JPS63201913A - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium

Info

Publication number
JPS63201913A
JPS63201913A JP3350887A JP3350887A JPS63201913A JP S63201913 A JPS63201913 A JP S63201913A JP 3350887 A JP3350887 A JP 3350887A JP 3350887 A JP3350887 A JP 3350887A JP S63201913 A JPS63201913 A JP S63201913A
Authority
JP
Japan
Prior art keywords
film
layer
permalloy
magnetic recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3350887A
Other languages
Japanese (ja)
Inventor
Hiroshi Uchiyama
浩 内山
Naoki Honda
直樹 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3350887A priority Critical patent/JPS63201913A/en
Publication of JPS63201913A publication Critical patent/JPS63201913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To permit formation of a perpendicularly magnetized film having excellent perpendicular coercive force even if a Co-Cr layer is prepd. at a low temp. by providing a 'Permalloy(R)' film as a high magnetic permeability film to the lower part of the Co-Cr layer contributing to recording and reproduction as the perpendicularly magnet ized film in such a manner that the half-amplitude level of the locking curve indicating the perpendicular orientability of the film plane of the <111> axis of the face-centered cubic structure on a nonmagnetic base attains >=9 deg.. CONSTITUTION:The 'Permalloy(R)' film 2 having >=9 deg. half-amplitude level (DELTAtheta50) of the locking curve indicating the perpendicular orientability of the film plane of the <111> axis in the face-centered cubic structure (fcc structure) is formed on the nonmagnetic base 1 and the perpendicularly magnetized Co-Cr film 3 is formed thereon. If the DELTAtheta50 of the 'Permalloy(R)' film 2 is >=9 deg. as mentioned above, the perpendicular coercive force of the perpendicularly magnetized film 3 of the perpendicular magnetic recording medium can be increased to >=4,000e and the magnetic characteristics effec tive as the perpendicularly magnetized film 3 of the perpendicular magnetic recording medium are obtd. Namely, the high perpendicular coercive force and excellent reproduc tion output are obtd. and the high-density magnetic recording is executed even if the Co-Cr layer 3 is prepd. at the low temp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高密度磁気記録に適した垂直磁気記録媒体に
関するもので、特に高透磁率膜と垂直磁化膜とからなる
二層化構造の垂直磁気記録媒体の磁気特性の向上を図ろ
うとするものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a perpendicular magnetic recording medium suitable for high-density magnetic recording, and in particular a perpendicular magnetic recording medium having a double-layer structure consisting of a high magnetic permeability film and a perpendicular magnetization film. This is an attempt to improve the magnetic properties of perpendicular magnetic recording media.

〔発明の概要〕[Summary of the invention]

本発明は、高密度磁気記録に適した二層化構造の垂直磁
気記録媒体において、 非磁性支持体上に面心立方構造(以下fcc構造と表す
、)の<111>軸の膜面垂直配向度を表すロッキング
カーブ半値幅(以下Δθ5゜と表す。)が9°以上のパ
ーマロイ膜が形成され、上記パーマロイ膜上にCo−C
r系垂直磁化膜が形成されたことにより、 垂直磁化膜を低温作製しても垂直抗磁力が大きく、再生
出力に優れ、高密度磁気記録を達成するに適した垂直磁
気記録媒体を提供しようとするものである。
The present invention provides a perpendicular magnetic recording medium with a double-layer structure suitable for high-density magnetic recording, in which a <111> axis of a face-centered cubic structure (hereinafter referred to as an FCC structure) is oriented perpendicular to the film plane on a non-magnetic support. A permalloy film with a rocking curve half-width (hereinafter referred to as Δθ5°) of 9° or more is formed on the permalloy film.
By forming an r-based perpendicularly magnetized film, we aim to provide a perpendicular magnetic recording medium that has a large perpendicular coercive force even when the perpendicularly magnetized film is produced at a low temperature, has excellent reproduction output, and is suitable for achieving high-density magnetic recording. It is something to do.

〔従来の技術〕[Conventional technology]

近年、磁気記録における短波長化と狭トラツク化による
記録密度の向上は目覚ましく、光記録に近い面記録密度
の実用化が非磁性支持体の垂直方向に磁化可能な、いわ
ゆる垂直磁化膜を利用した垂直磁気記録媒体を用いるこ
とで期待されている。
In recent years, improvements in recording density due to shorter wavelengths and narrower tracks in magnetic recording have been remarkable, and the practical application of areal recording densities close to those of optical recording has been achieved through the use of so-called perpendicularly magnetized films, which can magnetize perpendicularly to non-magnetic supports. This is expected to be achieved by using perpendicular magnetic recording media.

こうした垂直磁気記録媒体は補助磁極励磁型垂直ヘッド
を使用して記録再生を行うことで0.5μm以下の記録
波長の記録再生をすることが可能である。また、最近で
は垂直磁気記録媒体に対して通常のリング型ヘッドを使
用したものも提案されている。この場合には、垂直磁気
記録媒体に使用する垂直磁化膜の垂直抗磁力が非常に大
きいものであることが必要であるが、補助磁極励磁型垂
直ヘッドを使用した時と同様に良好な記録再生をするこ
とが可能である。
Such perpendicular magnetic recording media can perform recording and reproduction at a recording wavelength of 0.5 μm or less by performing recording and reproduction using an auxiliary magnetic pole excitation type vertical head. Also, recently, perpendicular magnetic recording media using a normal ring-type head have been proposed. In this case, it is necessary that the perpendicular coercive force of the perpendicular magnetization film used in the perpendicular magnetic recording medium is extremely large, but it is necessary to achieve good recording and reproducing performance similar to when using an auxiliary pole excitation type vertical head. It is possible to

