JPS63201088A - Controlled-vapor pressure type crystal pulling up device - Google Patents

Controlled-vapor pressure type crystal pulling up device

Info

Publication number
JPS63201088A
JPS63201088A JP3110987A JP3110987A JPS63201088A JP S63201088 A JPS63201088 A JP S63201088A JP 3110987 A JP3110987 A JP 3110987A JP 3110987 A JP3110987 A JP 3110987A JP S63201088 A JPS63201088 A JP S63201088A
Authority
JP
Japan
Prior art keywords
crucible
raw material
heating
vapor pressure
material melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3110987A
Other languages
Japanese (ja)
Inventor
Toshihiko Suzuki
利彦 鈴木
Yasunori Okubo
大久保 安教
Hiroshi Sato
弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3110987A priority Critical patent/JPS63201088A/en
Publication of JPS63201088A publication Critical patent/JPS63201088A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To simplify the title controlled-vapor pressure type crystal pulling up device by hermetically sealing a highly dissociative component gas in a closed chamber formed by a crucible contg. a raw material melt and a heating wall integrated with the crucible, and pulling up the crystal of a high- dissociation pressure compd. in the chamber. CONSTITUTION:The closed chamber 29 is formed by the crucible 21 contg. the raw material melt 22 and provided with a main heating means 36, the heating wall 26, and a lid 33. The highly dissociative component gas, formed by heating and vaporizing a high-dissociation pressure component material 32 contained in a small hole 31 while controlling the pressure by a vapor pressure-controlling and heating means 40, is supplied into the closed chamber 29 and enclosed. In the closed chamber 29 under such conditions, a crystal 23 of the high-dissociation pressure compd. is pulled up from the raw material melt 22 by a lifting shaft 24 inserted through a seal plate 27 and a sealing means 28.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、pH1ilit圧の高い成分を含む化合物半
導体、例えばGaAs等のm−v族化合物の結晶を育成
する場合に用いられる蒸気圧制御型結晶引上装置に関わ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vapor pressure controlled method used when growing crystals of compound semiconductors containing components with a high pH 1ilit pressure, such as m-v group compounds such as GaAs. Involved in crystal pulling equipment.

〔発明のN要〕[N key points of invention]

本発明は原料融液を中和するるつぼとこれと一体の加熱
壁によって高解離圧成分ガスを封じ込み、かつ原料融液
からの高解離圧化合物の結晶を引き上げる密閉室を構成
した蒸気圧制御型結晶引上装置であって、その高解離圧
成分ガスの圧力の制御を容易ならしめまた装置の製造の
簡潔化を図る。
The present invention provides vapor pressure control that includes a crucible that neutralizes the raw material melt and a heating wall integrated with the crucible to confine high dissociation pressure component gases and constitute a closed chamber for pulling up crystals of the high dissociation pressure compound from the raw material melt. The present invention is a type crystal pulling device, which facilitates control of the pressure of a high dissociation pressure component gas and simplifies the manufacturing of the device.

〔従来の技術〕[Conventional technology]

従来高解離圧成分を含む化合物半導体例えばGaAs等
のm−v族化合物の結晶をその原料融液より成長させる
方法としては、水平ブリッジマン法(HB法)あるいは
液体封止法(LEC法)が挙げられる。
Conventionally, the horizontal Bridgman method (HB method) or the liquid confinement method (LEC method) has been used to grow crystals of compound semiconductors containing high dissociation pressure components, such as m-v group compounds such as GaAs, from their raw material melts. Can be mentioned.

HB法は蒸気圧の制御が容易なためm−v族元素組成を
1;1に近くできるという利点を有するもののその育成
された結晶形状が原料融液を収容するボート形状によっ
て決められるために、この育成された結晶から例えば一
般に用いられる円形状の化合物半導体ウェファを取り出
すには大きな無駄が生じる。
Although the HB method has the advantage that the m-v group element composition can be made close to 1:1 because the vapor pressure can be easily controlled, the shape of the grown crystal is determined by the shape of the boat containing the raw material melt. A large amount of waste occurs when, for example, a generally used circular compound semiconductor wafer is taken out from the grown crystal.

