JPS63203733A - Manufacture of shape memory alloy - Google Patents

Manufacture of shape memory alloy

Info

Publication number
JPS63203733A
JPS63203733A JP3375987A JP3375987A JPS63203733A JP S63203733 A JPS63203733 A JP S63203733A JP 3375987 A JP3375987 A JP 3375987A JP 3375987 A JP3375987 A JP 3375987A JP S63203733 A JPS63203733 A JP S63203733A
Authority
JP
Japan
Prior art keywords
cylindrical body
powder
shape memory
tih2
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3375987A
Other languages
Japanese (ja)
Inventor
Teruyuki Murai
照幸 村井
Akio Hara
昭夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3375987A priority Critical patent/JPS63203733A/en
Publication of JPS63203733A publication Critical patent/JPS63203733A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a sintered compact of Ti-Ni shape memory alloy minimal in O2 content, by filling a mixture of powdered TiH2 and Ni into a cylindrical body made of specific metal, by sucking H2 generated by the decomposition of TiH2 from one end of the cylindrical body while applying heating, and by reducing NiO, etc., in Ni by H2. CONSTITUTION:The cylindrical body 1 made of one kind among the metals such as Fe, Ni, Cu, etc., or alloys thereof is filled with the powder mixture A of TiH2 and carbonyl Ni powders of <=100 mesh, which is put into a heating furnace and heated up to 800-1,200 deg.C while sucking and evacuating the atmosphere in the cylindrical body 1 by means of an exhaust pump 3 through a pipe 2 attached to one end of the metallic cylindrical body 1. NiO in Ni is reduced by H2 gas generated by the decomposition of TiH2, O2 contained in Ni is removed, and respective powders of Ti and Ni are sintered. When the generation of H2 gas is finished, the metallic cylindrical body 1 is hermetically sealed and then extruded or forged into the required shape, and successively, the metallic cylindrical body 1 is removed by means of grinding, etc. In this way, the Ti-Ni shape memory alloy of <=0.15% O2 content and >=95% true density ratio can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は塑性加工性が高く、すぐれた形状記憶効果を
有する高密度Tb  N=系菱形状記憶合金製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to a method for producing a high-density Tb N= rhombic shape memory alloy having high plastic workability and excellent shape memory effect.

〈従来の技術とその問題点〉 従来、形状記憶合金の製造方法としては、(1)高周波
真空誘導溶解法、(2]アーク溶解法、(3)電子ビー
ム溶解法などの溶解鋳造法と一粉末と陳粉末を混合しで
焼結する粉末冶金法が知られている。
<Conventional technologies and their problems> Conventionally, methods for producing shape memory alloys include melting and casting methods such as (1) high-frequency vacuum induction melting, (2) arc melting, and (3) electron beam melting. A powder metallurgy method is known in which powder and powder are mixed and sintered.

しかしながら、上記した従来の形状記憶合金の製造方法
は下記するような問題点を有している。
However, the conventional shape memory alloy manufacturing method described above has the following problems.

即ち、(1)の高周波真空誘導溶解法は黒鉛ルツボを使
用するため、溶湯とルツボとの反応が生じ、溶湯中へ炭
素が侵入する。そしてこの炭素がThCとして析出し疲
労破壊の原因として働くため疲労寿命の低下につながる
。(2のアーク溶解法では組成の均一なインゴットがW
難い。(3)の電子ビーム溶解法はコストが高くつき、
また取扱いが困難である。そしてこれら溶解法によりて
得られたイン  ゛ゴツトは加工において加工硬化が大
きいため、塑性加工性が悪く、製品形状にするまでに敗
多くの工程を必要とする。
That is, since the high frequency vacuum induction melting method (1) uses a graphite crucible, a reaction occurs between the molten metal and the crucible, and carbon enters the molten metal. This carbon precipitates as ThC and acts as a cause of fatigue failure, leading to a reduction in fatigue life. (In the arc melting method described in 2, an ingot with a uniform composition is
hard. (3) Electron beam melting method is expensive;
It is also difficult to handle. Ingots obtained by these melting methods undergo large work hardening during processing, have poor plastic workability, and require many steps to form into a product.