上述のような垂直磁化記録に用いられる磁気記録媒体の
記録効率や再生感度の向上という観点から、例えば非磁
性支持体上に垂直磁化H,(例えばCo−Cr系垂直磁
化膜、以下Co−CrNという、)を形成したものが提
案されており、中でも上記非磁性支持体と垂直磁化膜と
の間に高透磁率膜(以下パーマロイ膜と表す、)を設け
る構造とした二層化構造の垂直磁気記録媒体が注目され
ている。
From the viewpoint of improving the recording efficiency and reproduction sensitivity of the magnetic recording medium used for perpendicular magnetization recording as described above, for example, perpendicular magnetization H, (e.g. Co-Cr-based perpendicular magnetization film, hereinafter Co-CrN) is deposited on a non-magnetic support. Among them, a perpendicular double-layered structure in which a high magnetic permeability film (hereinafter referred to as permalloy film) is provided between the non-magnetic support and the perpendicularly magnetized film has been proposed. Magnetic recording media are attracting attention.

このように垂直磁気記録媒体を二層化構造とした場合に
おいても垂直磁化記録層として使用されるGo−Cr層
の垂直抗磁力を大きくすることにより、さらに再生感度
の向上が図れる。上記G。
Even when the perpendicular magnetic recording medium has a two-layer structure as described above, the reproduction sensitivity can be further improved by increasing the perpendicular coercive force of the Go--Cr layer used as the perpendicular magnetic recording layer. G above.

−Cr層の垂直抗磁力を太き(するには、Co−Cr層
作製の際の温度条件を高温とするとよいことが知られて
いる。
It is known that in order to increase the perpendicular coercive force of the -Cr layer, it is better to set the temperature conditions at high temperature when producing the Co--Cr layer.

そこで従来、上記Co−Cr層の垂直抗磁力を大きくす
るための手段として、Co−Cr層をスパッタリングあ
るいは真空蒸着等により作製する際の非磁性支持体の温
度を高温として作製する方法がll案されている。
Therefore, as a means to increase the perpendicular coercive force of the Co-Cr layer, a conventional method has been proposed in which the temperature of the non-magnetic support is set to a high temperature when the Co-Cr layer is fabricated by sputtering or vacuum evaporation. has been done.

ところが上述の方法では、例えばポリエステル系フィル
ムの一種であるポリエチレンテレフタレート(以下PE
Tという、)フィルムのような垂直磁気記録媒体の非磁
性支持体として非常に優れた特性を有するものの、耐熱
性に劣る材料を使用した場合には、上記非磁性支持体の
耐熱性の点で垂直磁気記録媒体を作製する際に非磁性支
持体に加える温度が制限されることとなり、温度を余り
高くすることができない、したがってCo−Cr層を低
温で作製しなくてはならないため、上記co−Cr層の
垂直抗磁力は余り大きくならず、再生出力も低いものと
なってしまい、高密度磁気記録を達成するための垂直磁
気記録媒体としての磁気特性に劣ることとなってしまう
However, in the above method, for example, polyethylene terephthalate (hereinafter referred to as PE), which is a type of polyester film, is used.
When using a material that has very excellent properties as a non-magnetic support for perpendicular magnetic recording media such as T) film but has poor heat resistance, the heat resistance of the non-magnetic support may When producing a perpendicular magnetic recording medium, the temperature applied to the nonmagnetic support is limited, and the temperature cannot be made too high. Therefore, the Co-Cr layer must be produced at a low temperature, so the above-mentioned co The perpendicular coercive force of the -Cr layer is not very large, and the reproduction output is also low, resulting in poor magnetic properties as a perpendicular magnetic recording medium for achieving high-density magnetic recording.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

二層化構造とした垂直磁気記録媒体のCo−Cr層の垂
直抗磁力は、該Co−Cr層作製時の非磁性支持体温度
から得られる値としては大きなものであったが、高温作
製したCo−Cr層の垂直抗磁力に比べ高密度磁気記録
を達成するには充分でなく、また非磁性支持体の耐熱温
度の点でC。
The perpendicular coercive force of the Co-Cr layer of a double-layered perpendicular magnetic recording medium was a large value obtained from the temperature of the nonmagnetic support when the Co-Cr layer was fabricated, but Compared to the perpendicular coercive force of the Co--Cr layer, it is not sufficient to achieve high-density magnetic recording, and in terms of the allowable temperature limit of the nonmagnetic support.

−Cr層を高温作製するには問題があった。There was a problem in producing the -Cr layer at high temperature.

そこで、Co−Cr層を低温作製しても垂直抗磁力が大
きく、再生出力に優れ、高密度磁気記録を達成するに適
した垂直磁気記録媒体を提供することを目的とする。
Therefore, it is an object of the present invention to provide a perpendicular magnetic recording medium that has a large perpendicular coercive force even when a Co--Cr layer is produced at a low temperature, has excellent reproduction output, and is suitable for achieving high-density magnetic recording.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、上述の目的を達成せんものとco−Cr
層に下地層としてパーマロイ膜を設けて二層化構造とす
る方法について詳細に検討した結果、Co−Cr層の下
地層として用いられるパーマロイ膜のfcc構造の<1
11>軸の膜面垂直配向度がCo−Cr層の垂直抗磁力
に影響を及ぼすとの知見を得るに至った。すなわち、低
温でco−crmを作製する場合には、パーマロイ膜の
Il1面垂直配向度を悪化する方向で形成するとその上
層に形成されるCo−Cr層の垂直抗磁力が向上すると
の知見を得た。
The inventors have proposed that co-Cr
As a result of detailed study on the method of forming a two-layer structure by providing a permalloy film as a base layer on a layer, it was found that the fcc structure of the permalloy film used as a base layer of a Co-Cr layer is <1
It has been found that the degree of orientation perpendicular to the film surface of the 11> axis affects the perpendicular coercive force of the Co--Cr layer. In other words, when producing co-crm at low temperatures, we obtained the knowledge that if the permalloy film is formed in a direction that deteriorates the degree of perpendicular orientation of the Il1 plane, the perpendicular coercive force of the Co-Cr layer formed on top of the permalloy film will improve. Ta.

