance at a wavelength shorter than the wavelength and a low transmittance at a longer wavelength, the light amount distribution on the surface 6 to be scanned can be made substantially uniform. Easy to get.

【0036】図3は本発明の実施形態2の要部概略図で
ある。同図において図1に示した要素と同一要素には同
符番を付している。
FIG. 3 is a schematic view of a main part of a second embodiment of the present invention. In the figure, the same elements as those shown in FIG. 1 are denoted by the same reference numerals.

【0037】本実施形態において前述の実施形態1と異
なる点はfθレンズ5と被走査面6との間の光路内に光
学フィルター11を設け、軸外ビームが該光学フィルタ
ー11へ入射する角度を実施形態1より小さく設定した
ことである。その他の構成及び光学的作用は前述の実施
形態1と略同様であり、これにより同様な効果を得てい
る。
The present embodiment differs from the first embodiment in that an optical filter 11 is provided in the optical path between the fθ lens 5 and the surface 6 to be scanned, and the angle at which the off-axis beam enters the optical filter 11 is determined. This is set smaller than in the first embodiment. Other configurations and optical functions are substantially the same as those of the first embodiment, and thus the same effects are obtained.

【0038】即ち、同図において11は光量調整手段と
しての光学フィルターであり、fθレンズ5と被走査面
6との間の光路内に配しており、前述の実施形態1と同
様にP偏光の分光透過率特性が光源波長での透過率に対
して、該光源波長より短い波長では透過率が高く、長い
波長では透過率が低くなるように設定し、かつ光源の単
一波長に対する透過率を軸上ビームに比べ軸外ビームの
方を低く設定している。
That is, in the same figure, reference numeral 11 denotes an optical filter as a light amount adjusting means, which is disposed in the optical path between the fθ lens 5 and the surface 6 to be scanned. The spectral transmittance characteristic of is set so that the transmittance at a wavelength shorter than the light source wavelength is higher than the transmittance at the light source wavelength, and the transmittance is lower at a longer wavelength, and the transmittance of the light source at a single wavelength. Is set lower for the off-axis beam than for the on-axis beam.

【0039】前述の実施形態1では軸外ビームO−P1
の光学フィルター1への入射角度が2θ0 −2θ1 であ
ったが、本実施形態では光学フィルター11への入射角
度を2θ0 −2θ1 より小さく(2θ0 −2θ1 の6〜
7割)なるように設定している(尚、軸外ビームO−P
2 も同様である。)。これはfθレンズ5が負のディス
トーション(歪曲収差)を有するためである。このため
光学フィルター11の分光透過率特性のdT/dλ(変
化率)を前述の実施形態1より絶対値で大きくなるよう
に設定している。
In the first embodiment, the off-axis beam OP 1
6 of the incident angle on the optical filter 1 but was 2θ 0 -2θ 1, reduce the angle of incidence of the optical filter 11 from 2θ 0 -2θ 1 in this embodiment of the (2θ 0 -2θ 1
70%) (off-axis beam OP
2 is the same. ). This is because the fθ lens 5 has a negative distortion. For this reason, dT / dλ (change rate) of the spectral transmittance characteristic of the optical filter 11 is set to be larger in absolute value than in the first embodiment.

【0040】具体的には光学フィルター11の多層膜構
成例として、ガラス基板上に該ガラス基板側より順に ガラス+TiO2 (300nm) +SiO2 (180nm) +TiO
2 (300nm)+SiO2 (180nm) +TiO2 (300nm) +S
iO2 (180nm) +TiO2 (300nm) +SiO2 (54nm) を両面に施すことにより光源波長780nmに対して、
0 =0.904(入射角0°に対して)、t1 =0.
801(入射角20°に対して)となり、 t1 /t0 =0.89 となる。このときの分光透過率特性のλ0 =780nm
近傍でのdT/dλ(変化率)は10nm当たり−0.
08である。
Specifically, as an example of a multilayer film configuration of the optical filter 11, a glass + TiO 2 (300 nm) + SiO 2 (180 nm) + TiO 2 is sequentially formed on a glass substrate from the glass substrate side.
2 (300 nm) + SiO 2 (180 nm) + TiO 2 (300 nm) + S
By applying iO 2 (180 nm) + TiO 2 (300 nm) + SiO 2 (54 nm) on both sides, the light source wavelength 780 nm
t 0 = 0.904 (for an incident angle of 0 °), t 1 = 0.
801 (for an incident angle of 20 °), and t 1 / t 0 = 0.89. At this time, the spectral transmittance characteristic λ 0 = 780 nm
The dT / dλ (change rate) in the vicinity is −0.0 / nm per 10 nm.
08.

