JPS6128903A - Reflector - Google Patents

Reflector

Info

Publication number
JPS6128903A
JPS6128903A JP59150520A JP15052084A JPS6128903A JP S6128903 A JPS6128903 A JP S6128903A JP 59150520 A JP59150520 A JP 59150520A JP 15052084 A JP15052084 A JP 15052084A JP S6128903 A JPS6128903 A JP S6128903A
Authority
JP
Japan
Prior art keywords
aluminum substrate
refractive index
dielectric layer
approximately
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59150520A
Other languages
Japanese (ja)
Inventor
Michihiro Tokuhara
徳原 満弘
Susumu Seto
瀬戸 進
Hideaki Yano
秀明 矢野
Muneo Nakayama
中山 宗雄
Yoshimi Sato
善美 佐藤
Katsuya Tanitsu
克也 谷津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO DENSHI KAGAKU KABUSHIKI
Canon Inc
Original Assignee
TOKYO DENSHI KAGAKU KABUSHIKI
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO DENSHI KAGAKU KABUSHIKI, Canon Inc filed Critical TOKYO DENSHI KAGAKU KABUSHIKI
Priority to JP59150520A priority Critical patent/JPS6128903A/en
Publication of JPS6128903A publication Critical patent/JPS6128903A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the surface reflectivity of an aluminum substrate and to decrease the scattering property of the aluminum substrate surface by providing alternately a soln. of an org. metallic compd. or a soln. of metallic hydroxide on the aluminum substrate then calcining the same. CONSTITUTION:The reflector consists of the aluminum substrate 11 having about 80% surface reflectivity and relatively low purity, the layer 12 consisting of SiO2 having 50-80nm geometrical film thickness and the layer 13 consisting of TiO2 having 50-80nm geometrical film thickness. The optical thickness of the layers 12, 13 is approximately lambda/4 thickness or the thickness of 2n-1 times lambda/4 if the design wavelength is designated as lambda, where n is a natural number. The reflection increasing films 12, 13 provided on the reflector are formed by a soln. coating method. Said films are formed by coating first the soln. of the org. compd. of Si on the substrate 11 and coating further the soln. of the org. compd. of Ti thereon then heating the coating for about 30min at about 150-380 deg.C, more preferably about 250 deg.C.

Description

【発明の詳細な説明】 本発明は1例えば複写機、ファクシミリ等における照明
装置の反射笠の部材として好適な反射体に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reflector suitable as a member of a reflective shade of a lighting device in, for example, a copying machine, a facsimile machine, etc.

従来より、各種の事務機の照明装置に用いられる反射笠
の部材としては、 (a)アルミニウムを電解研摩してアルマイトをつけた
部材、 (b)第3図に示す如く低純度のアルミニウムMlの上
に、高純度のアルミニウム層2をラミネートした部材、 (c)第4図に示す如く、前記(b)に示す部材上に、
SiO2等の保護層3を設けた部材、(d)アルミニウ
ム基板の上に真空蒸着にて多層膜を設けた部材、 がある。
Conventionally, the materials for reflective shades used in lighting devices for various office machines have been (a) aluminum electrolytically polished and anodized, and (b) low-purity aluminum Ml as shown in Figure 3. A member on which a high-purity aluminum layer 2 is laminated, (c) As shown in FIG. 4, on the member shown in (b) above,
(d) A member in which a protective layer 3 of SiO2 or the like is provided, and (d) a member in which a multilayer film is provided on an aluminum substrate by vacuum evaporation.

然しなから(a)に示す部材は、その表面での絶対反射
率(以後単に表面反射率と呼ぶ)が非常に低いと言う問
題がある。又、(b)に示す部材は、純度の高いアルミ
ニ、ラム層2を使用することにより、アルミニウム層2
の表面反射率は85%〜87%に達することができるが
、アルミニウム層2の表面で反射される光束は正反射の
光束に対して散乱光束の成分が非常に多い光束となる。
However, the member shown in (a) has a problem in that the absolute reflectance on its surface (hereinafter simply referred to as surface reflectance) is extremely low. In addition, the member shown in (b) uses aluminum layer 2 of high purity, so that the aluminum layer 2
Although the surface reflectance of the aluminum layer 2 can reach 85% to 87%, the luminous flux reflected on the surface of the aluminum layer 2 has a much larger scattered luminous flux component than the specularly reflected luminous flux.