本発明は、上述の知見に基づきなされたもので、非磁性
支持体上にfcc構造の<111>軸の膜面垂直配向度
を表すΔθ、。が9″以上のパーマロイ膜を形成し、上
記パーマロイ膜上にCo−Cr系垂直磁化膜を形成した
ことを特徴とするものである。
The present invention was made based on the above-mentioned findings, and Δθ represents the degree of orientation perpendicular to the film surface of the <111> axis of the fcc structure on a nonmagnetic support. The present invention is characterized in that a permalloy film having a diameter of 9'' or more is formed, and a Co--Cr perpendicular magnetization film is formed on the permalloy film.

垂直磁気記録媒体に要求されている磁気特性上、垂直磁
化膜の垂直抗磁力は略4000e以上であることが好ま
しい、この条件を満足するためには、パーマロイ膜のf
cc構造の<111>軸の膜面垂直配向度を表すΔθ5
゜が9@以上でなければならない。パーマロイ膜のΔθ
5・が9°以上であれば、垂直磁気記録媒体の垂直磁化
膜の垂直抗磁力を4000e以上とすることができ垂直
磁気記録媒体の垂直磁化膜として有用な磁気特性となる
Due to the magnetic properties required for perpendicular magnetic recording media, it is preferable that the perpendicular coercive force of the perpendicular magnetization film is approximately 4000e or more.In order to satisfy this condition, the f of the permalloy film must be
Δθ5 represents the degree of orientation perpendicular to the film surface of the <111> axis of the cc structure
° must be 9@ or more. Δθ of permalloy film
If 5. is 9° or more, the perpendicular coercive force of the perpendicularly magnetized film of the perpendicular magnetic recording medium can be 4000e or more, which provides useful magnetic properties for the perpendicularly magnetized film of the perpendicular magnetic recording medium.

これに対して、パーマロイ膜のrcc構造の<111>
軸の膜面垂直配向度を表すΔθ、。が9゜以下では、垂
直磁化膜の垂直抗磁力は略4000e以下となってしま
い、垂直磁気記録媒体に要求される磁気特性を満足する
ことができない。
In contrast, <111> of the rcc structure of permalloy film
Δθ, which represents the degree of orientation of the axis perpendicular to the film surface. If the angle is less than 9°, the perpendicular coercive force of the perpendicularly magnetized film will be approximately 4000 e or less, and the magnetic properties required for a perpendicular magnetic recording medium cannot be satisfied.

上記パーマロイ膜のfcc構造の<111>軸の膜面垂
直配向度を表すΔθ、。の配向度は、非磁性支持体上に
パーマロイ膜を形成する際にH! O。
Δθ, which represents the degree of orientation perpendicular to the film surface of the <111> axis of the fcc structure of the permalloy film. The degree of orientation of H! is determined when forming a permalloy film on a non-magnetic support. O.

Nt等の不純物ガスを導入することにより、背圧を変化
させ容易に劣化させることができる。したがって、不純
物ガスの導入量を調整することで容易にパーマロイ膜の
fcc構造の<111>軸の膜面垂直配向度を表すΔθ
、。の配向度を9°以上あるい、は垂直磁化膜が所定の
磁気特性となるような配向度に調整することができる。
By introducing an impurity gas such as Nt, back pressure can be changed and deterioration can be easily caused. Therefore, by adjusting the amount of impurity gas introduced, Δθ, which represents the degree of orientation perpendicular to the film surface of the <111> axis of the FCC structure of the permalloy film, can be easily
,. The degree of orientation can be adjusted to 9° or more, or to such a degree that the perpendicularly magnetized film has predetermined magnetic properties.

〔作用〕[Effect]

通常、第1層の膜面垂直配向度が劣化すると第2層の膜
面垂直配向度はそれ以上に劣化することが知られている
It is generally known that when the degree of orientation perpendicular to the film surface of the first layer deteriorates, the degree of orientation perpendicular to the film surface of the second layer deteriorates even more.

したがづて、Go−Cr層の下地層であるパーマロイ膜
のfcc構造の<111>軸の膜面垂直配向度を劣化さ
せると、Go−Cr層のhcp構造の<ooi>軸(C
軸)の膜面垂直配向度が劣化し、垂直抗磁力が大きくな
る。
Therefore, if the degree of orientation perpendicular to the film surface of the <111> axis of the fcc structure of the permalloy film, which is the underlying layer of the Go-Cr layer, is degraded, the <ooi> axis of the hcp structure of the Go-Cr layer (C
The degree of orientation perpendicular to the film surface of the film (axis) deteriorates, and the perpendicular coercive force increases.

このようにCo−Cr層のhcp構造のC軸の膜面垂直
配向度の劣化により、垂直抗磁力が増加する原因は、結
晶軸の傾き乱れが増すことによってCo−Cr層の偏析
が増加し、その結果Co−C「層内の交換エネルギーに
分布が生じ、磁壁のピンニングエネルギーや回転型磁化
反転成分が増加することにあると考えられる。
The reason why the perpendicular coercive force increases due to the deterioration of the degree of orientation perpendicular to the film surface of the C axis of the hcp structure of the Co-Cr layer is that the segregation of the Co-Cr layer increases due to the increased tilt disorder of the crystal axis. As a result, a distribution occurs in the exchange energy within the Co-C layer, which is thought to result in an increase in the pinning energy of the domain wall and the rotational magnetization reversal component.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参考にして説明するが、
本発明は以下の実施例に限定されるものではない。
Examples of the present invention will be described below with reference to the drawings.
The present invention is not limited to the following examples.