また、LEC法による場合は、原料融液表面を例えばB
2O3でカバーして高解離圧の例えばAsの解離蒸発を
抑制するものであるが、このようにしても■−■族元楽
の組成ずれが発生し結晶性が低下するという問題点があ
る。
In addition, when using the LEC method, the surface of the raw material melt is, for example, B
Covering with 2O3 suppresses the dissociation and evaporation of, for example, As under high dissociation pressure, but even with this method, there is a problem that a compositional deviation of the ■-■ group element occurs and the crystallinity decreases.

こられ問題点を回避し上述した各方法の利点をもつ引上
法として蒸気圧制御による引上法(以下vpcc略称す
る)が考えられている。しかしながら、このvpcc法
を実現する装置としては、種々の要件を必要とする。そ
の要件を以下列挙するに、1、密閉室を高解離圧の■族
元素例えばAsで所要の内気圧に保つには、A3が析出
する付着しない温度に加熱され加熱壁いわゆるホントウ
オール(Hot Wall)が必要で、例えばA3の場
合は、この加熱壁の温度は1気圧で617℃以上が必要
となる。
As a pulling method that avoids these problems and has the advantages of the above-mentioned methods, a pulling method using vapor pressure control (hereinafter abbreviated as VPCC) has been considered. However, a device that implements this VPCC method requires various requirements. The requirements are listed below: 1. In order to maintain the required internal pressure in a closed chamber with a high dissociation pressure group Ⅰ element, for example, As, a heated wall (hot wall) is heated to a temperature at which A3 does not deposit and adheres. ), and for example, in the case of A3, the temperature of this heating wall must be 617° C. or higher at 1 atm.

2、蒸気圧制御には一部にその圧力を決める塩度制御手
段が必要となる。
2. Steam pressure control requires, in part, salinity control means to determine the pressure.

3、原料融液と結晶成長を制御するための加熱手段とそ
の電源を必要とする。
3. Requires heating means and power source for controlling raw material melt and crystal growth.

4、結晶引上軸部の封止のために一般にtho 3によ
る液体封止を用いるものであり、またそのための加熱手
段と電源とを必要とする。
4. Liquid sealing using THO 3 is generally used to seal the crystal pulling shaft, and a heating means and power source are required for this purpose.

5、原料融液のるつぼを回転支持する回転軸の封止のた
めの前記第4項とtho 3による液体封止に加熱手段
とその電源を必要とする。
5. Liquid sealing according to item 4 and tho 3 above for sealing the rotating shaft that rotatably supports the crucible of the raw material melt requires a heating means and its power source.

6、加熱壁の材質として高温で耐え、ガス不透過性であ
りかつこの高解離圧成分ガス例えば■族元素の蒸気雰囲
気中でも侵蝕されない材料であることが必要である。
6. The material of the heating wall must be able to withstand high temperatures, be gas impermeable, and not corrode even in the vapor atmosphere of this high dissociation pressure component gas, such as the group Ⅰ element.

上述したようにvpcc法を実現する装置としては多く
の要件を満足する必要があり、その構造は複雑となって
いる。
As described above, a device that implements the VPCC method must satisfy many requirements, and its structure is complicated.