この様。Like this.

な散乱成分が非常に多いことは、照明装置の反射笠に用
いた場合、所望の照明領域を正確に照明することが困難
である。換言すれば、所望の照明領域に光束を集中させ
る効率が低下し、高効率な照明が出来ないと言うことで
ある。更に、(b)に示す部材は耐候性も悪い。又、(
c)に示す部材は、(b)に示す部材に比べてS i 
02の層3を高純度のアルミニウム層2上にλ/2(但
しλは設計波長)の整数倍の厚さで設けているので、耐
候性の問題は改善されるが、前記散乱性の問題は充分に
は改善されない、更には、表面反射率も85%〜87%
程度で、(b)の部材の表面反射率とあまり差異がない
、又、(d)に示す部材では、非常に薄い膜を蒸着によ
り多層設けることにより、アルミニウム基板の表面反射
率を増加せしめることができるが、アルミニウム基板表
面に於ける散乱成分を減少させることは出来ない、更に
(d)における最大の難点は、蒸着によりアルミニウム
基板上に膜を設ける為に、コストが非常に高くなり、量
産向きでないこと、蒸着槽の大きさの関係上、表面の大
きな部材には、膜を施すことが困難であることが挙げら
れる。
The large number of scattered components makes it difficult to accurately illuminate a desired illumination area when used in a reflective shade of a lighting device. In other words, the efficiency of concentrating the luminous flux on a desired illumination area decreases, making it impossible to provide highly efficient illumination. Furthermore, the member shown in (b) also has poor weather resistance. or,(
The member shown in c) has a lower S i than the member shown in (b).
Since the layer 3 of 02 is provided on the high-purity aluminum layer 2 with a thickness that is an integral multiple of λ/2 (where λ is the design wavelength), the weather resistance problem is improved, but the scattering problem mentioned above is improved. is not sufficiently improved, and furthermore, the surface reflectance is 85% to 87%.
In the case of the member shown in (d), the surface reflectance of the aluminum substrate is increased by providing multiple layers of very thin films by vapor deposition. However, it is not possible to reduce the scattered components on the surface of the aluminum substrate.Furthermore, the biggest difficulty in (d) is that the film is provided on the aluminum substrate by vapor deposition, which increases the cost and makes mass production difficult. It is difficult to coat a member with a large surface due to the wrong orientation and the size of the vapor deposition tank.

本発明の目的は、アルミニウムを基板とする反射体に於
いて、容易な量産向けの手段で、アルミニウム表面の反
射率を増加せしめる様な反射体を提供することにある。
An object of the present invention is to provide a reflector using aluminum as a substrate, which can increase the reflectance of the aluminum surface by means for easy mass production.

本発明の更なる目的は、従来のアルミニウムを基板とす
る反射体に比して、アルミニウム基板の表面での反射の
際に、散乱光束成分の割合が、正反射光束の成分に対し
て小さい反射体を提供することにある。
A further object of the present invention is that, compared to a conventional reflector having an aluminum substrate, upon reflection on the surface of an aluminum substrate, the proportion of the scattered light flux component is smaller than the specularly reflected light flux component. It's about offering your body.

本発明の更なる目的は、アルミニウム基板表面の耐候性
に優れた反射体を提供することにある。
A further object of the present invention is to provide a reflector with excellent weather resistance on the surface of an aluminum substrate.

本発明に係る反射体に於いては、T i 、 Z r 
In the reflector according to the present invention, T i , Z r
.

Ta、Inの如き金属の有機化合物の溶液又は金属水酸
化物の溶液と、Siの如き金属の有機化合物の溶液を、
ディッピング、スピナーの様な溶液塗布法によりアルミ
ニウム基板上に交互に設け。
A solution of an organic compound of a metal such as Ta or In or a solution of a metal hydroxide, and a solution of an organic compound of a metal such as Si,
Alternately applied on an aluminum substrate using a solution coating method such as dipping or spinner.

しかる後に加熱して焼成することにより、アルミニウム
基板上に高屈折率誘電体の層と低屈折率誘電体の層の交
互層を形成することにより上記目的を達成したものであ
る。
The above object is achieved by subsequently heating and firing to form alternating layers of high refractive index dielectric layers and low refractive index dielectric layers on the aluminum substrate.