先ず、高透磁率膜詑して作製されるパーマロイ膜のfc
c構造の<111>軸の膜面垂直配向度の作製条件に対
する劣化度を予備実験として行った。
First, the fc of the permalloy film made by covering the high magnetic permeability film.
A preliminary experiment was conducted to examine the degree of deterioration of the degree of orientation of the <111> axis perpendicular to the film surface of the c structure with respect to the manufacturing conditions.

予備実験例 連続DCCマグネトロンスパッタ置を用い、厚さ50p
m、幅5インチのポリエチレンテレフタレート(以下P
ETという、)フィルムを非磁性支持体として、パーマ
ロイ単層膜を作製した。
Preliminary experiment example: Using continuous DCC magnetron sputtering equipment, thickness 50p
m, 5 inches wide polyethylene terephthalate (hereinafter P
A permalloy monolayer film was produced using a film (referred to as ET) as a nonmagnetic support.

パーマロイ単層膜の作製条件は以下の通りである。The conditions for producing the permalloy single layer film are as follows.

パーマロイ単層膜の作製条件 ターゲット=MOパーマロイ(Ni:8G、5重量%、
Fe:15重量%、Mo:4.5重量L 150+ss
 X 250謡麟x 5m5)スパッタアルゴン圧: 
I X 10−”Torr投入パ’7− : 1.8k
W(490V x 3.6A)スパンタキャンロール温
[:60℃ フィルム送り速度: 5 cs/+sin膜厚:0.5
μm パーマロイ膜作製時のときの背圧をN、又はH2Oの不
純物ガスを導入して、8.8 X 1 G −’Tor
r(HlO)、2Xl(I’↑orr(Ng)と変化さ
せたときのパーマロイ膜のfcc構造の<111>軸の
膜面垂直配向度であるΔθ、。を測定した。その結果を
第1表に示す。
Preparation conditions for permalloy single layer film Target = MO permalloy (Ni: 8G, 5% by weight,
Fe: 15% by weight, Mo: 4.5% by weight L 150+ss
x 250 Yorin x 5m5) Sputtering argon pressure:
IX 10-”Torr input power: 1.8k
W (490V x 3.6A) Spunter can roll temperature [: 60℃ Film feed speed: 5 cs/+sin Film thickness: 0.5
μm The back pressure during permalloy film production was reduced to 8.8
We measured Δθ, which is the degree of orientation perpendicular to the film surface of the <111> axis of the fcc structure of the permalloy film when changing r(HlO) and 2Xl(I'↑orr(Ng). Shown in the table.

第1表 第1表に示すように、パーマロイ膜作製時のスパッタリ
ングの際にN2又はHxO等の不純物ガスを導入し背圧
を高(することによってΔθ、。は容易に劣化させるこ
とができ、上記不純物の導入量を調整することによって
所定のΔθ、。値に調整することができる。
Table 1 As shown in Table 1, Δθ can be easily degraded by introducing an impurity gas such as N2 or HxO during sputtering to create a permalloy film and increasing the back pressure. By adjusting the amount of the impurity introduced, it is possible to adjust to a predetermined value of Δθ.

不純物を導入することによってパーマロイ膜のfcc構
造の<111>軸の膜面垂直配向度を表すΔθ、。を調
整し、その上部に形成するCo−01層の垂直抗磁力に
対するパーマロイ膜のΔθ、。
Δθ, which represents the degree of orientation perpendicular to the film surface of the <111> axis of the fcc structure of the permalloy film by introducing impurities. Δθ of the permalloy film with respect to the perpendicular coercive force of the Co-01 layer formed on top of it.

の依存性について実施例を行った。An example was conducted regarding the dependence of .

実施例1 連続DCマグネトロンスパッタ装置を用い、厚さ50μ
m2幅5インチのPETフィルムを非磁性支持体として
、パーマロイ膜、Co−Cr層からなる垂直磁気記録媒
体を作製した。
Example 1 Thickness: 50 μm using continuous DC magnetron sputtering equipment
A perpendicular magnetic recording medium consisting of a permalloy film and a Co--Cr layer was prepared using a PET film with a m2 width of 5 inches as a nonmagnetic support.

パーマロイ膜、Co−Cr層の作製条件は以下の通りで
ある。
The conditions for producing the permalloy film and the Co-Cr layer are as follows.