一方、粉末冶金法は溶解鋳造法に比べて組成制御が容易
で均一な組成の合金を得ることはできるが、原料微粉末
中の酸素濃度が高いため、焼結体の酸素濃度が溶解鋳造
法と比べて高くなり塑性加工性が更に悪くなる欠点があ
る。
On the other hand, the powder metallurgy method has easier composition control than the melt casting method and can obtain alloys with a uniform composition, but because the oxygen concentration in the raw material fine powder is high, the oxygen concentration of the sintered body is lower than that of the melt casting method. This has the disadvantage that the plastic workability is even worse as it is higher than that of the steel.

く問題点を解決するための手段〉 本発明者らは形状記憶合金の製造方法における上記した
従来法の問題点を解消すべく検討した結果、この発明に
至ったものである。
Means for Solving the Problems> The present inventors have studied to solve the above-mentioned problems of the conventional methods for manufacturing shape memory alloys, and as a result they have arrived at the present invention.

即ち、この発明はTb H2粉末と陳粉末を主原料とす
る混合粉末を片端を封じた金属筒体中に充填した後、他
端より排気ポンプ等により吸引しながら該金属筒体を8
00〜1200℃の温度に加熱して水素ガスの発生が完
了した後密閉し、次いで加熱状態の密閉金属筒体を押出
しまたはII造加工したのち、金属筒体を除去して酸素
量が0.15%以下で、かつ真密度比が95%以上であ
るTL −1’に系形状記憶合金を得る方法を提供する
ものである。
That is, in the present invention, a mixed powder containing TbH2 powder and Chen powder as main raw materials is filled into a metal cylinder whose one end is sealed, and then the metal cylinder is heated for 8 hours while being sucked from the other end by an exhaust pump or the like.
After heating to a temperature of 00 to 1,200°C and completing the generation of hydrogen gas, the cylinder is sealed, and then the heated sealed metal cylinder is extruded or subjected to II processing, and the metal cylinder is removed to reduce the amount of oxygen to 0. The present invention provides a method for obtaining a shape memory alloy based on TL-1' having a true density ratio of 15% or less and a true density ratio of 95% or more.

く作−用〉 この発明の方法においては、上記したように含有酸素量
の低いTL He粉末とNi粉末を主原料とする混合粉
末を用い、これを片端を封じた金属筒体中に充填するが
、この場合混合粉末は予めプレスやCIP等で成型して
おいてもよいし、また粉末のまま充填してもよい。
Function> As described above, in the method of the present invention, a mixed powder containing TL He powder with a low oxygen content and Ni powder as main raw materials is used, and this is filled into a metal cylinder with one end sealed. However, in this case, the mixed powder may be molded in advance by pressing, CIP, etc., or it may be filled as a powder.

陳粉末としてはカルボニルNi粉末や還元陳粉末等が用
いられるが、これらTb He粉末およびNi粉末等の
原料粉末は特に微細化する必要はない。従って混合時の
原料粉末の酸化汚染を避けることができ、焼結体の酸素
濃度を必要以上に高めることがない。
Carbonyl Ni powder, reduced Ni powder, etc. are used as the powder, but it is not necessary to particularly refine the raw material powders such as Tb He powder and Ni powder. Therefore, oxidation contamination of the raw material powder during mixing can be avoided, and the oxygen concentration in the sintered body will not be increased more than necessary.

