JPS63202396A - Production of oligosaccharides having n-acetylglucosamine, glucosamine, mannose or allose at terminal - Google Patents

Production of oligosaccharides having n-acetylglucosamine, glucosamine, mannose or allose at terminal

Info

Publication number
JPS63202396A
JPS63202396A JP3524187A JP3524187A JPS63202396A JP S63202396 A JPS63202396 A JP S63202396A JP 3524187 A JP3524187 A JP 3524187A JP 3524187 A JP3524187 A JP 3524187A JP S63202396 A JPS63202396 A JP S63202396A
Authority
JP
Japan
Prior art keywords
enzyme
acetylglucosamine
mannose
allose
glucosamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3524187A
Other languages
Japanese (ja)
Other versions
JPH062072B2 (en
Inventor
Shigetaka Okada
岡田 茂孝
Sumio Kitahata
北畑 寿美雄
Hiroshi Ishibashi
洋 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ezaki Glico Co Ltd
Original Assignee
Ezaki Glico Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ezaki Glico Co Ltd filed Critical Ezaki Glico Co Ltd
Priority to JP62035241A priority Critical patent/JPH062072B2/en
Publication of JPS63202396A publication Critical patent/JPS63202396A/en
Publication of JPH062072B2 publication Critical patent/JPH062072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To efficiently obtain the titled oligosaccharides useful as sweeteners, etc. by reacting a specific enzyme with a blend solution of starch or dextrin and N-acetylglucosamine, glucosamine, mannose or allose. CONSTITUTION:A microorganism, such as Bacillus subtilis, is inoculated into a culture medium containing polypeptone, etc. and aerobically cultivated at about 37 deg.C for 5-48hr to provide microbial cells, which are then subjected to extraction treatment to afford a disproportionating.enzyme (D-enzyme), reactive with maltooligosaccharides and exhibiting saccharide transfer action. The resultant enzyme is subsequently added to a solution obtained by mixing starch, such as corn, or dextrin with N-acetylglucosamine, glucosamine, mannose or allose at 1:1 ratio in 20-30wt.% starch concentration. The solution is then subjected to saccharide transfer reaction at about pH6.5 and about 35 deg.C for about 48hr. The reaction solution is subsequently subjected to filtration and concentration treatment to recover oligosaccharides containing the N- acetylglucosamine, glucosamine, mannose or allose at terminals.

Description

【発明の詳細な説明】 ■ 産業上の利用分野 本発明は、オリゴ糖に作用して糖転移作用を行う酵素(
ディスブロボーショネイテイング・エンザイム−4−a
−Glucanotransfe−rase、E、C,
2,4,1,25,以下り一酵素と略記)をでん粉また
はデキストリンとN−アセチルグルコサミン、グルコサ
ミン、マンノースまたはアロースとを混合、反応させ、
マルトオリゴ糖の還元性末端に上記の糖質がα−1,4
結合で結合した新しい少糖類を製造する方法に関するも
のである。いずれの少糖質も温和な甘味を有し、やや粘
性を示す水飴状である。
[Detailed Description of the Invention] ■ Industrial Application Field The present invention relates to an enzyme that acts on oligosaccharides to transfer sugars (
Disbrobationating enzyme-4-a
-Glucanotransfe-rase, E, C,
2, 4, 1, 25 (hereinafter abbreviated as one enzyme) is mixed and reacted with starch or dextrin and N-acetylglucosamine, glucosamine, mannose or allose,
The above carbohydrate is α-1,4 at the reducing end of maltooligosaccharide.
The present invention relates to a method for producing new linkage-linked oligosaccharides. All oligosaccharides have a mild sweet taste and are somewhat viscous and syrup-like.

■ 従来の技術 D−酵素は、元来マルトオリゴ糖を基質とし、そのグル
コシド結合を切断するとともに、その切り端を他のオリ
ゴ糖に転移させる酵素で、その反応はたとえば次式のよ
うに示すことができる。
■ Conventional technology D - Enzymes are enzymes that originally use maltooligosaccharides as substrates, cleave the glucosidic bonds, and transfer the cut ends to other oligosaccharides.The reaction can be expressed, for example, as shown in the following equation. Can be done.

G−G−G+G−G−G−+G−G−G−G−G+G すなわち、酵素はマルトオリゴ糖のグルコシド結合を適
当な位置で切断し、ついでその切断部分を未反応のオリ
ゴ糖(受容体)に転移する。オリゴ糖は基質であるとと
もに受容体でもある。
G-G-G+G-G-G-+G-G-G-G-G+G In other words, the enzyme cleaves the glucosidic bond of the maltooligosaccharide at an appropriate position, and then converts the cleaved portion into the unreacted oligosaccharide (receptor). metastasizes to. Oligosaccharides are both substrates and receptors.