第1図は従来の上述したvpcc法を実現する蒸気圧制
御型結晶引上装置の一般的構造の断面図を示し、図にお
いて(1)は原料融液例えばGaAs融液(2)を収容
するるつぼ、(3)はこの原料融液(2)から引き上げ
られた単結晶、(4はその引上軸、また(5)はるつぼ
(1)の上下及び回転を行うるつぼ軸、(6)はるつぼ
(1)とこれより結晶(3)の引上を行う引上部を囲む
加熱壁で、この加熱壁(6)を貫通する軸(4)及び(
5)の各MiI11部には、これを気密的に封止するに
供する8203等の封止液(7)が収容された封止手段
(8)が設けられている。また、加熱壁(6)によって
囲まれる空間の上方部には蒸気圧制御部(9)が設けら
れ、その周囲に蒸気圧制御用加熱手段(10)例えば通
電加熱ヒータが没けられる。また、加熱壁(6)の上方
周囲にはこの加熱壁(6)を所要の温度に加熱すると共
に引上軸(4)の封止手¥!t(8)の封止液(7)を
溶解するための加熱手Ifi(11)例えば同様に通電
加熱ヒータが設けられると共に、結晶引上部の周囲にる
つぼ(1)の上下動と共に上下動する主加熱手段(12
)例えば同様に通電加熱ヒータを設け、さらに加熱壁(
6)の下方のるつぼ軸(5)の貫通部を封止する封止手
段(8)の封止液(7)例えばB2O3を溶解するため
の加熱手段(13)例えば同様に通電加熱ヒータが設け
られる。これら加熱手段(11)  (12>  (1
3)の配置部の周囲に断熱体(14)が配置され、その
外側に冷却ジャケット例えば水冷による冷却ジャケット
〈15)が配置されてなる。
FIG. 1 shows a cross-sectional view of the general structure of a conventional vapor pressure controlled crystal pulling apparatus that implements the above-mentioned VPCC method. In the figure, (1) contains a raw material melt, such as a GaAs melt (2). The crucible, (3) is the single crystal pulled from this raw material melt (2), (4 is its pulling axis, (5) is the crucible axis that moves the crucible (1) up and down and rotates, and (6) is the single crystal pulled from this raw material melt (2). A heating wall surrounding the crucible (1) and a pulling part for pulling the crystal (3) from the crucible, and a shaft (4) and (
5), each MiI 11 section is provided with a sealing means (8) containing a sealing liquid (7) such as 8203 for airtightly sealing it. Further, a vapor pressure control section (9) is provided in the upper part of the space surrounded by the heating wall (6), and a vapor pressure control heating means (10) such as an electric heater is sunk around the vapor pressure control section (9). Moreover, the heating wall (6) is heated to the required temperature and the lifting shaft (4) is sealed at the upper circumference of the heating wall (6). Heating hand Ifi (11) for melting the sealing liquid (7) of t (8), for example, is similarly provided with an energized heater and moves up and down around the crystal pulling part along with the up and down movement of the crucible (1). Main heating means (12
) For example, an electric heating heater may be installed in the same way, and a heating wall (
6) A sealing liquid (7) of a sealing means (8) for sealing the penetrating portion of the lower crucible shaft (5); a heating means (13) for dissolving, for example, B2O3; It will be done. These heating means (11) (12> (1
A heat insulating body (14) is arranged around the arrangement part 3), and a cooling jacket, for example, a water-cooled cooling jacket (15) is arranged outside of the heat insulating body (14).

また、この種の蒸気圧制御型結晶引上装置としては、例
えば特開昭60−255692号公開公報、特開昭60
−251191号公開公報、特開昭60−226491
号公開公報、特開昭60−251194号公開公報、特
開昭60−176995号公開公報に開示されるものが
あるが、これらはいずれも第2図で説明した構造におけ
ると同様にるつぼ(1)と加熱壁(6)とは別体に構成
され、それぞれ結晶の引上軸とるつぼ軸とが導出される
部分においてそれぞれこれを封止するための封止手段が
配置された構成がとられ、いずれのものも比較的その構
造が煩雑であり、したがうてその保守取扱い等が煩雑で
あるなどの問題点を有する。
Further, as this type of vapor pressure controlled crystal pulling apparatus, for example, Japanese Patent Application Laid-Open No. 60-255692, Japanese Patent Application Laid-Open No. 60-255692
Publication No.-251191, JP-A-60-226491
JP-A-60-251194 and JP-A-60-176995, all of which have a crucible (1 ) and the heating wall (6) are constructed separately, and sealing means for sealing the crystal pulling axis and the crucible axis are respectively disposed at the portions from which the crystal pulling axis and the crucible axis are derived. Both of them have problems such as relatively complicated structures and therefore complicated maintenance and handling.

(発明が解決しようとする問題点〕 本発明は上述した蒸気圧制御型結晶引上装置において、
その構造の簡潔化、保守及び取り扱いの簡潔化を図る。
(Problems to be Solved by the Invention) The present invention provides the above-mentioned vapor pressure controlled crystal pulling apparatus,
The aim is to simplify its structure, maintenance and handling.