従って、本発明による反射体に於いては、最終的にはア
ルミニウム基板上に、TiO2、ZrO2。
Therefore, in the reflector according to the present invention, TiO2 and ZrO2 are finally formed on the aluminum substrate.

Ta2OS 、I n7 o3の如き高屈折率の誘電体
層とSiO2の如き低屈折率の誘電体層の交互層が形成
されるもにであるが、溶液塗布法により形成する為に、
表面反射率も基板のアルミニウム表面自身の反射率に比
して5%〜lO%程増加させることが出来ると共に、大
幅に反射光束の散乱性を低下させることが出来たもので
ある。一本発明に於いて用いる有機金属化合物としては
、 (a)金属ハロゲン化物とカルボン酸を反応させ、必要
に応じて減圧法によりハロゲンの除去を行い、更にこの
反応正成物とアルコールとを反応させ適宜有機溶媒によ
り調整稀釈してなる溶液、(b)金属アルコラードと低
級脂肪酸とを触媒の存在の下、有機溶媒中に於いて反応
させ適宜有機溶媒で稀釈してなる溶液。
Although alternating layers of high refractive index dielectric layers such as Ta2OS and In7O3 and low refractive index dielectric layers such as SiO2 are formed, since they are formed by a solution coating method,
The surface reflectance can be increased by about 5% to 10% compared to the reflectance of the aluminum surface of the substrate itself, and the scattering of reflected light beams can be significantly reduced. As the organometallic compound used in the present invention, (a) a metal halide and a carboxylic acid are reacted, the halogen is removed by a reduced pressure method if necessary, and the reaction product is further reacted with an alcohol. (b) A solution obtained by reacting a metal alcoholade and a lower fatty acid in an organic solvent in the presence of a catalyst and diluting the solution with an appropriate organic solvent.

等を用いることができる。以下、本発明について詳述す
る。
etc. can be used. The present invention will be explained in detail below.

第1図は1本発明に係る反射体の一実施例を示す断面図
である。第1図に於いて11はその表面反射率が80%
程度の比較的純度の低いアルミニラム基板、12は50
nm〜80nmの幾何学的膜厚を有する3i02(7)
層、13は50 nm〜80 r+mc7)幾何学的膜
厚を有するTiO2の層である。各層(12,13)の
光学的膜厚は設計波長を入とすると、はぼλ/4の厚さ
又はほぼλ/4の(2n −1)倍の厚さである。但し
nは自然数である。第1図で示される反射体上に設けら
れた反射増加膜(12,13)は、溶液塗布法によって
形成されたもので、まずアルミニウム基板ll上にSi
の有機化合物の溶液を塗布し、更にその上にTiの有機
化合物の溶液を塗布した後に、150℃〜380℃、望
ましくは250℃位の温度で、約30分間加熱すること
により形成されるものである。この反射増加膜を設けた
場合のアルミニウム基板11の反射率は5%〜lO%程
度反射率が増加され、従ってアルミニウム基板11の反
射率はおよそ85%〜87%程になる。
FIG. 1 is a sectional view showing an embodiment of a reflector according to the present invention. In Figure 1, 11 has a surface reflectance of 80%.
Aluminum substrate with relatively low purity, 12 is 50
3i02 (7) with geometric thickness from nm to 80 nm
Layer 13 is a layer of TiO2 with a geometric thickness of 50 nm to 80 r+mc7). The optical thickness of each layer (12, 13) is approximately λ/4 or approximately (2n −1) times λ/4 when the design wavelength is included. However, n is a natural number. The reflection increasing films (12, 13) provided on the reflector shown in FIG. 1 were formed by a solution coating method.
It is formed by applying a solution of an organic compound of , further applying a solution of an organic compound of Ti on top of that, and then heating at a temperature of 150°C to 380°C, preferably about 250°C for about 30 minutes. It is. When this reflection increasing film is provided, the reflectance of the aluminum substrate 11 is increased by about 5% to 10%, and therefore the reflectance of the aluminum substrate 11 is about 85% to 87%.