■ 本発明が解決しようとする問題点 本発明者らは、この受容体としてオリゴ糖以外にどのよ
うな糖質が有効であるか鋭意検討した結果、マルトオリ
ゴ糖以外に、グルコース、N−アセチルグルコサミン、
グルコサミン、マンノース、さらにアロースも有効な受
容体になりうることをn5ferase (CGT−a
se、E、C,2゜4.1.19>の場合、本発明者ら
の研究により、グルコース、キシロース、ソルボースま
たはてれらの01位置換体は有効な受容体になりつるが
、N−アセチルグルコサミン、グルコサミン、マンノー
ス、アロースなどは受容体になりえないことをすでに明
らかにしている(S、Kitahat−a  and 
 S、0kada、J、Bioche−m、、79 6
41 (1976))aすなわちCGT−aseの有効
な受容体になりつるためにはC2,C3,04位OHの
立体配置が重要で、C2およびC3位OHの立体配置が
グルコースと異なるN−アセチルグルコサミン、グルコ
サミン、マンノース、アロースは受容体にはなり得ない
■ Problems to be solved by the present invention As a result of intensive investigation into what kind of carbohydrates other than oligosaccharides are effective as this receptor, the present inventors found that in addition to maltooligosaccharides, glucose, N-acetylglucosamine ,
n5ferase (CGT-a) has shown that glucosamine, mannose, and even allose can be effective receptors.
se, E, C, 2゜4.1.19>, our research has shown that glucose, xylose, sorbose, or their substituted substances at the 01 position can be effective receptors, but N- It has already been clarified that acetylglucosamine, glucosamine, mannose, allose, etc. cannot be receptors (S, Kitahat-a and
S,Okada,J,Bioche-m,,79 6
41 (1976)) In order to become an effective receptor for a, CGT-ase, the configuration of the OH at the C2, C3, and 04 positions is important, and the configuration of the OH at the C2 and C3 positions is different from glucose. Glucosamine, glucosamine, mannose, and allose cannot be receptors.

しかるに、D−酵素の場合、有効な受容体になりつるた
めには、C4位OHの立体配置は重要であるが、C2,
C3位0f−1の立体配置は関係ないという大きな相異
点を見出した。
However, in the case of D-enzyme, the configuration of the OH at the C4 position is important in order to become an effective receptor, but the configuration of the OH at the C2,
A major difference was found that the configuration of C3 position Of-1 is irrelevant.

■ 問題点を解決するための手段 ここで使用する酵素としては、マルトオリゴ糖に作用し
糖転移作用を行うD−酵素であれば、ジャガイモ起源の
酵素以外は、いずれも使用可能である。たとえば、甘藷
、スィートコーン、緑豆などの高等植物、Bacill
us  5ubtil−is、Pseudomonas
  5tutzer−i、ESCheriChia  
coliなどの微生物の生産する酵素である。特に微生
物の生産する酵素は受容体特異性が高く、さらに最近、
酵素生産量の高い菌株が見い出され、実用性が高まって
きている。
(2) Means for Solving the Problems As the enzyme used here, any D-enzyme that acts on maltooligosaccharides and transfers sugars, other than potato-derived enzymes, can be used. For example, higher plants such as sweet potato, sweet corn, mung bean, Bacillus
us 5ubtil-is, Pseudomonas
5tutzer-i, ESC CheriChia
It is an enzyme produced by microorganisms such as coli. In particular, enzymes produced by microorganisms have high receptor specificity, and more recently,
Bacterial strains with high enzyme production have been discovered, and their practicality is increasing.

つぎに、本酵素はマルトオリゴ糖を基質とするが、受容
体が存在すると、より高分子のデキストリン、でん粉も
基質となり得る。そこで、でん粉やデキストリンなど高
分子基質とグルコサミンなどの混合系にD−H素を作用
させると、マルトオリゴ糖が反応系に存在しないので効
率よく目的とするグルコサミン等を含む少糖類を合成で
きることを見出し、本発明を完成することができた。
Next, this enzyme uses maltooligosaccharide as a substrate, but if a receptor is present, higher molecular weight dextrin and starch can also be used as substrates. Therefore, we discovered that when D-H element is applied to a mixed system of polymeric substrates such as starch or dextrin and glucosamine, it is possible to efficiently synthesize the target oligosaccharides containing glucosamine, etc., since maltooligosaccharides are not present in the reaction system. , we were able to complete the present invention.