C問題点を解決するための手段) 本発明は第1図に示すように高解離圧成分ガスを密封し
、その圧力を制御しながら高解離圧化合物の結晶を引き
上げる蒸気圧制型結晶引上装置において、原料融液(2
2)を収容するるつぼ(21)とこれと一体に設けた加
熱壁(26)とによって高解離圧成分ガスを封じ込みか
つ原料融液(22)からの高解離圧化合物の結晶(23
)を引き上げる密閉室(29)を構成する。
Means for Solving Problem C) The present invention, as shown in FIG. 1, is a vapor pressure type crystal pulling apparatus that seals a high dissociation pressure component gas and pulls up crystals of a high dissociation pressure compound while controlling the pressure. In the raw material melt (2
2) and a heating wall (26) provided integrally therewith, the high dissociation pressure component gas is confined and the crystals of the high dissociation pressure compound (23) from the raw material melt (22) are sealed.
) constitutes a sealed chamber (29) for pulling up.

〔作用〕[Effect]

本発明においては、るつぼ(21)と加熱壁(26)と
を一体構成としたことによって構造の簡潔化、特にるつ
ぼ軸を密閉室(29)から貫通導出する部分の省略を可
能にしてこのるつぼ軸導出のための封止手段、したがっ
て封止液収容等の燗雑な構造部の省略化を図って製造の
簡潔化とこれによる取扱いの簡潔化を図ることができる
In the present invention, by integrating the crucible (21) and the heating wall (26), the structure can be simplified, and in particular, the part where the crucible shaft is led out from the closed chamber (29) can be omitted. By omitting the sealing means for leading out the shaft and, therefore, complicated structural parts such as sealing liquid storage, it is possible to simplify manufacturing and thereby simplify handling.

(実施例) さらに第1図を参照して本発明による蒸気圧制御型結晶
引上装置の一例を詳細に説明する。
(Example) Further, with reference to FIG. 1, an example of a vapor pressure controlled crystal pulling apparatus according to the present invention will be described in detail.

本発明においては、原料融液(22)例えばGaAs融
液を収容するるつぼ(21)を加熱壁(26)と一体に
構成する。
In the present invention, a crucible (21) containing a raw material melt (22), such as a GaAs melt, is integrated with a heating wall (26).

このるつぼ(21)には、その周側壁部に底部に貫通す
る例えば複数本(図においては1本のみが示されている
)の透孔(30)が設けられる。るつぼ(21)の底部
下にはこれを受ける台部(45)を上端に有するるつぼ
軸(25)が配置される。このるつぼ軸(25)の中心
には、るつぼ(21)の周側壁部に設けられたこの透孔
(30)に連通ずる細穴(31)が穿設され、この細穴
(31)内に高解離圧成分ガス材料(32)が収容され
る。この高解離圧成分材料(32)が収容される細大(
31)は、その上端がるつぼ軸(25)の台部(45)
の上面に開放され、台部(45)の上面外周部には環状
突起(35^)が設けられ、一方るつぼ(21)の底部
の外周には環状突起(35^)と合致する環状突起(3
5B)が設けられ、両者が気密的に嵌合された状態で例
えば取り付けねじによる取付手段(34)によって気密
的に合体される。そして、この状態で細穴(31)が台
部(45)とるつぼ(21)の底面間に形成された空隙
(46)を通じてるつぼ(21)の壁部にその上端に貫
通して設けられた透孔(30)に連通ずるようになされ
る。
The crucible (21) is provided with, for example, a plurality of (only one is shown in the figure) through holes (30) penetrating the bottom of the crucible (21) in its circumferential wall. A crucible shaft (25) having a pedestal (45) at its upper end for receiving the crucible shaft (21) is arranged below the bottom of the crucible (21). A small hole (31) is bored in the center of the crucible shaft (25) and communicates with the through hole (30) provided in the peripheral wall of the crucible (21). A high dissociation pressure component gas material (32) is accommodated. This high dissociation pressure component material (32) is accommodated in a narrow size (
31), whose upper end is the base (45) of the crucible shaft (25)
An annular projection (35^) is provided on the outer periphery of the upper surface of the base (45), and an annular projection (35^) that matches the annular projection (35^) is provided on the outer periphery of the bottom of the crucible (21). 3
5B), and the two are airtightly fitted together by means of mounting means (34) such as mounting screws. In this state, a small hole (31) was formed through the upper end of the wall of the crucible (21) through the gap (46) formed between the base (45) and the bottom of the crucible (21). It communicates with the through hole (30).