第2図は、本発明に係る反射体の他の実施例を示す断面
図である。第2図において、21は比較的純度の低いア
ルミニウム基板、22は高純度でその表面反射率も85
%〜87%程度のアルミニウム層で、前記アルミニウム
基板21上に高純度アルミニウム層22をラミネート処
理により設けたものである。23及び25は、30nm
〜70nmの幾何学的膜厚を有するTiO2の層、24
は30nm〜70nmの幾何学的膜厚を有するSiO2
の層である。これ等の層(23,24,25)の光学的
膜厚も設計波長入のほぼ(2n−1)・λ/4の厚さに
設けることが反射増加をさせる為には望ましい。又、こ
れ等の反射増加膜(23,24,25)は、第1図で示
した反射増加膜と同様の過程を経て形成されるものであ
り、ここでは説明を省く。第2図に示す反射増加膜を設
けることにより、アルミニウム層22の表面反射率を5
%〜10%程度増すことが可能であり、従って85%〜
87%程度のアルミニウム層22の反射率を93%〜9
5%程度まで増すことが出来、真空蒸着で達成される反
射率とほぼ同等の反射率を得ることが出来る。
FIG. 2 is a sectional view showing another embodiment of the reflector according to the present invention. In Figure 2, 21 is an aluminum substrate of relatively low purity, and 22 is a high purity one with a surface reflectance of 85.
% to about 87%, and a high purity aluminum layer 22 is provided on the aluminum substrate 21 by lamination processing. 23 and 25 are 30 nm
A layer of TiO2 with a geometric thickness of ~70 nm, 24
is SiO2 with a geometric thickness of 30 nm to 70 nm.
This is the layer of In order to increase reflection, it is desirable that the optical thickness of these layers (23, 24, 25) be approximately (2n-1)·λ/4, which is the wavelength of the design wavelength. Further, these reflection increasing films (23, 24, 25) are formed through the same process as the reflection increasing film shown in FIG. 1, and will not be described here. By providing the reflection increasing film shown in FIG. 2, the surface reflectance of the aluminum layer 22 can be increased by 5.
It is possible to increase by about 10%, therefore 85% to
The reflectance of the aluminum layer 22, which is about 87%, is reduced to 93% to 9.
The reflectance can be increased to about 5%, and a reflectance almost equivalent to that achieved by vacuum deposition can be obtained.

又、第1図及び第2図で示す反射体は、表面反射する全
ての反射光束中に占める正反射光束の割合を、従来の反
射体に於ける正反肚光束の割合に比して高めることが出
来た。換言すれば、全ての反射光束中に占める散乱反射
光束の割合を減少させることが出来たもので、例えば、
第4図に示す反射体では散乱反射光束の割合がおよそ8
%であったものが、第1図及び第2図に示す反射体では
、散乱反射光束の割合をおよそ3%まで低下させること
が出来た。
In addition, the reflectors shown in FIGS. 1 and 2 increase the proportion of specularly reflected luminous flux in all the reflected luminous flux reflected from the surface compared to the proportion of specularly reflected luminous flux in conventional reflectors. I was able to do it. In other words, it is possible to reduce the proportion of scattered reflected light flux in all reflected light flux, for example,
In the reflector shown in Figure 4, the ratio of scattered reflected light flux is approximately 8.
%, but in the reflectors shown in FIGS. 1 and 2, the ratio of scattered reflected light flux could be reduced to approximately 3%.

上述した効果の外にも、本願で示す反射体は高温、高温
、更にはオゾンの様な外部環境の対する対候性にすぐれ
、又、デ゛イピングの際の塗布量の調整により容易に反
射増加膜を形成する誘電体層の膜厚を調整でき1反射増
加すべき波長領域を自由に選択することが出来る。更に
言うまでもなく、低コストで且つ量産性に適するもので
ある。
In addition to the above-mentioned effects, the reflector shown in this application has excellent weather resistance against high temperatures, high temperatures, and external environments such as ozone, and can be easily reflected by adjusting the coating amount during dipping. The thickness of the dielectric layer forming the increase film can be adjusted, and the wavelength range in which one reflection is to be increased can be freely selected. Needless to say, it is low cost and suitable for mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明に係る反射体の構成を示す
図、第3図及び第4図は、従来の反射体の構成を示す図
。 [1,21・・魯アルミニウム基板。 12.2411・・SiO2層、 13.23.25@・・TiO2層、 22・・・高純度アルミニウム層。
1 and 2 are diagrams showing the structure of a reflector according to the present invention, and FIGS. 3 and 4 are diagrams showing the structure of a conventional reflector. [1, 21... Lu aluminum substrate. 12.2411...SiO2 layer, 13.23.25@...TiO2 layer, 22...High purity aluminum layer.