使用しうるでん粉あるいはデキストリンとして工業的に
は、生でん粉を酸または酵素で部分分解した液化でん粉
(分解率5〜20%)を使用するのが望ましい。でん粉
またはデキストリン濃度としては、1%以下でも転移反
応は進行するが、工業生産の場合には、でん粉濃1![
20〜30%程度が望ましい。
Industrially, it is desirable to use liquefied starch (decomposition rate 5-20%) obtained by partially decomposing raw starch with acid or enzymes as the starch or dextrin that can be used. Although the rearrangement reaction proceeds even if the starch or dextrin concentration is 1% or less, in the case of industrial production, the starch concentration is 1% or less. [
About 20 to 30% is desirable.

この反応は転移反応であるので、でん粉またはデキスト
リンの濃度の他、受容体濃度および両者の混合比も重要
である。でん粉と受容体の混合比を用い37℃、5〜4
8時間好気培養して調製する。培養菌体を超音波破砕し
て得た菌体抽出液を粗酵素液とし、さらに種々な方法で
高度に精製する。粗酵素液とwi製酵素液について、酵
素活性(その測定法は後述の通り)を同一にそろえて、
マルトトリオースに作用させ、還元力の増加を調べると
共に、反応生成物をペーパークロマトグラフィーにより
調べた。その結果、両反応液とも還元力の増加は全く認
められず、ペーパークロマトグラフィーにより一連のマ
ルトオリゴ糖を生成している事が確められた。すなわち
、粗酵素液中には、マルトトリオースを加水分解する酵
素(α−アミラーゼ、グルコアミラーゼ、α−グルコシ
ダーゼ)は含まれておらず、粗酵素液をそのまま酵素剤
として利用できることが判明した。
Since this reaction is a transfer reaction, in addition to the concentration of starch or dextrin, the receptor concentration and the mixing ratio of the two are also important. Using the mixing ratio of starch and receptor, 37℃, 5-4
Prepare by aerobic culture for 8 hours. A bacterial cell extract obtained by ultrasonic disruption of cultured bacterial cells is used as a crude enzyme solution, which is further purified to a high degree by various methods. For the crude enzyme solution and the wi enzyme solution, the enzyme activity (the measurement method is as described below) is the same,
In addition to examining the increase in reducing power by acting on maltotriose, the reaction products were examined by paper chromatography. As a result, no increase in reducing power was observed in both reaction solutions, and it was confirmed by paper chromatography that a series of maltooligosaccharides were produced. That is, it has been found that the crude enzyme solution does not contain enzymes that hydrolyze maltotriose (α-amylase, glucoamylase, α-glucosidase), and that the crude enzyme solution can be used as it is as an enzyme agent.

本酵素の作用至適PHは6.5付近であり、安定PH範
囲は6.0〜8.0である。また、木酵素の作用最適温
度は35℃、温度安定性(15分処理)は45℃付近ま
でである。
The optimum pH for the action of this enzyme is around 6.5, and the stable pH range is 6.0 to 8.0. Furthermore, the optimum temperature for wood enzyme action is 35°C, and the temperature stability (15 minutes treatment) is up to around 45°C.

く酵素活性測定法〉 加え、40℃にて10分間反応させる。生成するグルコ
ース量をNADP、ヘキソキナーゼ、グルコース−6−
リン酸デヒドロゲナーゼを用いて定量することにより酵
素活性を測定した。この条件下で10分間に1μqのグ
ルコースを生成する酵素量を1単位とした。
Enzyme activity measurement method> Add and react at 40°C for 10 minutes. The amount of glucose produced is determined by NADP, hexokinase, glucose-6-
Enzyme activity was measured by quantifying using phosphate dehydrogenase. The amount of enzyme that produced 1 μq of glucose in 10 minutes under these conditions was defined as 1 unit.

ルコサミンを含む少糖類をペーパークロマトグラフィー
にて分離を行ない、N−アセチルグルコサミンの次に位
するRf値のものを抽出した。
Oligosaccharides containing lucosamine were separated by paper chromatography, and those with Rf values next to N-acetylglucosamine were extracted.