次に、この発明で使用はする金li!筒体としては、加
工性に富む材料が好ましく、その形状は円筒状のほか角
筒状であってもよい。また押出しまたは鍛造後金属筒体
を取除くためには、研摩等により機械的に除去する方法
や、酸等の腐食液により化学的に除去する方法などがあ
る。このような金属筒体の材料としては、上記の点を総
合的に考慮して、鉄、ニッケル、銅などの少なくとも1
種からなる金属またはこれらの金属の1種をベースとす
る合金が好ましい。
Next, the money used in this invention! The cylindrical body is preferably made of a material that is highly workable, and its shape may be cylindrical or rectangular. Further, in order to remove the metal cylinder after extrusion or forging, there are a method of mechanically removing it by polishing or the like, and a method of chemically removing it with a corrosive liquid such as acid. Considering the above points comprehensively, the material for such a metal cylinder should be at least one of iron, nickel, copper, etc.
Preference is given to metals consisting of seeds or alloys based on one of these metals.

LH2粉末と陳粉末の混合粉末を金属筒体中に充填し加
熱すると、約600℃以上の21ir!1から”f H
e粉末が分解し、水素ガスを発生する。これを排気ポン
プにより吸引しながら800〜1200℃の温度に加熱
すると、発生した水素ガスは陳粉末中に含まれる陽酸化
物を還元し、含有酸素を除去する。そして水素ガスの発
生が完了した時点では、混合粉末は焼結されるとともに
この焼結体中に含まれる酸素量は理想的にはn H2粉
末が最初に含んでいた酸素量のみとなる。
When a mixed powder of LH2 powder and Chen powder is filled in a metal cylinder and heated, it reaches a temperature of about 600°C or more at 21ir! 1 to “f H
e The powder decomposes and generates hydrogen gas. When this is heated to a temperature of 800 to 1200° C. while being sucked by an exhaust pump, the generated hydrogen gas reduces the cationic oxides contained in the powder and removes the oxygen contained therein. When the generation of hydrogen gas is completed, the mixed powder is sintered and the amount of oxygen contained in this sintered body is ideally only the amount of oxygen originally contained in the n H2 powder.

ここで加熱温度を800〜1200℃としたのは、80
0℃以下では’l lbの分解に長時間を必要とし、加
熱時間が長くなるという問題があり、また1200℃以
上では焼結体の粒成長が大きく、結晶粒径が大きくなる
ため加工性が低下したり、場合によっては原料粉末が溶
解してしまうためである。そして、この金属筒体を密閉
したのち、押出しまたは鍛造により加工することにより
内部のuNi合金を真密度比95%以上のものとするこ
とができる。
Here, the heating temperature was set at 800 to 1200°C.
At temperatures below 0°C, it takes a long time to decompose 'l lb, causing the problem of longer heating times, and at temperatures above 1200°C, grain growth in the sintered body increases and the crystal grain size increases, resulting in poor workability. This is because the raw material powder may be dissolved, or the raw material powder may be dissolved in some cases. After this metal cylinder is sealed, the uNi alloy inside can be made to have a true density ratio of 95% or more by processing it by extrusion or forging.

この後、この金属筒体を研摩や酸洗い等にて除去するこ
とによって、含有酸素量が少ないため、塑性加工性や疲
労特性にすぐれ、また均一な組成であるため、すぐれた
形状記憶効果を有するT’b  ft−系の形状記憶合
金を製造することができるのである。
After that, this metal cylinder is removed by polishing, pickling, etc. Due to its low oxygen content, it has excellent plastic workability and fatigue properties, and because it has a uniform composition, it has an excellent shape memory effect. Therefore, it is possible to produce a shape memory alloy based on T'b ft-.

〈実施例〉 以下、この発明を実施例により詳細に説明する。<Example> Hereinafter, this invention will be explained in detail with reference to Examples.

100メツシユ以下のLH2粉末(酸素量2100pl
)TI >45.8重量%とカルボニル隊粉末く酸素量
1sooppn )54.2重量%をアトライターにて
混合し、100メツシユ以下に篩い分けした。
LH2 powder of 100 mesh or less (oxygen amount 2100 pl
)TI>45.8% by weight and carbonyl group powder oxygen content 1soppn) 54.2% by weight were mixed in an attritor and sieved to 100 mesh or less.