Claims (5)

【特許請求の範囲】[Claims] (1)アルミニウム基板上に、有機金属化合物の溶液又
は金属水酸化物の溶液を塗布した後にこれを焼成するプ
ロセスを用いて形成した高屈折率の誘電体層と低屈折率
の誘電体層の交互層より成る薄膜を設けることにより、
アルミニウム基板の表面反射率を増加せしめると共にア
ルミニウム基板表面の散乱性を低下せしめることを特徴
とする反射体。
(1) A dielectric layer with a high refractive index and a dielectric layer with a low refractive index formed by applying a solution of an organometallic compound or a solution of a metal hydroxide on an aluminum substrate and then firing it. By providing a thin film consisting of alternating layers,
A reflector characterized by increasing the surface reflectance of an aluminum substrate and reducing the scattering property of the surface of the aluminum substrate.
(2)前記交互層より成る薄膜は、λを設計波長、nを
自然数とすると、アルミニウム基板側より、光学的膜厚
がおおよそ(2n−1)λ/4の低屈折率誘電体層、光
学的膜厚がおおよそ(2n−1)λ/4の高屈折率誘電
体層が順次積層して成る特許請求の範囲第1項記載の反
射体。
(2) The thin film consisting of the alternating layers has a low refractive index dielectric layer with an optical thickness of approximately (2n-1)λ/4 from the aluminum substrate side, where λ is the design wavelength and n is a natural number. 2. The reflector according to claim 1, wherein high refractive index dielectric layers having a target thickness of approximately (2n-1)λ/4 are sequentially laminated.
(3)前記交互層より成る薄膜は、λを設計波長、nを
自然数とすると、アルミニウム基板側より、光学的膜厚
がおおよそ(2n−1)λ/4の高屈折率誘電体層、光
学的膜厚がおおよそ(2n−1)λ/4の低屈折率誘電
体層、光学的膜厚がおおよそ(2n−1)λ/4の高屈
折率誘電体層が順次積層して成る特許請求の範囲第1項
記載の反射体。
(3) The thin film consisting of the alternating layers has a high refractive index dielectric layer with an optical thickness of approximately (2n-1)λ/4 from the aluminum substrate side, where λ is the design wavelength and n is a natural number. A patent claim in which a low refractive index dielectric layer with an optical thickness of approximately (2n-1)λ/4 and a high refractive index dielectric layer with an optical thickness of approximately (2n-1)λ/4 are sequentially laminated. The reflector according to item 1.
(4)前記高屈折率誘電体層は、TiO_2、ZrO_
2、Ta_2O_5、In_2O_3のいずれかの物質
より成る特許請求の範囲第2項又は第3項記載の反射体
(4) The high refractive index dielectric layer is made of TiO_2, ZrO_
2. The reflector according to claim 2 or 3, which is made of any one of the following substances: Ta_2O_5 and In_2O_3.
(5)前記低屈折率誘電体層はSiO_2より成る特許
請求の範囲第2項又は第3項記載の反射体。
(5) The reflector according to claim 2 or 3, wherein the low refractive index dielectric layer is made of SiO_2.
JP59150520A 1984-07-20 1984-07-20 Reflector Pending JPS6128903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59150520A JPS6128903A (en) 1984-07-20 1984-07-20 Reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59150520A JPS6128903A (en) 1984-07-20 1984-07-20 Reflector

Publications (1)

Publication Number Publication Date
JPS6128903A true JPS6128903A (en) 1986-02-08

Family

ID=15498654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59150520A Pending JPS6128903A (en) 1984-07-20 1984-07-20 Reflector

Country Status (1)