パーマロイ膜の作製条件 ターゲット+Moパーマロイ(Ni:8G、5重量%、
Fe:15重量%、Mo:4.5−重量X、 150@
IIX 2501111X51111)スパッタアルゴ
ン圧: I X 10−’Torr投入パワー : 1
.8kW(490Vx3.6A)スパッタキャンロール
温度:60℃ フィルム送り速度: 5 cm/+win膜厚:0.5
μm Co−Cr層の作製条件 ターゲット:Co−Cr (Cr含有121重量%、 
505m X 250mm x 5mm)スパッタアル
ゴン圧: I X L O−’Torr投入ハ”投入−
:2.0kW(450VX4.5^)スパッタキャンロ
ールfA度7130℃フィルム送り速度: l 6.7
 cm/sin膜厚: 0.15μm 垂直磁気記録媒体の製造にあたっては、第2回に示すよ
うに、先ず非磁性支持体(1)上にパーマロイ膜(2)
を上述の作製条件に従って、所定の背圧によりパーマロ
イ膜(2)のΔθ3.が9.1’となるように形成した
後、その上部にCo−Cr層(3)を上述の作製条件に
従って形成しサンプル媒体を作製した。
Permalloy film production conditions Target + Mo permalloy (Ni: 8G, 5% by weight,
Fe: 15% by weight, Mo: 4.5-weight X, 150@
IIX 2501111X51111) Sputtering argon pressure: IX 10-'Torr input power: 1
.. 8kW (490Vx3.6A) Sputter can roll temperature: 60℃ Film feed speed: 5 cm/+win film thickness: 0.5
μm Co-Cr layer production conditions Target: Co-Cr (Cr content 121% by weight,
505m x 250mm x 5mm) Sputtering argon pressure: I
:2.0kW (450VX4.5^) Sputter can roll fA degree 7130℃ Film feed speed: l 6.7
cm/sin film thickness: 0.15 μm When manufacturing a perpendicular magnetic recording medium, as shown in Part 2, first a permalloy film (2) is deposited on a non-magnetic support (1).
Δθ3. After forming the Co--Cr layer (3) on top of the Co--Cr layer (3) according to the above-mentioned manufacturing conditions, a sample medium was manufactured.

実施例2 実施例1において、所定の背圧によりパーマロイ膜(2
)のΔθ、。が19.3° (但し、この値は同一条件
でパーマロイ膜のみを作製したときの60%6の値であ
る。)となるように形成した後、実施例1と同様の方法
によりサンプル媒体を作製した。
Example 2 In Example 1, the permalloy film (2
) of Δθ,. is 19.3° (however, this value is 60%6 of the value when only the permalloy film is produced under the same conditions), and then the sample medium was prepared in the same manner as in Example 1. Created.

実施例3 パーマロイ膜とCo−Cr層との間に中間層としてCo
−Cr−0層を導入し三層化構造とした垂直磁気記録媒
体について応用例を行った。
Example 3 Co as an intermediate layer between the permalloy film and the Co-Cr layer
An application example was performed on a perpendicular magnetic recording medium having a three-layer structure by introducing a -Cr-0 layer.

連続DCマグネトロンスパッタ装置を用い、厚さ50μ
m9幅5インチのPETフィルムを非磁性支持体として
、パーマロイill、Co−Cr −0層、Co−、C
r層からなる垂直磁気記録媒体を作製した。
Thickness: 50μ using continuous DC magnetron sputtering equipment
m9 width 5 inch PET film as a non-magnetic support, permalloy ill, Co-Cr-0 layer, Co-, C
A perpendicular magnetic recording medium consisting of an r layer was manufactured.

パーマロイ膜、Co−Cr−0層、Co−Cr層の作製
条件は以下の通りである。
The conditions for producing the permalloy film, Co-Cr-0 layer, and Co-Cr layer are as follows.

パーマロイ膜の作製条件 ターゲット;Moパーマロイ(Ni:80.5重量% 
+ F e :15重ffiχJo:4.5重量%、 
150as+ X 250ss X 5m+w)スパッ
タアルゴン圧: I X 10−″Torr投入パ’7
− : 1.8kW(490VX3.6A)スパッタキ
ャンロール温度:60℃ フィルム送り速度:5cm/sin 膜厚:0.5μm Co−Cr−0層の作製条件 ターゲット;Co−Cr (Cr含有量21重量%、、
50+u+ X  250++m X 5mm)スパッ
タ酸素分圧: 4 X 10−’Torr投入ハワー 
: 1 kll (450VX4.5A)スパッタキャ
ンロールi度:130℃ フィルム送り速度: 20 am/winH促厚:17
0人 Co−Cr層の作製条件 ターゲット:Co−Cr (Cr含有121重量%、 
 50信信X  250mm X 5m+m)スパッタ
アルゴン圧: I X 10−”Torr投入パワー:
 2.0kW(450V x 4.5A)スパンタキャ
ンロールi度:tao℃ フィルム送り速度: 16.7 am/@i(1膜厚:
 0.15μm 垂直磁気記録媒体の製造にあたっては、第3図に示すよ
うに、先ず非磁性支持体(1)上にパーマロイ膜(2)
を上述の作製条件に従って、所定の背圧によりパーマロ
イ膜(2)のΔθ、。が約19°となるように形成した
後、その上部にCo−Cr−0層(4)をその厚さが1
70人となるように形成し、さらにその上層にCo−C
rti!(3)を上述の作製条件に従って形成しサンプ
ル媒体を作製した。
Permalloy film production condition target: Mo permalloy (Ni: 80.5% by weight
+ Fe: 15 weight ffiχJo: 4.5% by weight,
150as+ X 250ss X 5m+w) Sputtering argon pressure: I
-: 1.8 kW (490 V x 3.6 A) sputter can roll temperature: 60°C Film feed speed: 5 cm/sin Film thickness: 0.5 μm Co-Cr-0 layer production conditions Target: Co-Cr (Cr content: 21 wt. %,,
50+u+ x 250++m x 5mm) Sputter oxygen partial pressure: 4 x 10-'Torr input power
: 1 kll (450VX4.5A) Sputter can roll degree: 130℃ Film feed speed: 20 am/winH accelerated thickness: 17
Co-Cr layer production conditions Target: Co-Cr (Cr content: 121% by weight,
50cm x 250mm x 5m+m) Sputtering argon pressure: I x 10-” Torr input power:
2.0kW (450V x 4.5A) Spunter can roll degree: tao℃ Film feeding speed: 16.7 am/@i (1 film thickness:
In manufacturing a 0.15 μm perpendicular magnetic recording medium, as shown in FIG.
Δθ of the permalloy film (2) by a predetermined back pressure according to the above-mentioned fabrication conditions. After forming the Co-Cr-0 layer (4) with a thickness of about 19°, a Co-Cr-0 layer (4) is formed on top of it.
70 people, with Co-C in the upper layer.
rti! (3) was formed according to the above-mentioned production conditions to produce a sample medium.