この原料粉末を予め3 t/dでCIP処理し成型した
のち、この成型混合粉Aを図示した外径70a×内径5
0M×長さ200uの連装金属筒体1中に充填し、該金
属筒体1の先端につけたパイプ2より排気ポンプ3によ
り引きながら加熱炉に挿入し、1000℃まで加熱した
。挿入より約2時間加熱した時点で水素の発生が見られ
なくなったので、パイプ2のつけ根部分を密着封止して
パイプをはずし、その状態で18頗φまで押出し加工を
した。その後、外周のNi製金金属筒体研削により除去
し、Th  Ni金合金得た。
After CIP-processing and molding this raw material powder at 3 t/d in advance, this molded mixed powder A was molded into a mold with an outer diameter of 70 a x an inner diameter of 5
The mixture was filled into a continuous metal cylinder 1 measuring 0M×200U in length, and inserted into a heating furnace while being pulled by an exhaust pump 3 through a pipe 2 attached to the tip of the metal cylinder 1, and heated to 1000°C. After about 2 hours of heating after insertion, no hydrogen generation was observed, so the base of pipe 2 was tightly sealed, the pipe was removed, and in that state extrusion processing was performed to a diameter of 18 mm. Thereafter, the outer periphery of the Ni gold metal cylinder was removed by grinding to obtain a ThNi gold alloy.

この合金の酸素量は11010ppであり、密度は真密
度比98.2%であった。
The oxygen content of this alloy was 11010 pp, and the density was 98.2% of the true density ratio.

比較のため、同じ粒度のπ粉末(酸素12700ppm
)44.8重量%とカルボニルNπ粉末(酸素量150
0ppIl)55.2重量%を混合したものを7 t/
ajで冷間プレスを行なった。得られた圧粉体を100
0℃で5時間真空焼結を行なった。焼結後得られた一一
陳合金は酸素量が2030pl)1mもあり、密度は真
密度比87.8%にすぎなかった。また、これらのIL
 −a合金を冷間伸線加工したところ、この発明で得ら
れたものは93%以上の総加工率で塑性加工が可能であ
ったが、比較材の場合は総加工率は75%にすぎなかっ
た。
For comparison, π powder of the same particle size (oxygen 12,700 ppm
) 44.8% by weight and carbonyl Nπ powder (oxygen content 150%
0ppIl) 55.2% by weight was mixed at 7t/
Cold pressing was carried out in aj. The obtained compact was 100
Vacuum sintering was performed at 0°C for 5 hours. The Ichi-chen alloy obtained after sintering had an oxygen content of 2030 pl) 1 m, and a density of only 87.8% of the true density ratio. Also, these IL
When the -a alloy was subjected to cold wire drawing, the material obtained by this invention could be plastically worked with a total working rate of 93% or more, but in the case of the comparative material, the total working rate was only 75%. There wasn't.

〈発明の効果〉 以上説明したように、この発明によればTh H2とN
、の混合原料粉末を用い、加熱分離した水素ガスにより
混合粉末中の酸素を還元除去するのでπ粉末を用いた焼
結体よりも低酸素量の合金(焼結体)を得ることができ
、また加熱後引続いて行なう押出しまたは鍛造により密
度の高い合金を提供することができるのである。
<Effects of the Invention> As explained above, according to this invention, Th H2 and N
By using a mixed raw material powder of Moreover, a dense alloy can be provided by subsequent extrusion or forging after heating.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の製造方法において使用する金1t5体
と該筒体での操作を示す概略図である。
The drawing is a schematic view showing the gold 1t5 body used in the manufacturing method of the present invention and the operation with the cylinder.