【0041】また本実施形態における光学フィルター1
1は上述した如く枠体(不図示)に対して外周囲を密着
して取り付けられており、これによりfθレンズ5への
ゴミ・ホコリ等の侵入を未然に防いでいる。
The optical filter 1 according to the present embodiment
As described above, reference numeral 1 is attached to the frame (not shown) so that its outer periphery is in close contact with the frame, thereby preventing invasion of dust and dirt into the fθ lens 5.

【0042】図4は本発明の実施形態3の要部概略図で
ある。同図において図1に示した要素と同一要素には同
符番を付している。
FIG. 4 is a schematic view of a main part of a third embodiment of the present invention. In the figure, the same elements as those shown in FIG. 1 are denoted by the same reference numerals.

【0043】同図において41は光量調整手段であり、
光偏向器40の各偏向面上に光学多層膜が施されて形成
されている。この光量制限手段41はP偏光の分光反射
率特性が光源波長での反射率に対して、該光源波長の前
後の波長での反射率が低くなるように設定されている。
この光量調整手段41に入射する光ビームの入射角度が
軸上ビームと軸外ビームとで異なることにより、該光量
調整手段41の分光反射率分布が軸上ビームと軸外ビー
ムとで異なる。本実施形態では後述するように光源の単
一波長に対する反射率を軸上ビームに比べ軸外ビームの
方を低く設定している。
In the figure, reference numeral 41 denotes light amount adjusting means.
An optical multilayer film is formed on each deflection surface of the optical deflector 40. The light amount limiting means 41 is set so that the spectral reflectance characteristic of the P-polarized light is lower at the wavelengths before and after the light source wavelength than at the light source wavelength.
Since the incident angle of the light beam incident on the light quantity adjusting means 41 differs between the on-axis beam and the off-axis beam, the spectral reflectance distribution of the light quantity adjusting means 41 differs between the on-axis beam and the off-axis beam. In the present embodiment, as will be described later, the reflectance of a light source for a single wavelength is set lower for an off-axis beam than for an on-axis beam.

【0044】図5は本実施形態に関わる光量調整手段4
1の分光反射率特性示す説明図である。
FIG. 5 shows the light amount adjusting means 4 according to this embodiment.
FIG. 4 is an explanatory diagram showing a spectral reflectance characteristic of No. 1;

【0045】同図においてR0 はP偏光の入射角度θ0
に対する分光反射率特性、R1 ,R2 は各々P偏光の入
射角度θ1 ,θ2 に対する分光反射率特性である。使用
する光源波長λ0 でのP偏光の反射率はR0 ではr0
1 (R2 )ではr1 (r2)である。尚、r1 ≒r2
である。
In the figure, R 0 is the incident angle θ 0 of P-polarized light.
, And R 1 and R 2 are spectral reflectance characteristics with respect to incident angles θ 1 and θ 2 of P-polarized light, respectively. The reflectance of P-polarized light at the light source wavelength lambda 0 to be used in the R 0 r 0,
R 1 (R 2 ) is r 1 (r 2 ). Note that r 1 ≒ r 2
It is.

【0046】よってP偏光の軸上ビームO−P0 は偏向
面上を図5より反射率r0 で反射し、P偏光の軸外ビー
ムO−P1 ,O−P2 はそれぞれr1 、r2 で反射し、
この結果、軸外ビームの光量は軸上ビームに比べ r1 /r0 (=r2 /r0 ) だけ低くなる。
Therefore, the P-polarized on-axis beam OP 0 is reflected on the deflecting surface at a reflectance r 0 as shown in FIG. 5, and the P-polarized off-axis beams OP 1 and OP 2 are r 1 , respectively. reflected by the r 2,
As a result, the light quantity of the off-axis beam is lower than that of the on-axis beam by r 1 / r 0 (= r 2 / r 0 ).