比較例1 連続DCマグネトロンスパッタ装置を用い、厚さ50μ
m1幅5インチのPETフィルムを非磁性支持体として
、Co−Cr下地層、パーマロイ膜、Co−Cr層と積
層形成し垂直磁気記録媒体を作製した。垂直配向度に優
れたCo−Cr下地層を導入することにより、パーマロ
イ膜ノΔθ5゜を低下させて、パーマロイ膜の上層に形
成するco−Cr層の垂直配向度を非常に小さいものと
して垂直磁気記録媒体を作製した。
Comparative Example 1 Thickness: 50μ using continuous DC magnetron sputtering equipment
A perpendicular magnetic recording medium was fabricated by laminating a Co--Cr underlayer, a permalloy film, and a Co--Cr layer using a PET film having a m1 width of 5 inches as a nonmagnetic support. By introducing a Co-Cr underlayer with an excellent degree of vertical orientation, the Δθ5° of the permalloy film is lowered, and the degree of vertical orientation of the co-Cr layer formed on the upper layer of the permalloy film is made very small, resulting in a perpendicular magnetic field. A recording medium was produced.

Co−Cr下地層、パーマロイ膜、Co−Cr層の作製
条件は以下の通りである。
The conditions for producing the Co--Cr underlayer, permalloy film, and Co--Cr layer are as follows.

Go−Cr下地層の作製条件 ターゲット:Co−Cr (Cr含有121重量%、 
50mm X 250mm x 5m+m)スパッタア
ルゴン圧: I X 10−”Torr投入パ’7− 
; 2.0kW(450V X 4.5A)スパッタキ
ャンロール1度:130℃ フィルム送り速度: 16.7 cm/win膜厚:0
.1μm パーマロイ膜の作製条件 ターゲット:Moパーマロイ(Nis80.5重量%、
Fe:工5重量Z、no:4.5重ML 150na+
 X 250mm x 5mm)スパッタアルゴン圧:
 I X 10−3Torr投入パワー : 1.8k
W(490Vx3.6A)スパンタキャンロールi度:
60℃ フィルム送り速度: 25 am/win膜厚:0.1
μm Co−Cr層の作製条件 ターゲット:Co−Cr (Cr含有量21重量%、 
 50m5 X  250mm x 5ms+)スパッ
タアルゴン圧:’ I X 10−”Torr投入ハ’
7− + 2.0kN(450Vx4.5A)スパッタ
キャンロールミ度:130℃ フィルム送り速度:5aa/win 膜厚:0.5μm 垂直磁気記録媒体の製造にあたっては、第4図に示すよ
うに、先ず非磁性支持体(1)上にGo−Cr下地層(
3a)を上述の条件により作製した後、パーマ9イ膜(
2)を所定の背圧によりパーマロイ膜(2)のΔθ、。
Preparation conditions for Go-Cr underlayer Target: Co-Cr (Cr content: 121% by weight,
50mm x 250mm x 5m+m) Sputtering argon pressure: I
; 2.0kW (450V
.. Preparation conditions for 1 μm permalloy film Target: Mo permalloy (Nis 80.5% by weight,
Fe: Engineering 5 weight Z, no: 4.5 weight ML 150na+
x 250mm x 5mm) Sputtering argon pressure:
IX 10-3Torr input power: 1.8k
W (490Vx3.6A) spanner can roll i degree:
60℃ Film feed speed: 25 am/win Film thickness: 0.1
μm Co-Cr layer production conditions Target: Co-Cr (Cr content 21% by weight,
50m5 x 250mm x 5ms+) Sputtering argon pressure: 'I x 10-' Torr input
7- + 2.0kN (450Vx4.5A) Sputter roll tolerance: 130°C Film feed speed: 5aa/win Film thickness: 0.5μm In manufacturing perpendicular magnetic recording media, first, as shown in Figure 4, A Go-Cr underlayer (
After producing 3a) under the above conditions, a permanent 9i film (
2) Δθ of the permalloy film (2) with a predetermined back pressure.

が5.3@(但し、この値は同一条件でパーマロイ膜(
2)のみを作製したときの八〇、。の値である。)とな
るように形成した。続いて、その上部にCo−Cr層(
3)を上述の作製条件に従って形成しサンプル媒体を作
製した。
is 5.3@ (however, this value is lower than that of permalloy film (under the same conditions).
80 when only 2) was made. is the value of ). Next, a Co-Cr layer (
3) was formed according to the above-mentioned production conditions to produce a sample medium.

比較例2 連続DCマグネトロンスパンク装置を用い、厚さ50I
Im、幅5インチのPETフィルムを非磁性支持体とし
て、Co−Cr層のみからなる垂直磁気記録媒体を作製
した。
Comparative Example 2 Using a continuous DC magnetron spanking device, thickness 50I
A perpendicular magnetic recording medium consisting only of a Co--Cr layer was prepared using a 5-inch wide PET film as a nonmagnetic support.

Co−Cr層の作製条件は以下の通りである。The conditions for producing the Co--Cr layer are as follows.