Claims (2)

【特許請求の範囲】[Claims] (1)TiH_2粉末とNi粉末を主原料とする混合粉
末を片端を封じた金属筒体中に充填した後、他端より排
気ポンプ等により吸引しながら該金属筒体を800〜1
200℃の温度に加熱して水素ガスの発生が完了した後
密閉し、次いで加熱状態の密閉金属筒体を押出しまたは
鍛造加工した後金属筒体を除去することを特徴とするT
i−Ni系形状記憶合金の製造方法。
(1) After filling a mixed powder containing TiH_2 powder and Ni powder as main raw materials into a metal cylinder with one end sealed, the metal cylinder is heated to 800~1
T characterized by heating to a temperature of 200°C and sealing after completion of generation of hydrogen gas, then extruding or forging the heated sealed metal cylinder, and then removing the metal cylinder.
A method for producing an i-Ni shape memory alloy.
(2)得られたTi−Ni系焼結合金が酸素量0.15
%以下で、かつ真密度比が95%以上であることを特徴
とする特許請求の範囲第1項記載のTi−Ni系形状記
憶合金の製造方法。
(2) The obtained Ti-Ni sintered alloy has an oxygen content of 0.15
% or less, and the true density ratio is 95% or more.
JP3375987A 1987-02-17 1987-02-17 Manufacture of shape memory alloy Pending JPS63203733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3375987A JPS63203733A (en) 1987-02-17 1987-02-17 Manufacture of shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3375987A JPS63203733A (en) 1987-02-17 1987-02-17 Manufacture of shape memory alloy

Publications (1)

Publication Number Publication Date
JPS63203733A true JPS63203733A (en) 1988-08-23

Family

ID=12395360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3375987A Pending JPS63203733A (en) 1987-02-17 1987-02-17 Manufacture of shape memory alloy

Country Status (1)

Country Link
JP (1) JPS63203733A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041583A (en) * 2010-08-17 2012-03-01 Sanyo Special Steel Co Ltd Method for producing titanium product or titanium alloy product
GB2575005A (en) * 2017-12-14 2020-01-01 Csir A process and method for producing titanium and titanium alloy billets, spherical and non-spherical powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041583A (en) * 2010-08-17 2012-03-01 Sanyo Special Steel Co Ltd Method for producing titanium product or titanium alloy product
GB2575005A (en) * 2017-12-14 2020-01-01 Csir A process and method for producing titanium and titanium alloy billets, spherical and non-spherical powder
GB2575005B (en) * 2017-12-14 2022-06-15 Csir A process and method for producing titanium and titanium alloy billets and spherical powder

Similar Documents

Publication Publication Date Title
US20110123384A1 (en) Method of manufacturing powder injection-molded body
US4681623A (en) Process for producing alloy powder containing rare earth metals
JP2012132100A (en) Method for fabricating metallic article without any melting
JP2002343162A (en) Manufacturing method of superconducting wire and band
US1814719A (en) Ductile thorium and method of making the same
CN111560564B (en) Resource-saving high-nitrogen duplex stainless steel and near-net forming method thereof
JPH09143636A (en) Rare earth-iron-nitrogen magnetic alloy
SE520561C2 (en) Process for preparing a dispersion curing alloy
EP0101498B1 (en) Oxygen-free dispersion-strengthened copper and process for making same
JP3071118B2 (en) Method for producing NiAl intermetallic compound to which fine additive element is added
US4719077A (en) Method for the preparation of an alloy of nickel and titanium
JPS63203733A (en) Manufacture of shape memory alloy
US4808225A (en) Method for producing an alloy product of improved ductility from metal powder
US4304600A (en) Manufacture of high-strength metallic articles
US6770113B2 (en) Method for forming anisotrophic metal particles
JP3328620B2 (en) Method for producing low oxygen metal powder products
JPH06128604A (en) Production of metallic material
JPH02138403A (en) Manufacture of low oxygen-content powder high speed tool steel
JP2004131822A (en) Superfine grained steel, and its production method
JP3582061B2 (en) Sintered material and manufacturing method thereof
JPH07300603A (en) Production of low-oxygen metal powder product
JP2006183064A (en) Steel having ultrafine grain and manufacturing method therefor
JPH04321505A (en) Production of aluminum nitride
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JP2001089824A (en) Manufacture of sintered compact of chromium- molybdenum steel