【0047】本実施形態においては、 r1 /r0 ×t´≒1 (=r2 /r0 ×t´≒1) となるように各要素を設定している。これにより被走査
面上での軸上像点P0 、軸外像点P1 ,P2 では略同一
光量となり、該被走査面上での光量分布を略均一にする
ことができる。
In the present embodiment, each element is set so that r 1 / r 0 × t ′ ≒ 1 (= r 2 / r 0 × t ′ ≒ 1). Accordingly, the on-axis image point P 0 and the off-axis image points P 1 and P 2 on the surface to be scanned have substantially the same light amount, and the light amount distribution on the surface to be scanned can be made substantially uniform.

【0048】このように本実施形態では上述の如く光偏
向器4の各偏向面上に、P偏光の分光反射率特性が光源
波長での反射率に対して、該光源波長の前後の波長での
反射率が低くなるように光学多層膜を施すことにより、
被走査面6上での光量分布を略均一にすることができ、
これにより高画質な画像を容易に得ている。
As described above, in this embodiment, as described above, the spectral reflectance characteristic of the P-polarized light on each deflection surface of the optical deflector 4 is different from the reflectance at the light source wavelength by the wavelengths before and after the light source wavelength. By applying an optical multilayer film so that the reflectance of
It is possible to make the light amount distribution on the scanned surface 6 substantially uniform,
This makes it easy to obtain a high-quality image.

【0049】尚、実施形態1、もしくは実施形態2で用
いた光量調整手段と、実施形態3で用いた光量調整手段
とを組み合わせて構成しても良い。
The light amount adjusting means used in the first or second embodiment may be combined with the light amount adjusting means used in the third embodiment.

【0050】また各実施形態においてはマルチビーム走
査光学装置について説明してきたが、シングルビームの
走査光学装置においても本発明は適用することができ
る。
In each embodiment, the multi-beam scanning optical device has been described. However, the present invention can be applied to a single-beam scanning optical device.

【0051】[0051]

【発明の効果】本発明によれば前述の如く適切なる分光
透過率特性、もしくは分光反射率特性を有する光量調整
手段を光路内、もしくは光偏向器の各偏向面に設け、被
走査面上における光量分布が略均一となるように構成す
ることにより、高画質な画像を得ることができるマルチ
ビーム走査光学装置を達成することができる。
According to the present invention, light amount adjusting means having appropriate spectral transmittance characteristics or spectral reflectance characteristics as described above is provided in the optical path or on each deflecting surface of the optical deflector, and the light amount adjusting means is provided on the surface to be scanned. By configuring the light quantity distribution to be substantially uniform, it is possible to achieve a multi-beam scanning optical device capable of obtaining a high-quality image.

【0052】また本発明によれば光路内に配した光学フ
ィルターを密封性向上の支持をすることで従来の防塵ガ
ラスと同様の効果を持たせることができ、同じ部品点数
で画質の向上が図られ、また密封性により耐久性が向上
し、ゴミ・ホコリ等の対策に強く品質の向上にも寄与す
ることができるマルチビーム走査光学装置を達成するこ
とができる。
Further, according to the present invention, the same effect as that of the conventional dustproof glass can be provided by supporting the optical filter disposed in the optical path to improve the sealing property, and the image quality can be improved with the same number of parts. In addition, it is possible to achieve a multi-beam scanning optical device that has improved durability due to hermeticity, is strong in measures against dust and dust, and can contribute to quality improvement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態1の要部概略図FIG. 1 is a schematic view of a main part of a first embodiment of the present invention.

【図2】 本発明の実施形態1の光学フィルターの分光
透過率特性を示す説明図
FIG. 2 is an explanatory diagram showing a spectral transmittance characteristic of the optical filter according to the first embodiment of the present invention.

【図3】 本発明の実施形態2の要部概略図FIG. 3 is a schematic diagram of a main part of a second embodiment of the present invention.

【図4】 本発明の実施形態3の要部概略図FIG. 4 is a schematic diagram of a main part of a third embodiment of the present invention.

【図5】 本発明の実施形態3の光偏向器の偏向面の分
光反射率特性を示す説明図
FIG. 5 is an explanatory diagram showing spectral reflectance characteristics of a deflecting surface of an optical deflector according to a third embodiment of the present invention.

【図6】 従来のマルチビーム走査光学装置の要部概略
FIG. 6 is a schematic view of a main part of a conventional multi-beam scanning optical device.