Co−Cr層の作製条件 ターゲット:Co−Cr (Cr含有量21重量%、 
50a+m x 250mm X 5+*Il)スパッ
タアルゴン圧:txio弓Torr投入パ’7− : 
2.0kW(450V X 4.5A)スパッタキャン
ロール温度:130℃ フィルム送り速度:5am/win 膜厚:0.5μm 垂直磁気記録媒体の製造にあたっては、非磁性支持体上
にCo−Cr層を上述の作製条件に従ってスパッタリン
グにより形成しサンプル媒体を作製した。
Co-Cr layer production conditions Target: Co-Cr (Cr content 21% by weight,
50a+m x 250mm
2.0kW (450V A sample medium was produced by sputtering according to the above-mentioned production conditions.

上記各サンプル媒体についてCo−Cr層の垂直抗磁力
をカー(Kerr)効果測定により測定した。
For each of the above sample media, the perpendicular coercive force of the Co--Cr layer was measured by Kerr effect measurement.

その結果を第2表及び第1図に示す。The results are shown in Table 2 and Figure 1.

第2表 第2表及び第1図から明らかなように、垂直磁気記録媒
体を二層化構造としてもパーマロイ膜のfcc構造の<
111>軸の膜面垂直配向度を表す八〇、。が9°以下
では、Co−Cr層の垂直抗磁力は2500eとあまり
高くないが、これに対してパーマロイ膜のfcc構造の
<111>軸の膜面垂直配向度を表すΔθ、。が約9@
では、Co−Crjilの垂直抗磁力は4300e、Δ
θ、。が約190では、Co−Cr層の垂直抗磁力は6
700eと非常に高い垂直抗磁力を示しており、垂直磁
気記録媒体としての磁気特性を充分に満足する結果が得
られた。
As is clear from Table 2 and FIG.
111>80, which represents the degree of orientation perpendicular to the film surface of the axis. When the angle is less than 9°, the perpendicular coercive force of the Co--Cr layer is not so high as 2500e, but on the other hand, Δθ, which represents the degree of orientation perpendicular to the film surface of the <111> axis of the FCC structure of the permalloy film. is about 9@
Then, the vertical coercive force of Co-Crjil is 4300e, Δ
θ,. is about 190, the perpendicular coercive force of the Co-Cr layer is 6
It exhibited a very high perpendicular coercive force of 700e, and a result was obtained that fully satisfied the magnetic properties as a perpendicular magnetic recording medium.

また、中間層を介した実施例3は、実施例2で行った二
層構造の垂直磁気記録媒体のパーマロイ膜とCo−Cr
層との間にCo−Cr−0層を介した構造としたもので
あるが、この場合のCo−Cr層の垂直抗磁力は、第1
図中Δ印で示すように、9QOOeであった。すなわち
中間層を200人程度導入した場合には、中間層を導入
しない場合と比較してさらに垂直磁化膜の垂直抗磁力は
増大し高いものが得られることがわかる。したがって、
Co−Cr層に対してパーマロイ膜の影響を害さない程
度の膜厚、すなわち200Å以下であれば必要に応じて
中間層を導入してもかまわない。
In addition, in Example 3 using an intermediate layer, the permalloy film and Co-Cr of the two-layer perpendicular magnetic recording medium in Example 2 were
In this case, the perpendicular coercive force of the Co-Cr layer is the first
As indicated by the Δ mark in the figure, it was 9QOOe. That is, it can be seen that when about 200 intermediate layers are introduced, the perpendicular coercive force of the perpendicularly magnetized film increases even more than when no intermediate layer is introduced. therefore,
If necessary, an intermediate layer may be introduced as long as the film thickness is such that the permalloy film does not affect the Co--Cr layer, that is, 200 Å or less.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、垂直磁化膜として記録
再生に寄与するCo−Cr層の下部に高i3磁率膜とし
てのパーマロイ膜を設け、該パーマロイ膜のfcc構造
の<111>軸の膜面垂直配向度を表すΔθ、。を9層
以上と劣化させることにより、Co−Cr層を低温作製
しても垂直抗磁力に優れた垂直磁化膜が形成できる。
As is clear from the above explanation, a permalloy film as a high i3 magnetic film is provided below the Co-Cr layer that contributes to recording and reproduction as a perpendicular magnetization film, and the film surface of the <111> axis of the fcc structure of the permalloy film is Δθ, representing the degree of vertical orientation. By deteriorating the Co--Cr layer to nine or more layers, a perpendicularly magnetized film with excellent perpendicular coercive force can be formed even if the Co--Cr layer is manufactured at a low temperature.

また、パーマロイ膜とCo−Cr層との間にco−Cr
−0中間層を介することにより、Co−Cr層の垂直抗
磁力がさらに大きくなり、パーマロイ膜のfcc構造の
<lll>軸の膜面垂直配向度を表すΔθ、。を9層以
上とした効果がより一層発揮される。
Moreover, co-Cr is formed between the permalloy film and the Co-Cr layer.
By interposing the −0 intermediate layer, the perpendicular coercive force of the Co—Cr layer is further increased, and Δθ, which represents the degree of orientation perpendicular to the film surface of the <llll> axis of the fcc structure of the permalloy film. The effect of having nine or more layers is even more exhibited.