加熱壁(26)はるつぼ(21)の上端にこれと同心的
に延在する筒状に形成され、その上端面に蓋体(33)
が閉蓋されてるつぼ(21)と加熱壁(26)とによっ
て密閉空間が形成されるようになされる・。
The heating wall (26) is formed in a cylindrical shape extending concentrically with the upper end of the crucible (21), and a lid (33) is attached to the upper end surface of the heating wall (26).
A closed space is formed by the pot (21) with a closed lid and the heating wall (26).

また、蓋体(33)の中心上には結晶引上軸(24)が
貫通され、この貫通部において820 s等の封止液(
27)が収容された封止手段(28)が設けられて、こ
の貫通部を気密的に封止するようになされる。  (5
1)は蓋体(33)に設けられた耐熱透明体が封着され
た内部観察窓である。
In addition, a crystal pulling shaft (24) is passed through the center of the lid (33), and a sealing liquid (such as 820 s) is applied at this penetrating portion.
A sealing means (28) is provided in which the opening (27) is housed, and is adapted to hermetically seal this penetration. (5
1) is an internal observation window provided on the lid (33) and sealed with a heat-resistant transparent body.

そして、るつぼ(21)と加熱壁(26)とに差し渡っ
てるつぼ(21) 、したがってこれに収容された原料
融液(22)を所要の温度に加熱するとともに結晶引上
部を所定の温度に加熱し、また加熱壁(26)を所要の
温度に加熱するに供する主加熱手¥It(36) 、す
なわち所要の加熱温度分布を有する例えば通電加熱ヒー
タを配置する。また、封止手段(2日)と対向するその
外周には封止液(27)例えばB2O3を熔解する加熱
手段(37)を配置する。
Then, the crucible (21) is heated between the crucible (21) and the heating wall (26), and thus the raw material melt (22) contained therein is heated to a desired temperature, and the crystal pulling part is heated to a predetermined temperature. A main heating device (36) for heating the heating wall (26) to a required temperature, that is, for example, an energizing heater having a required heating temperature distribution is arranged. Further, a heating means (37) for melting a sealing liquid (27) such as B2O3 is arranged on the outer periphery facing the sealing means (2 days).

また、るつぼ軸(25)に形成された細穴(31)の高
解離圧成分材料(32)の配置部の周囲にその蒸気圧制
御用加熱手段(40)例えば同様の通電加熱ヒータを配
置する。  (41)は熱電対等の熱検出素子で高解離
圧成分材料の加熱温度を検出して加熱手段(40)を制
御する熱検出手段を示す。そして、各加熱手段(36)
  (37)  (40)の外周を囲んでその外側に断
熱体(44)を配置してその外側に冷却ジャケット(5
5)を配置する。また、(50)は冷却ジャケット(5
5)に形成された透明板が封着された観察窓を示す。
In addition, a heating means (40) for controlling vapor pressure, such as a similar electric heater, is arranged around the part where the high dissociation pressure component material (32) is placed in the small hole (31) formed in the crucible shaft (25). . (41) indicates a heat detection means for controlling the heating means (40) by detecting the heating temperature of the high dissociation pressure component material with a heat detection element such as a thermocouple. And each heating means (36)
(37) A heat insulator (44) is placed outside the outer periphery of (40), and a cooling jacket (5
5) Place. (50) is a cooling jacket (5
5) shows an observation window to which the transparent plate formed in 5) is sealed.

尚、るつぼ(21)と加熱壁(26)、さらにるつぼ軸
(25)等はカーボン材によて形成しそれぞれ原料融液
(22)あるいは高解離成分材料ないしはそのガスと接
触する表面にバイロリテインクスボロンナイトライド等
の耐熱表面剤をコートした構成となし得る。
The crucible (21), the heating wall (26), the crucible shaft (25), etc. are made of carbon material, and viroretain is applied to the surfaces that come into contact with the raw material melt (22) or the highly dissociated component material or its gas. It can be coated with a heat-resistant surface agent such as kusuboron nitride.