【図7】 マルチレーザの拡大説明図FIG. 7 is an enlarged explanatory view of a multi laser.

【符号の説明】[Explanation of symbols]

1,11 光量調整手段(光学フィルター) 2 光源手段(マルチレーザ) 3 集光光学系 4,40 偏向手段(光偏向器) 5 結像光学系(fθレンズ系) 6 被走査面(感光ドラム面) 41 光量調整手段(光学多層膜) Reference Signs List 1, 1 Light amount adjusting means (optical filter) 2 Light source means (multi laser) 3 Condensing optical system 4, 40 Deflection means (optical deflector) 5 Imaging optical system (fθ lens system) 6 Scanned surface (photosensitive drum surface) 41) Light intensity adjusting means (optical multilayer film)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 複数の発光部を有する光源手段から射出
する複数の光ビームを偏向手段に導光し、該偏向手段で
偏向反射された複数の光ビームを結像光学系を介して被
走査面上に導光し、該被走査面上を複数の光ビームで同
時に走査するマルチレーザー走査光学装置において、 該光源手段と該被走査面との間の光路内に、P偏光の分
光透過率特性が光源波長での透過率に対して、該光源波
長より短い波長では透過率が高く、長い波長では透過率
が低い特性を有する光量調整手段を設けたことを特徴と
するマルチビーム走査光学装置。
1. A plurality of light beams emitted from a light source having a plurality of light emitting units are guided to a deflecting unit, and the plurality of light beams deflected and reflected by the deflecting unit are scanned by an imaging optical system. In a multi-laser scanning optical apparatus for guiding light on a surface and simultaneously scanning the surface to be scanned with a plurality of light beams, a spectral transmittance of P-polarized light is provided in an optical path between the light source means and the surface to be scanned. A multi-beam scanning optical device comprising a light amount adjusting means having characteristics such that the transmittance is high at a wavelength shorter than the light source wavelength and low at a long wavelength. .
【請求項2】 前記光量調整手段のP偏光の分光透過率
特性は前記光源波長に対する透過率が軸上ビームより軸
外ビームの方が低いことを特徴とする請求項1のマルチ
ビーム走査光学装置。
2. The multi-beam scanning optical apparatus according to claim 1, wherein the spectral transmittance characteristic of the P-polarized light of the light amount adjusting means is such that the transmittance with respect to the light source wavelength is lower in an off-axis beam than in an on-axis beam. .
【請求項3】 前記光量調整手段は基板部材上に光学多
層膜が施されて形成されていることを特徴とする請求項
1のマルチビーム走査光学装置。
3. The multi-beam scanning optical device according to claim 1, wherein said light amount adjusting means is formed by applying an optical multilayer film on a substrate member.
【請求項4】 前記光量調整手段は枠体に対して外周囲
を密着して取り付けられていることを特徴とする請求項
1のマルチビーム走査光学装置。
4. The multi-beam scanning optical device according to claim 1, wherein said light amount adjusting means is attached to a frame so that its outer periphery is in close contact with said frame.
【請求項5】 複数の発光部を有する光源手段から射出
する複数の光ビームを偏向手段に導光し、該偏向手段で
偏向反射された複数の光ビームを結像光学系を介して被
走査面上に導光し、該被走査面上を複数の光ビームで同
時に走査するマルチビーム走査光学装置において、 該偏向手段の各偏向面に、P偏光の分光反射率特性が光
源波長での反射率に対して、該光源波長の前後の波長で
の反射率が低い特性を有する光量調整手段を設けたこと
を特徴とするマルチビーム走査光学装置。
5. A plurality of light beams emitted from a light source having a plurality of light-emitting portions are guided to a deflecting means, and the plurality of light beams deflected and reflected by the deflecting means are scanned by an imaging optical system. In a multi-beam scanning optical device for guiding light on a surface and simultaneously scanning the surface to be scanned with a plurality of light beams, the spectral reflectance characteristic of P-polarized light at each light source wavelength is reflected at each deflection surface of the deflection means. A multi-beam scanning optical apparatus, comprising: a light amount adjusting unit having a characteristic that reflectance at wavelengths before and after the light source wavelength is lower than the reflectance.
【請求項6】 前記光量調整手段のP偏光の分光透過率
特性は前記光源波長に対する反射率が軸上ビームより軸
外ビームの方が低いことを特徴とする請求項5のマルチ
ビーム走査光学装置。
6. The multi-beam scanning optical device according to claim 5, wherein the spectral transmittance characteristic of the P-polarized light of the light amount adjusting means is such that the reflectance with respect to the light source wavelength is lower in an off-axis beam than in an on-axis beam. .
【請求項7】 前記光量調整手段は前記偏向手段の偏向
面上に光学多層膜が施されて形成されていることを特徴
とする請求項5のマルチビーム走査光学装置。
7. The multi-beam scanning optical device according to claim 5, wherein said light amount adjusting means is formed by applying an optical multilayer film on a deflecting surface of said deflecting means.
JP28805497A 1997-10-03 1997-10-03 Multibeam scanning optical device Pending JPH11109269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28805497A JPH11109269A (en) 1997-10-03 1997-10-03 Multibeam scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28805497A JPH11109269A (en) 1997-10-03 1997-10-03 Multibeam scanning optical device