Country Link
JP (1) JPS6128903A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257102A (en) * 1986-04-30 1987-11-09 Kyocera Corp Ceramic mirror
JPS6314102A (en) * 1986-07-04 1988-01-21 Nitto Electric Ind Co Ltd Reflection plate
JPS63204222A (en) * 1987-02-20 1988-08-23 Fuji Xerox Co Ltd Light beam scanner
JPH0222523U (en) * 1988-07-29 1990-02-15
US6005715A (en) * 1996-09-17 1999-12-21 Dielectric Coating Industries Reflectors
KR100323440B1 (en) * 1995-09-12 2002-06-20 부르크하르트 한스, 게르네트 자무엘 Aluminum reflector with complex reflectance enhancement surface layer
WO2016006691A1 (en) * 2014-07-10 2016-01-14 イビデン株式会社 Mirror
KR20170066497A (en) * 2014-10-27 2017-06-14 알메코 게엠베하 Temperature- and corrosion-stable surface reflector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732402A (en) * 1980-08-04 1982-02-22 Minolta Camera Co Ltd Reflecting mirror for lighting
JPS5926704A (en) * 1982-08-05 1984-02-13 Hoya Corp Multilayered film reflecting mirror
JPS60181704A (en) * 1984-02-29 1985-09-17 Canon Inc Reflection mirror for uv

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732402A (en) * 1980-08-04 1982-02-22 Minolta Camera Co Ltd Reflecting mirror for lighting
JPS5926704A (en) * 1982-08-05 1984-02-13 Hoya Corp Multilayered film reflecting mirror
JPS60181704A (en) * 1984-02-29 1985-09-17 Canon Inc Reflection mirror for uv

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257102A (en) * 1986-04-30 1987-11-09 Kyocera Corp Ceramic mirror
JPS6314102A (en) * 1986-07-04 1988-01-21 Nitto Electric Ind Co Ltd Reflection plate
JPS63204222A (en) * 1987-02-20 1988-08-23 Fuji Xerox Co Ltd Light beam scanner
JPH0222523U (en) * 1988-07-29 1990-02-15
JPH059761Y2 (en) * 1988-07-29 1993-03-10
KR100323440B1 (en) * 1995-09-12 2002-06-20 부르크하르트 한스, 게르네트 자무엘 Aluminum reflector with complex reflectance enhancement surface layer
US6005715A (en) * 1996-09-17 1999-12-21 Dielectric Coating Industries Reflectors
WO2016006691A1 (en) * 2014-07-10 2016-01-14 イビデン株式会社 Mirror
KR20170066497A (en) * 2014-10-27 2017-06-14 알메코 게엠베하 Temperature- and corrosion-stable surface reflector
JP2017533842A (en) * 2014-10-27 2017-11-16 アルメコ・ゲーエムベーハー Temperature and corrosion resistant surface reflectors
US10436955B2 (en) 2014-10-27 2019-10-08 Almeco Gmbh Temperature- and corrosion-stable surface reflector

Similar Documents

Publication Publication Date Title
JP2740653B2 (en) Optical interference filter
JPH0786569B2 (en) Bulb
US5412274A (en) Diffusely reflecting optical interference filters and articles including lamps reflectors and lenses
JPH05503372A (en) D. C. Reactive sputtered anti-reflective coating
JP4224646B2 (en) Method for producing multilayer optical material using cross-linking / densification by exposure to ultraviolet light and optical material produced by said method
JP2005538871A (en) Layer system comprising a titanium-aluminum oxide layer
JPH0315723B2 (en)
JPS6128903A (en) Reflector
WO2007010462A2 (en) High-refractive optical material and electric lamp with interference film
JPS6342816B2 (en)
JPH05127004A (en) Reflecting mirror
JP2566634B2 (en) Multi-layer antireflection film
JP4185195B2 (en) Optical article and light bulb with infrared reflective coating
CN113151783A (en) Combined reflective film and preparation method thereof
GB2371562A (en) Coated reflector for a lamp
JPS61231501A (en) Reflecting plate
JPS62143002A (en) Dielectric multi-layer film nonreflective coating
JPS58208154A (en) Production of reflecting mirror of multilayered film
JPH03129301A (en) Multilayered antireflection film
JPS6296901A (en) Synthetic resin lens
JP2698623B2 (en) Reflector
JP2626062B2 (en) Incandescent light bulb
JPH0251103A (en) Light interference body
JPH0679090B2 (en) Method for manufacturing multilayer mirror
JPH05323108A (en) Reflection mirror