このような構成において主加熱手段(36)によってる
つぼ(21)内の原料融液(22)を溶融し、かつこれ
と結晶引上のなされる部分を固相温度とし、加熱手段(
40)によって細大(31)内の高解離圧成分材料(3
2)の蒸発量が制御されてこれを通じてこの細大(31
) 、空隙(46)、透孔(30)を通じて密閉室(2
9)内において例えば617℃で1気圧のガス雰囲気を
保持させ、さらに加熱壁(26)を高解離成分ガス例え
ばAsガスの付着を回避し密閉室(29)内を所要の蒸
気圧例えば1気圧に保持する617℃に加熱する。この
状態で引上軸(24)を回転しつつ、その先端に設けら
れた単結晶から、原料融液(22)からの結晶育成を行
う。
In such a configuration, the main heating means (36) melts the raw material melt (22) in the crucible (21), and brings this and the part where crystal pulling is performed to a solidus temperature, and the heating means (36)
40), the high dissociation pressure component material (3
2) The amount of evaporation is controlled, and through this the evaporation amount of
), the air gap (46), and the closed chamber (2) through the through hole (30).
9), a gas atmosphere of 1 atm at 617° C., for example, is maintained, and the heating wall (26) is heated to avoid adhesion of a highly dissociated gas such as As gas, and the inside of the sealed chamber (29) is maintained at a required vapor pressure of 1 atm, for example. Heat to 617°C and hold at . In this state, while rotating the pulling shaft (24), crystal growth is performed from the raw material melt (22) from the single crystal provided at the tip thereof.

このときるつぼ軸(25)は例えば引上軸(24)とは
反対の方向に回転させながら結晶の引上げに伴って減少
するるつぼ(21)の原料融液(22)の液面が所定位
置にあるように上方に移行するようになされる。
At this time, the crucible shaft (25) is rotated, for example, in the opposite direction to the pulling shaft (24), so that the liquid level of the raw material melt (22) in the crucible (21), which decreases as the crystal is pulled, is at a predetermined position. It is made to move upward as it is.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明構成によれば、るつぼ(21)と
加熱壁(26)とを一体に構成したことによってるつぼ
軸(25)を気密的に封止するための封止液を収容した
封止手段を配設することが回避されたので、この封止手
段とともにこの封止液を溶解するための加熱手段したが
ってその電源等が省略でき、これによって構造の簡潔化
が図られるとともに密閉室(29)において高解離圧成
分材料の配置部すなわち蒸気圧制御部を密閉室下方のる
つぼ軸(25)中に設けるときは、より密閉室の内容積
の縮小化が図られるので蒸気圧制御を、より正確に行う
ことができ、安定した良質の結晶引上が可能となるなど
多くの工業上の利益を有する。
As described above, according to the configuration of the present invention, the crucible (21) and the heating wall (26) are integrally configured, thereby creating a seal containing a sealing liquid for airtightly sealing the crucible shaft (25). Since the provision of a sealing means can be avoided, the heating means for melting the sealing liquid and the power supply thereof can be omitted together with the sealing means, and the structure can be simplified and the sealed chamber ( In 29), when the high dissociation pressure component material arrangement part, that is, the vapor pressure control part is provided in the crucible shaft (25) below the sealed chamber, the internal volume of the sealed chamber can be further reduced, so the vapor pressure control is It has many industrial benefits, such as being able to pull the crystal more accurately and with stable quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による蒸気圧制御型結晶引上装置の一例
の路線的断面図、第2図は従来装置の路線的断面図であ
る。 (21)はるつぼ、(22)は原料融液、(24)は引
上軸、(25)はるつぼ軸、(26)は加熱壁、(27
)は封止液、(28)は封止手段、(40)は蒸気圧制
御用加熱手段、(36)は主加熱手段、(37)は加熱
手段、(30)は透孔、(31)は細大、(32)は高
解離圧成分材料である。
FIG. 1 is a sectional view of an example of a vapor pressure controlled crystal pulling apparatus according to the present invention, and FIG. 2 is a sectional view of a conventional apparatus. (21) Crucible, (22) raw material melt, (24) pulling shaft, (25) crucible shaft, (26) heating wall, (27
) is the sealing liquid, (28) is the sealing means, (40) is the heating means for vapor pressure control, (36) is the main heating means, (37) is the heating means, (30) is the through hole, (31) (32) is a high dissociation pressure component material.