この物質は、■酸加水分解するとグルコースとN−アセ
チルグルコサミンが1=1生成する。■Timmefの
方法により、測定した重合度は2゜0である。■水素化
ホウ素ナトリウムで還元後、−アセチル−3,6−ジー
0−メチル−4−〇−アセチルグルコサミンを与える。
When this substance is hydrolyzed with acid, glucose and N-acetylglucosamine are produced in 1=1 ratio. (2) The degree of polymerization measured by Timmef's method is 2°0. (2) After reduction with sodium borohydride, -acetyl-3,6-di-0-methyl-4-〇-acetylglucosamine is obtained.

以上の結果から(1,4−α−グルコシル−N−アセチ
ルグルコサミンと同定した。
From the above results, it was identified as 1,4-α-glucosyl-N-acetylglucosamine.

また、1,4−α−グルコシル−N−アセチルグルコサ
ミン(G−NAcG)以外のスポットを与える物質をグ
ルコアミラーゼで分解するとグルコースとG−NAcG
を与える。β−アミラーゼで分解するとマルトースを生
成する。これらの事実とD−酵素の作用特異性より考え
、D−酵素による反応は次式のように進行していること
が確かめられた。
In addition, when substances that give spots other than 1,4-α-glucosyl-N-acetylglucosamine (G-NAcG) are decomposed with glucoamylase, glucose and G-NAcG
give. When broken down by β-amylase, maltose is produced. Considering these facts and the action specificity of the D-enzyme, it was confirmed that the reaction by the D-enzyme proceeds as shown in the following equation.

ACG でん粉子            G−NACGN−ア
セチルグルコサミン→ G−G−NAcGG−G−G−
NAcG つぎにマンノースを含む場合についても生成物をペーパ
ークロマトグラフィーにより分離し、マンノースのすぐ
下のRf値を示すものを抽出した。
ACG Starch G-NACGN-acetylglucosamine→ G-G-NAcGG-GG-
NAcG Next, products containing mannose were also separated by paper chromatography, and those exhibiting an Rf value just below that of mannose were extracted.

この物質の構造をN−アセチルグルコサミンの場合と同
様の方法で調べた。本物質は、■酸加水分解により、グ
ルコースとマンノースを1:1の比率で生成する。■T
−immelの方法により測定した重合度は2.0であ
る。■水素化ホウ素ナト3.6−トリー〇−メチルーマ
ンニトールを生成する。以上の結果より、1,4−α−
グルコシル−マンノースと同定した。また、オリゴ糖に
ついても、グルコアミラーゼで分解するとグルコースと
1.4−α−グルコシル−マンノースを生成し、β−ア
ミラーゼ消化により、マルトースを生成することより、
還元性末端にマンノースを含む少糖類であることを認め
た。
The structure of this substance was investigated in the same manner as for N-acetylglucosamine. This substance produces glucose and mannose in a 1:1 ratio through acid hydrolysis. ■T
The degree of polymerization measured by the method of -immel is 2.0. ■Produces borohydride 3,6-tri0-methyl-mannitol. From the above results, 1,4-α-
It was identified as glucosyl-mannose. Furthermore, when oligosaccharides are decomposed with glucoamylase, they produce glucose and 1,4-α-glucosyl-mannose, and when digested with β-amylase, maltose is produced.
It was recognized that it is an oligosaccharide containing mannose at the reducing end.

グルコサミンおよびアロースを含む少糖類についても、
はぼ同様の実験を行い構造を調べ、それぞれ還元性末端
にグルコサミンまたはアロースをα−1,4結合で結合
したマルトオリゴ糖であることを確認した。
Regarding oligosaccharides including glucosamine and allose,
A similar experiment was carried out to investigate the structure, and it was confirmed that each of these is a maltooligosaccharide with glucosamine or allose linked to the reducing end via an α-1,4 linkage.

■ 実施例 (実施例1) ポリペプトン1.5%、酵母エキス0.5%、マルトー
ス1%、塩化マグネシウム10−3M、硫酸第1鉄2X
10”6M、リン!!緩衡液(PH7゜0>0.1Mを
含む培地15ffを殺菌後、E。
■ Example (Example 1) Polypeptone 1.5%, yeast extract 0.5%, maltose 1%, magnesium chloride 10-3M, ferrous sulfate 2X
After sterilizing 15ff of a medium containing 10''6M, phosphorus!! buffer (PH7゜0>0.1M), E.

coli  iFo  3806株を植菌して、ジャー
ファーメンタ−により37℃、5時間好気培養した。遠
心分離により集菌し、菌体を洗浄後、超音波破砕により
得た菌体抽出液を粗酵素液として使用したく全活性4.
2X107単位)。
E. coli iFo 3806 strain was inoculated and cultured aerobically at 37° C. for 5 hours in a jar fermenter. After collecting the bacteria by centrifugation and washing the cells, the cell extract obtained by ultrasonic disruption is used as a crude enzyme solution.4.
2 x 107 units).