したがって、再生出力に優れ、高密度磁気記録を達成す
るに適した垂直磁気記録媒体を提供することができる。
Therefore, it is possible to provide a perpendicular magnetic recording medium that has excellent reproduction output and is suitable for achieving high-density magnetic recording.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はパーマロイ膜のfcc構造の<111>軸の膜
面垂直配向度を表すロッキングカーブ半値幅Δθ、。に
対するCo−Cr層の垂直抗磁力の依存性を示す特性図
である。 第2図は本発明を通用した垂直磁気記録媒体の一構成例
を示す概略断面図である。 第3図は中間層を設けた垂直磁気記録媒体の一構成例を
示す概略断面図である。 第4図はパーマロイ層の下部にCo−Cr下地層を設け
た垂直磁気記録媒体の一構成例を示す概略断面図である
。 1・・・非磁性支持体 2・・・パーマロイ膜 3・・・C0−Cr系垂直磁化膜(Co−Cr層)特許
出願人   ソニー株式会社 代理人  弁理士  小泡  晃 岡   円柱 榮−
FIG. 1 shows the half-value width Δθ of a rocking curve representing the degree of orientation perpendicular to the film surface of the <111> axis of the fcc structure of the permalloy film. FIG. 3 is a characteristic diagram showing the dependence of the perpendicular coercive force of the Co--Cr layer on the magnetic field. FIG. 2 is a schematic cross-sectional view showing an example of the configuration of a perpendicular magnetic recording medium to which the present invention is applied. FIG. 3 is a schematic cross-sectional view showing an example of the configuration of a perpendicular magnetic recording medium provided with an intermediate layer. FIG. 4 is a schematic cross-sectional view showing an example of the configuration of a perpendicular magnetic recording medium in which a Co--Cr underlayer is provided below a permalloy layer. 1...Non-magnetic support 2...Permalloy film 3...C0-Cr perpendicular magnetization film (Co-Cr layer) Patent applicant Sony Corporation representative Patent attorney Akioka Koboba Sakae Kyashida-

Claims (1)

【特許請求の範囲】 非磁性支持体上に面心立方構造の<111>軸の膜面垂
直配向度を表すロッキングカーブ半値幅が9゜以上のパ
ーマロイ膜が形成され、 上記パーマロイ膜上にCo−Cr系垂直磁化膜が形成さ
れたことを特徴とする垂直磁気記録媒体。
[Claims] A permalloy film having a rocking curve half-width of 9° or more representing the degree of orientation perpendicular to the film surface of the <111> axis of a face-centered cubic structure is formed on a non-magnetic support, and a Co - A perpendicular magnetic recording medium characterized in that a Cr-based perpendicular magnetization film is formed.
JP3350887A 1987-02-18 1987-02-18 Perpendicular magnetic recording medium Pending JPS63201913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3350887A JPS63201913A (en) 1987-02-18 1987-02-18 Perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3350887A JPS63201913A (en) 1987-02-18 1987-02-18 Perpendicular magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS63201913A true JPS63201913A (en) 1988-08-22

Family

ID=12388485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3350887A Pending JPS63201913A (en) 1987-02-18 1987-02-18 Perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS63201913A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147942B2 (en) 2001-12-07 2006-12-12 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium and method of manufacturing the same and product thereof
US7183011B2 (en) 2002-01-17 2007-02-27 Fuji Electric Co., Ltd. Magnetic recording medium
USRE41282E1 (en) 2001-08-31 2010-04-27 Fuji Electric Device Technology Co., Ltd. Perpendicular magnetic recording medium and a method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922236A (en) * 1982-07-28 1984-02-04 Matsushita Electric Ind Co Ltd Production of vertical magnetic recording medium
JPS61211818A (en) * 1985-03-18 1986-09-19 Hitachi Ltd Vertical magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922236A (en) * 1982-07-28 1984-02-04 Matsushita Electric Ind Co Ltd Production of vertical magnetic recording medium
JPS61211818A (en) * 1985-03-18 1986-09-19 Hitachi Ltd Vertical magnetic recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE41282E1 (en) 2001-08-31 2010-04-27 Fuji Electric Device Technology Co., Ltd. Perpendicular magnetic recording medium and a method of manufacturing the same
US7147942B2 (en) 2001-12-07 2006-12-12 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium and method of manufacturing the same and product thereof
US8252152B2 (en) 2001-12-07 2012-08-28 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium and method of manufacturing the same and product thereof
US7183011B2 (en) 2002-01-17 2007-02-27 Fuji Electric Co., Ltd. Magnetic recording medium

Similar Documents

Publication Publication Date Title
US6713197B2 (en) Perpendicular magnetic recording medium and magnetic recording apparatus
US5851643A (en) Magnetic recording media and magnetic recording read-back system which uses such media
JP2524514B2 (en) Magnetic recording media
US7556871B2 (en) Magnetic recording medium containing first and second recording layers, each layer containing a columnar structure
JPH11149628A (en) Perpendicular magnetic recording medium
JPH1079113A (en) In-plane magnetic recording medium and magnetic storage device utilizing the same
JPH07176027A (en) Magnetic recording medium and magnetic recording and reproducing device
JPH11102510A (en) Perpendicular magnetic recording medium and magnetic recording device using the same
US5601904A (en) Magnetic recording medium and process for producing the same
JPS63201913A (en) Perpendicular magnetic recording medium
JPH07134820A (en) Magnetic recording medium and magnetic recorder using the medium
JP3665221B2 (en) In-plane magnetic recording medium and magnetic storage device
US5496620A (en) Magnetic recording medium
JP3582435B2 (en) Perpendicular magnetic recording medium
JPH09298114A (en) Vertical magnetic recording medium and magnetic recording device using it
US7295404B2 (en) Magnetic recording medium for perpendicular recording and magnetic storage apparatus using the same
JP3045797B2 (en) Perpendicular magnetic recording media
JP3044850B2 (en) Magnetic recording medium and method of manufacturing the same
JPH08273140A (en) Perpendicular magnetic recording medium and its production
JP3206322B2 (en) Magnetic head and magnetic recording / reproducing device
JPH01173312A (en) Magnetic recording medium
JPS62132224A (en) Vertical magnetic recording medium
JP3203943B2 (en) Magnetic recording / reproducing device
JPH01150224A (en) Magnetic recording medium
JPH07122931B2 (en) Perpendicular magnetic recording medium