Publications (1)

Publication Number Publication Date
JPH11109269A true JPH11109269A (en) 1999-04-23

Family

ID=17725251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28805497A Pending JPH11109269A (en) 1997-10-03 1997-10-03 Multibeam scanning optical device

Country Status (1)

Country Link
JP (1) JPH11109269A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003476A (en) * 2006-06-26 2008-01-10 Ricoh Co Ltd Image forming apparatus
JP2011053436A (en) * 2009-09-02 2011-03-17 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2013033225A (en) * 2011-06-30 2013-02-14 Canon Inc Imaging apparatus and image forming apparatus
JP2015141388A (en) * 2014-01-30 2015-08-03 京セラドキュメントソリューションズ株式会社 Optical scanning device and image formation device
JP2017010060A (en) * 2011-06-30 2017-01-12 キヤノン株式会社 Imaging apparatus and image forming apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003476A (en) * 2006-06-26 2008-01-10 Ricoh Co Ltd Image forming apparatus
JP2011053436A (en) * 2009-09-02 2011-03-17 Ricoh Co Ltd Optical scanner and image forming apparatus
US8564635B2 (en) 2009-09-02 2013-10-22 Ricoh Company, Ltd. Optical scanner and image forming apparatus
JP2013033225A (en) * 2011-06-30 2013-02-14 Canon Inc Imaging apparatus and image forming apparatus
US9426338B2 (en) 2011-06-30 2016-08-23 Canon Kabushiki Kaisha Imaging apparatus and image forming apparatus having continuous pores in three dimensions in porous body
JP2017010060A (en) * 2011-06-30 2017-01-12 キヤノン株式会社 Imaging apparatus and image forming apparatus
JP2015141388A (en) * 2014-01-30 2015-08-03 京セラドキュメントソリューションズ株式会社 Optical scanning device and image formation device

Similar Documents

Publication Publication Date Title
US8228583B2 (en) Optical scanning device and image forming apparatus
US20040100674A1 (en) Optical scanning apparatus capable of reducing variations in shading and improving light usage
EP0804015B1 (en) Optical scanning device
JP2000180761A (en) Raster output scanner image-forming system
US7486427B2 (en) Polygon mirror, laser scanning unit having the same, and image forming apparatus having the same
JP4817668B2 (en) Optical scanning device
KR100449729B1 (en) Optical scanning apparatus
JP2000180762A (en) Raster output scanner image-forming system
US5757535A (en) Optical scanner
JPH11109269A (en) Multibeam scanning optical device
KR101111904B1 (en) Light scanning unit and image forming apparatus employing the same
JP2005084565A (en) Optical scanner and image forming device using the same
JP3392107B2 (en) Scanning optical device and image forming apparatus using the same
JPH06148547A (en) Optical beam scanning device having shading correction function
JPH09211366A (en) Optical scanner
JPH1164759A (en) Light scanning optical device
JP2979754B2 (en) Optical scanning device
JP2767618B2 (en) Laser scanning optics
JP3283098B2 (en) Light beam scanning device
JP3542481B2 (en) Multi-beam scanning optical system and image forming apparatus using the same
JPH11264952A (en) Optical scanning device
JPH05289011A (en) Image recorder
US20100155581A1 (en) Laser scanning unit and image-forming apparatus having the same
US6954312B2 (en) Light scanning unit
JP2002006245A (en) Optical scanner