可溶性でん粉100(Jを水1Qに溶解させ、N−アセ
チルグルコサミン100gを加えた溶液に上記の酵素剤
10威(3,5X105単位)を加え、PH7,0にて
40℃、48時間反応させる。
To a solution prepared by dissolving 100 J of soluble starch in 1 Q of water and adding 100 g of N-acetylglucosamine, 10 parts of the above enzyme agent (3.5 x 105 units) was added and reacted at 40°C at pH 7.0 for 48 hours.

100℃、10分間加熱し、酵素反応を止めた後、活性
炭を0.2%添加、濾過、濃縮すると水分25%無色粘
稠な水飴状物質2109が得られた。
After heating at 100° C. for 10 minutes to stop the enzyme reaction, 0.2% activated carbon was added, filtered, and concentrated to obtain a colorless starch syrup-like substance 2109 with a water content of 25%.

本物質1qを濾紙にスポットし、n−ブタノール:ピリ
ジン:水(6:4:3)の組成の溶媒系で4重展開後、
硝酸銀により発色するとN−アセチルグルコサミン(N
AcG)のほか、ざら・にグルコース1〜数個結合した
G−NACG、G−G−NAcG、G−G−G−NAc
G、G−G−G−G−NAcGと思われる一連のスポッ
トが認められた。
1q of this substance was spotted on a filter paper, and after quadruple development with a solvent system with a composition of n-butanol:pyridine:water (6:4:3),
When colored with silver nitrate, N-acetylglucosamine (N
AcG), as well as G-NACG, G-G-NAcG, and G-G-G-NAc, in which one to several glucose molecules are bonded to
A series of spots that appeared to be G, G-G-G-G-NAcG were observed.

(実施例2) 馬鈴薯でん粉100qに市販の細菌液化型α−アミラー
ゼ200■を加え、水112中で加熱溶解させた。分解
率3%の段階、で煮沸し酵素反応を止め、約5%の分解
率の液化でん粉液を得た。アロース809を加え溶解棲
、前記酵素液10dを加え、40℃、48時間反応させ
た。反応液を0゜2%活性炭処理ならびにイオン交換樹
脂処理により精製を行い、濃縮すると水分20%の無色
粘稠な水飴状物質190gが得られた。ペーパークロマ
トグラフィーにより生成物を調べると、アロースのほか
、アロースにグルコースが1〜数個結合したと思われる
一連のスポットを認めることができた。
(Example 2) 200 ml of commercially available bacterial liquefied α-amylase was added to 100 q of potato starch and dissolved by heating in 112 ml of water. When the decomposition rate was 3%, the enzyme reaction was stopped by boiling to obtain a liquefied starch solution with a decomposition rate of about 5%. Allose 809 was added and dissolved, and the above enzyme solution 10d was added and reacted at 40°C for 48 hours. The reaction solution was purified by treatment with 0.2% activated carbon and ion exchange resin, and concentrated to yield 190 g of a colorless viscous syrup-like substance with a water content of 20%. When the product was examined by paper chromatography, in addition to allose, a series of spots where one to several glucose molecules were bonded to allose could be observed.

■ 発明の効果 本反応には、これらでん粉から製造したマルトースなど
重合度2〜5程度のオリゴ糖も基質となりつるが、これ
らの糖質が反応系に多量存在しての収率が低下する。
(2) Effects of the Invention In this reaction, oligosaccharides with a degree of polymerization of about 2 to 5, such as maltose produced from these starches, can also serve as substrates, but the presence of large amounts of these carbohydrates in the reaction system lowers the yield.

でん粉量が受容体量の1/2以下になると、でん粉は良
く分解され転移反応は進行するが、反応後期になっても
反応液中に未反応の受容体が多量残存する。一方、でん
粉量が受容体量の2倍以上になると、加えた受容体の大
部分は転移反応を受けるが、でん粉の分解が不十分とな
る。
When the amount of starch becomes 1/2 or less of the amount of receptor, the starch is well decomposed and the transfer reaction proceeds, but a large amount of unreacted receptor remains in the reaction solution even in the late stage of the reaction. On the other hand, when the amount of starch is more than twice the amount of receptor, most of the added receptor undergoes a transfer reaction, but starch decomposition becomes insufficient.