Claims (1)

【特許請求の範囲】 高解離圧成分ガスを密封し、その圧力を制御しながら高
解離圧化合物の結晶を引上げる蒸気圧制御型結晶引上装
置において、 原料融液を収容するるつぼとこれと一体の加熱壁によっ
て上記高解離圧成分ガスを封じ込みかつ上記原料融液か
らの上記高解離圧化合物の結晶を引上げる密閉室を構成
することを特徴とする蒸気圧制御型結晶引上装置。
[Scope of Claim] A vapor pressure controlled crystal pulling device for pulling crystals of a high dissociation pressure compound while sealing a high dissociation pressure component gas and controlling the pressure thereof, comprising: a crucible containing a raw material melt; A vapor pressure controlled crystal pulling apparatus, characterized in that a sealed chamber is configured by an integrated heating wall to confine the high dissociation pressure component gas and pull up crystals of the high dissociation pressure compound from the raw material melt.
JP3110987A 1987-02-13 1987-02-13 Controlled-vapor pressure type crystal pulling up device Pending JPS63201088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3110987A JPS63201088A (en) 1987-02-13 1987-02-13 Controlled-vapor pressure type crystal pulling up device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3110987A JPS63201088A (en) 1987-02-13 1987-02-13 Controlled-vapor pressure type crystal pulling up device

Publications (1)

Publication Number Publication Date
JPS63201088A true JPS63201088A (en) 1988-08-19

Family

ID=12322234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3110987A Pending JPS63201088A (en) 1987-02-13 1987-02-13 Controlled-vapor pressure type crystal pulling up device

Country Status (1)

Country Link
JP (1) JPS63201088A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0993234A2 (en) * 1998-09-28 2000-04-12 ECM Ingenieur-Unternehmen für Energie-und Umwelttechnik GmbH Apparatus for melting, tempering and conveyance of molten metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0993234A2 (en) * 1998-09-28 2000-04-12 ECM Ingenieur-Unternehmen für Energie-und Umwelttechnik GmbH Apparatus for melting, tempering and conveyance of molten metal
EP0993234A3 (en) * 1998-09-28 2000-05-03 ECM Ingenieur-Unternehmen für Energie-und Umwelttechnik GmbH Apparatus for melting, tempering and conveyance of molten metal

Similar Documents

Publication Publication Date Title
EP0068021B1 (en) The method and apparatus for forming and growing a single crystal of a semiconductor compound
US20020170490A1 (en) Method and apparatus for growing aluminum nitride monocrystals
US4521272A (en) Method for forming and growing a single crystal of a semiconductor compound
US4704257A (en) Apparatus for growing single crystals of dissociative compounds
US4518846A (en) Heater assembly for molecular beam epitaxy furnace
US4904336A (en) Method of manufacturing a single crystal of compound semiconductor and apparatus for the same
JPS63201088A (en) Controlled-vapor pressure type crystal pulling up device
JPH06199591A (en) High pressure liquid phase epitaxial reaction box with function to permit interior thereof to be directly seen therethrough and method therefor
US5240685A (en) Apparatus for growing a GaAs single crystal by pulling from GaAs melt
JP2000026190A (en) Equipment for growing compound single crystal and method for growing compound single crystal, using the same
KR100320586B1 (en) apparatus for single crystal growing using high pressure
JP3492820B2 (en) Compound semiconductor single crystal manufacturing equipment
JPH0680496A (en) Knudsen cell for low temperature
JP2000016892A (en) Production apparatus of compound single crystal
JPH0647016Y2 (en) Molecular beam source cell for low temperature vapor deposition
JPS6021900A (en) Apparatus for preparing compound semiconductor single crystal
JPH051069Y2 (en)
JPS62119198A (en) Device for rotating and pulling up single crystal provided with magnetic field impressing device
JPS63201093A (en) Apparatus for producing crystal of compound
JPH01153598A (en) Apparatus for production of single crystal
JPH04164891A (en) Apparatus and method for epitaxial growth
JPH10167873A (en) Device for producing compound crystal and production of compound crystal, using the same
JP3697341B2 (en) Compound single crystal production equipment and / or heat treatment equipment
JPH0524979A (en) Apparatus for manufacturing compound semiconductor crystal
JPH04198082A (en) Apparatus for producing single crystal