Claims (1)

【特許請求の範囲】[Claims] でん粉またはデキストリンと、N−アセチルグルコサミ
ン、グルコサミン、マンノースまたはアロースとの混合
液にディスプロポーショネイティング・エンザイムを作
用させることによるN−アセチルグルコサミン、グルコ
サミン、マンノースまたはアロースを末端に含む少糖類
の製造方法。
A method for producing oligosaccharides containing N-acetylglucosamine, glucosamine, mannose, or allose at their terminals by acting a disproportioning enzyme on a mixture of starch or dextrin and N-acetylglucosamine, glucosamine, mannose, or allose. .
JP62035241A 1987-02-18 1987-02-18 Process for producing oligosaccharides containing N-acetylglucosamine, glucosamine, mannose or allose at the end Expired - Fee Related JPH062072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62035241A JPH062072B2 (en) 1987-02-18 1987-02-18 Process for producing oligosaccharides containing N-acetylglucosamine, glucosamine, mannose or allose at the end

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62035241A JPH062072B2 (en) 1987-02-18 1987-02-18 Process for producing oligosaccharides containing N-acetylglucosamine, glucosamine, mannose or allose at the end

Publications (2)

Publication Number Publication Date
JPS63202396A true JPS63202396A (en) 1988-08-22
JPH062072B2 JPH062072B2 (en) 1994-01-12

Family

ID=12436342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62035241A Expired - Fee Related JPH062072B2 (en) 1987-02-18 1987-02-18 Process for producing oligosaccharides containing N-acetylglucosamine, glucosamine, mannose or allose at the end

Country Status (1)

Country Link
JP (1) JPH062072B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027674A1 (en) * 1995-03-08 1996-09-12 Hoechst Schering Agrevo Gmbh Modified starch from plants, plants synthesizing this starch, and process for its preparation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564238A (en) * 1979-06-23 1981-01-17 Mitsubishi Electric Corp Forming of pattern

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564238A (en) * 1979-06-23 1981-01-17 Mitsubishi Electric Corp Forming of pattern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027674A1 (en) * 1995-03-08 1996-09-12 Hoechst Schering Agrevo Gmbh Modified starch from plants, plants synthesizing this starch, and process for its preparation
US6162966A (en) * 1995-03-08 2000-12-19 Kossmann; Jens Modified starch from plants, plants synthesizing this starch, and processes for its preparation

Also Published As

Publication number Publication date
JPH062072B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
JPH0649715B2 (en) Gluco-oligosaccharide having inositol residue bound to the terminal and method for producing the same
JP2815023B2 (en) Cellobiose production method
JPH0491795A (en) Production of fructose-containing oligosaccharide
JPS63202396A (en) Production of oligosaccharides having n-acetylglucosamine, glucosamine, mannose or allose at terminal
US6562600B1 (en) Production of cyclic alternan tetrasaccharides from oligosaccharide substrates
JP4132297B2 (en) Method for producing oligosaccharide
JP2001112496A (en) Production of cellooligosaccharide
Ueda et al. Polysaccharide Produced by the Genus Pullularia: II. Trans-α-Glucosidation by Acetone Cells of Pullularia
JP2688854B2 (en) Method for producing α-galactosidase with strong transglycosylation activity
JP3494686B2 (en) Method for producing isomaltosyl fructoside
JP3812954B2 (en) Method for producing isomaltosyl fructoside
JP2817746B2 (en) Manufacturing method of laminaribiose
JP3089503B2 (en) Method for producing sweetener containing isopanose
JPH04200386A (en) Beta-fructofuranosidase and production thereof
JP2559400B2 (en) Malto-oligosaccharide-forming amylase and method for producing the same
JP3032817B2 (en) Mass production method of xyloglucan oligo 9 sugar
Takahashi et al. Production and Application of a Maltogenic Amylase by a Strain of Thermomonospora viridis TF‐35
KR100227040B1 (en) Bacillus sp gm44 and separated chitosanase
JP3100196B2 (en) Process for producing starch sugar
JPS5818074B2 (en) Production method of α↓-cyclodextrin
Suzuki Recent advances of starch science and starch technology in Japan
JP2868835B2 (en) Isomaltooligosaccharide-containing syrup and method for producing isomaltooligosaccharide
JP2888506B2 (en) Non-reducing terminal azido maltooligosaccharide and method for producing the same
JPH062071B2 (en) Saccharide manufacturing method
JPS58170491A (en) Preparation of oligosaccharide by amylase g 4,5

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees