JPS63201064A - Cubic boron nitride base superhigh pressure sintering material for cutting tool - Google Patents

Cubic boron nitride base superhigh pressure sintering material for cutting tool

Info

Publication number
JPS63201064A
JPS63201064A JP62030838A JP3083887A JPS63201064A JP S63201064 A JPS63201064 A JP S63201064A JP 62030838 A JP62030838 A JP 62030838A JP 3083887 A JP3083887 A JP 3083887A JP S63201064 A JPS63201064 A JP S63201064A
Authority
JP
Japan
Prior art keywords
cbn
average particle
particle size
particles
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62030838A
Other languages
Japanese (ja)
Other versions
JPH0776130B2 (en
Inventor
植田 文洋
中野 弘一
川田 薫
田島 逸郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP62030838A priority Critical patent/JPH0776130B2/en
Publication of JPS63201064A publication Critical patent/JPS63201064A/en
Publication of JPH0776130B2 publication Critical patent/JPH0776130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、耐摩耗性(粒子の耐脱落性)にすぐれ、特
に浸炭焼入鋼などの高硬度鋼の仕上加工に切削工具とし
て使用するのに適した立方晶窒化硼素(以下、CBNで
示す)基超高圧焼結材料に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention has excellent wear resistance (resistance to particle drop-off) and is particularly useful as a cutting tool for finishing of high-hardness steel such as carburized and hardened steel. The present invention relates to a cubic boron nitride (hereinafter referred to as CBN)-based ultra-high pressure sintered material suitable for

〔従来の技術〕[Conventional technology]

近年、浸炭焼入鋼などの高硬度鋼の切削工具用材料−と
して、高い硬度を有するCBNを基とした超高圧焼結材
料の開発が進み、このような材料として1例えば、周期
律表の4a族、5a族、6a族、金属の炭化物、窒化物
、硼化物、珪化物、M 203、MgO1A1.N%5
i5N4 のうちの1穐または2種以上:20〜80重
量%と、CBNおよび不可避不純物:残り、からなる組
成を有するCBN基焼結材料が提案されている(特公昭
57−3631号公報参照)。
In recent years, the development of ultra-high pressure sintered materials based on CBN, which has high hardness, has progressed as material for cutting tools of high-hardness steel such as carburized and hardened steel. Group 4a, Group 5a, Group 6a, metal carbides, nitrides, borides, silicides, M203, MgO1A1. N%5
A CBN-based sintered material has been proposed that has a composition consisting of one or more of i5N4: 20 to 80% by weight, and the remainder: CBN and unavoidable impurities (see Japanese Patent Publication No. 57-3631). .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来のCBN基焼結材料のうち、T
1の窒化物と、CBNおよび不可避不純物とからなるC
BN基焼結材料を仕上加工用の切削工具として、例えば
HRC:60以上の硬さを有する浸炭焼入鋼を旋削する
場合には、精々H7公差(外径寸法が20皿であるとき
O〜21μ)の寸法精度と3〜4Sの面粗度を得るのが
限界であって、従来、高硬度鋼の研削加工において得ら
れている寸法精度と面粗度に及ばず、そのため、高硬度
鋼の研削加工から、より加工能率の高い切削加工へと移
行しつつある現状において、上記CBN基焼結材料では
、高硬度鋼の仕上加工用切削工具とした場合、満足な寸
法精度と面粗度を得ることができず、したがって上記従
来のCBN基焼結材料においては、切削工具として利用
できる範囲が制限されるという問題があり、このような
CBN基焼結材料が高硬度鋼の仕上加工にも利用できる
ためには、当面、被加工物を少なくともH6公差(外径
20類の被剛材の場合、0・〜13μ)の寸法精度およ
び2Sの面粗度に仕上げられる材料が要求されている。
However, among the above conventional CBN-based sintered materials, T
C consisting of nitride of 1, CBN and unavoidable impurities
When using a BN-based sintered material as a cutting tool for finishing, for example, when turning carburized and hardened steel with a hardness of HRC: 60 or more, the H7 tolerance (when the outer diameter dimension is 20 discs, O~ The limit is to obtain a dimensional accuracy of 21μ) and a surface roughness of 3 to 4S, which falls short of the dimensional accuracy and surface roughness conventionally obtained in grinding of high-hardness steel. In the current situation where there is a shift from grinding to cutting with higher processing efficiency, the above CBN-based sintered material has satisfactory dimensional accuracy and surface roughness when used as a cutting tool for finishing high-hardness steel. Therefore, the conventional CBN-based sintered materials mentioned above have a problem in that the scope of their use as cutting tools is limited. In order to be able to use this technology, for the time being, materials that can finish the workpiece to a dimensional accuracy of at least H6 tolerance (0 to 13 μ for rigid materials with outer diameter class 20) and a surface roughness of 2S are required. There is.

〔研究に基づく知見事項〕[Findings based on research]

そこで、本発明者等は、このような問題を解決するため
に種々研究を重ねた結果、 (1)  Tiの窒化物、および炭窒化物(以下、それ
ぞれTiN、およびT1CNで示し、これらをまとめて
T1化合物という)とCBNとからなる焼結材料中で%
T1化合物粒子どうし、およびCBN粒子どうしが接触
したところでは、結合強度の弱いガラス相が界面に形成
されやすく、このガラス相は、切削加工中に刃先温度が
上昇することによって粒界強度を低下させるため、刃先
表面で前記粒子を十分に保持できず、それによって粒子
は早目にその表面から脱落して、そこに比較的大きな凹
部が生じるので、前記ガラス相に富む材料を切削工具と
して使用した場合は、製品の寸法精度と面粗度が低下す
ること、 (2)一方、 Ti化合物粒子とCBN粒子との界面で
は安定なTiB2が形成され、この安定なTiB2相は
、上記とは逆に、刃先温度が上昇しても十分な粒界強度
を維持して粒子をしっかりと保持し、それにより粒子は
刃先表面から脱落しないで徐々に摩耗して、その表面に
は前記凹部が生じないので、刃先表面は切削加工中比較
的滑らかに維持され、したがって、前記TlB2相に富
む材料を切削工具として使用した場合は、製品の寸法精
度と面粗度が向上すること、 (3)粒子界面において、前記ガラス相の形成を減らす
とともに、前記TlB2相の形成を増大させるためには
、 Ti化合物粒子とCBN粒子との粒度な揃え、かつ
両者の容量を基にした配合割合をなるべく等しくすれば
よいこと、 (4)  Ti化合物とCBNとからなる焼結材料の特
性を損わない範囲で前記第(3)項記載の要求を満たす
ためには、 Ti化合物とCBNの平均粒径ないずれも
05〜5μとするとともに、それらの間の平均粒径比を
相互に0.5〜2.0の範囲内におさめ、かつ両者の配
合割合を40〜60:60〜40(容量比)とすればよ
いこと、および (5)前記第(4)項記載の焼結材料中に含まれる不純
物のうち1例えばボールミルのような混合装置による混
合、またはその他の原因によって混入してくる鉄族金属
とWからなる不純物の含有量を、前記焼結材料中で0.
5容量チ以下に抑えると、この焼結材料の靭性が向上す
るとともに、それの高温における耐溶着性、したがって
耐摩耗性が向上するので、このような耐熱性をそなえた
材料では、高温に曝される高速切削においてもすぐれた
寸法精度と面粗度を維持できること、 を見出した。
Therefore, as a result of various studies to solve these problems, the inventors of the present invention discovered that (1) Ti nitrides and carbonitrides (hereinafter referred to as TiN and T1CN, respectively) have been summarized. % in a sintered material consisting of T1 compound) and CBN.
Where T1 compound particles and CBN particles come into contact with each other, a glass phase with weak bonding strength is likely to be formed at the interface, and this glass phase reduces grain boundary strength by increasing the temperature of the cutting edge during cutting. Therefore, the glass phase-rich material was used as a cutting tool because the particles could not be retained sufficiently on the cutting edge surface, and as a result, the particles would fall off the surface prematurely, creating relatively large depressions there. (2) On the other hand, stable TiB2 is formed at the interface between Ti compound particles and CBN particles, and this stable TiB2 phase, contrary to the above, Even when the temperature of the cutting edge increases, sufficient grain boundary strength is maintained to firmly hold the particles, so that the particles do not fall off the cutting edge surface and are gradually worn away, so that the above-mentioned recesses do not occur on the surface. , the cutting edge surface remains relatively smooth during the cutting process, and therefore, when the TlB2 phase-rich material is used as a cutting tool, the dimensional accuracy and surface roughness of the product improve; (3) at the particle interface; In order to reduce the formation of the glass phase and increase the formation of the TlB2 phase, it is necessary to make the particle sizes of the Ti compound particles and the CBN particles the same, and to make the blending ratios of both particles as equal as possible based on their capacities. (4) In order to satisfy the requirements described in item (3) above without impairing the properties of the sintered material consisting of the Ti compound and CBN, the average particle diameters of both the Ti compound and CBN must be 0.5 ~ 5 μ, the average particle size ratio between them is within the range of 0.5 to 2.0, and the blending ratio of both is 40 to 60:60 to 40 (volume ratio). (5) One of the impurities contained in the sintered material described in item (4) above, for example, iron group metals and W that are mixed in by mixing with a mixing device such as a ball mill, or from other causes. In the sintered material, the content of impurities consisting of 0.
If the capacity is kept below 5, the toughness of this sintered material will improve, as well as its welding resistance and therefore wear resistance at high temperatures. We have discovered that excellent dimensional accuracy and surface roughness can be maintained even during high-speed cutting.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

この発明は、上記知見に基づいて発明されたもので、す
ぐれた「粒子の耐脱落性」を有し、特に浸炭焼入鋼など
の高硬度鋼の仕上加工において製品の寸法精度と面粗度
を改善できる切削工具用CBN基超高圧焼結材料を提供
することを目的とし、 平均粒径:0.5〜5μを有するTiN、およびT1C
N (7)うちの1種または2種:4o〜60%、平均
粒径:0.5〜5μを有するCBNおよび不純物:残り
、 からなる組成(以上、容量%)を有し、かつ、前記Ti
N、およびT1CNのうちの1種または2種と前記CB
Nとの平均粒径比が、相互に0.5〜2.0の範囲内に
あることを特徴とするものである。
This invention was invented based on the above-mentioned knowledge, and has excellent "resistance to particle drop-off", which improves dimensional accuracy and surface roughness of products, especially in finishing of high-hardness steel such as carburized and hardened steel. The purpose is to provide a CBN-based ultra-high pressure sintered material for cutting tools that can improve the
N (7) One or two of these: 4o~60%, CBN having an average particle size: 0.5~5μ, and impurities: the remainder, and having a composition (volume %) consisting of: Ti
N, and one or two of T1CN and the CB
It is characterized in that the average particle size ratio with N is within the range of 0.5 to 2.0.

〔発明の詳細な説明〕[Detailed description of the invention]

つぎに、この発明において成分組成範囲、平均粒径、お
よび平均粒径比を上記のとおシに限定した理由を述べる
Next, the reason why the component composition range, average particle size, and average particle size ratio are limited to the above range in this invention will be described.

A、成分組成範囲 T1化合物には、材料に耐溶着性と耐摩耗性を付与する
作用があるが、その含有量が40%(容量チ、以下同様
)よシも少なくなると、耐摩耗性が不足するようになる
とともに、CBHに対するT1化合物の量が少なくなり
過ぎて、CBN粒子どうしの接触が増大し、それによっ
て前記ガラス相の形成が著しくなって焼結材料の耐摩耗
性が一層低下し、また前記含有量が60%よシも多くな
ると。
A. Component composition range T1 Compounds have the effect of imparting welding resistance and abrasion resistance to materials, but when their content decreases by 40% (capacity CH, the same applies hereinafter), the abrasion resistance decreases. As it becomes insufficient, the amount of T1 compound relative to CBH becomes too small, and the contact between CBN particles increases, thereby increasing the formation of the glass phase and further reducing the wear resistance of the sintered material. , and when the content increases by as much as 60%.

CBHの量が少なくなシ過ぎて、材料の熱伝導性が不足
し、刃先に溶着が起りゃすくなるとともに、T1化合物
どうしの接触が増大し、それによってやはり前記ガラス
相の形成が著しくな゛って材料の耐摩耗性が低下し、も
って、いずれの場合にも、これを浸炭焼入鋼などの高硬
度鋼の仕上加工に使用すると、製品の寸法精度と面粗度
が低下するようになることから、その含有量を40〜6
0%と定めた。
If the amount of CBH is too small, the thermal conductivity of the material is insufficient, welding is more likely to occur at the cutting edge, and the contact between the T1 compounds increases, which also significantly inhibits the formation of the glass phase. This reduces the wear resistance of the material, and in any case, when used for finishing high-hardness steel such as carburized and hardened steel, the dimensional accuracy and surface roughness of the product will decrease. Therefore, the content is 40 to 6
It was set as 0%.

なお、前記不純物のうち、鉄族金属とWとからなる不純
物は、焼結時KBと化合して部分的に液相な生じ、それ
によってT1化合物の粒成長を促して材料の靭性を低下
させるとともに、前記成分と化合した状態で焼結材料中
に含まれるBは、切削時に高温に曝されることによって
被剛材中に拡散しゃすくなシ、その結果刃先の耐溶着性
を低下させてそれの摩耗を急激に増大させる作用をもつ
ので、この発明のCBN基焼結材料に格別の耐熱性と強
度を付与して、これを高速切削にも適したものとしたい
場合は、この不純物の含有量を0.5%以下に抑えるの
が゛肝要である。
Among the impurities, impurities consisting of iron group metals and W combine with KB during sintering to partially form a liquid phase, thereby promoting grain growth of the T1 compound and reducing the toughness of the material. At the same time, B contained in the sintered material in combination with the above components is difficult to diffuse into the rigid material when exposed to high temperatures during cutting, resulting in a decrease in the welding resistance of the cutting edge. Therefore, if it is desired to impart exceptional heat resistance and strength to the CBN-based sintered material of this invention and make it suitable for high-speed cutting, the inclusion of this impurity is necessary. It is important to keep the amount below 0.5%.

B、平均粒径 CBN粒子またはT1化合物粒子の平均粒径が0.5μ
よりも小さくなると、それらの粒子は小さくなり過ぎて
同極の粒子が互に凝集しやすくなり、それによってCB
N粒子どうしまたはT1化合物粒子どうしの接触が増大
して、粒界強度を低下させるガラス相が形成しゃすくな
シ、一方CBN粒子の平均粒径が5μを越えると、その
粒子自体が脆くなって焼結材料の強度および耐摩耗性が
低下し、もって製品の寸法精度と面粗度が劣化するよう
になり、また前記ガラス相の形成を避けるにはT1化合
物粒子の平均粒径なCBN粒子のそれと揃える必要があ
ることから、Ti化合物およびCBNの平均粒径をいず
れも0.5〜5μと定めた。
B, average particle size The average particle size of CBN particles or T1 compound particles is 0.5μ
If the particles become smaller than
Contact between N particles or T1 compound particles increases to prevent the formation of a glass phase that reduces grain boundary strength.On the other hand, if the average particle size of CBN particles exceeds 5μ, the particles themselves become brittle and are susceptible to sintering. The strength and abrasion resistance of the bonding material decreases, and the dimensional accuracy and surface roughness of the product deteriorate.In order to avoid the formation of the glass phase, the average particle size of the T1 compound particles must be equal to that of the CBN particles. Since it is necessary to make them uniform, the average particle diameters of both the Ti compound and CBN were determined to be 0.5 to 5 μm.

C1平均粒径比 T1化合物とCBNの平均粒径が前記範囲内にあっても
、それら相互の平均粒径比が0.5未満となるか、また
は2.0を越すと、これらの成分からなる焼結材料中で
T1化合物とCBN化合物との接触界面が減少し、同種
の粒子どうしの界面で形成されるガラス相の割合が増大
して、前述のような不都合を生ずるところから、こ−の
T1化合物とCBNとの平均粒径比を0.5〜2.0と
定めた。
C1 average particle size ratio T1 Even if the average particle sizes of the compound and CBN are within the above range, if their mutual average particle size ratio is less than 0.5 or exceeds 2.0, these components will be removed. In the sintered material, the contact interface between the T1 compound and the CBN compound decreases, and the ratio of the glass phase formed at the interface between particles of the same type increases, causing the above-mentioned disadvantages. The average particle size ratio of the T1 compound and CBN was determined to be 0.5 to 2.0.

なお、この発明のCBN基焼結材料は、通常の超高圧焼
結法、すなわち、まず原料粉末として。
Note that the CBN-based sintered material of the present invention is produced using a normal ultra-high pressure sintering method, that is, first as a raw material powder.

いずれも平均粒径が0.5〜2.0の範囲内にあるCB
N粉末、TiN粉末、およびT1CN粉末を用意し、こ
れら原料粉末のうちからT1化合物とCBNとの平均粒
径比が0.5〜2.0の範囲内となるものを適宜選択し
て所定の配合組成に配合し、混合し、ついで混合粉末の
状態あるいは圧粉体の状態で、必要に応じてWCC超超
硬合金製プレートどと一緒に、金属容器に挿入し、これ
を800〜1200℃の温度に加熱して真空脱ガスを行
って封入し、引続いてこの封入容器を超高圧高温発生装
置に袋層してから圧力および温度を上げ、圧カニ4o〜
70にり、湿温度:200〜16oo℃の範囲内の圧力
および温度に数分〜数10分保持した後、冷却し、最終
的に圧力を解放することからなる基本的工程を経て製造
することができる。
All CBs have an average particle size within the range of 0.5 to 2.0.
N powder, TiN powder, and T1CN powder are prepared, and those having an average particle size ratio of T1 compound to CBN in the range of 0.5 to 2.0 are appropriately selected from these raw material powders to form a predetermined powder. The compounded composition is mixed, and then the mixed powder state or green compact state is inserted into a metal container together with a WCC cemented carbide plate as required, and heated at 800 to 1200°C. The sealed container is heated to a temperature of
70, humidity temperature: 200 to 16 oo Celsius, maintained at a pressure and temperature within the range of several minutes to several tens of minutes, cooled, and finally released the pressure. Can be done.

また、鉄族金属とWからなる不純物の含有量が05%以
下に低減されているこの発明のCBN基焼結材料は、混
合粉末または圧粉体中に鉄族金属とWからなる不純物が
とにかく含有されないですむ適当な方法を付加、あるい
は採用しながら、すなわち、例えば、混合粉末の調製中
、または調製後に前記不純物を除去する方法を付加する
か、あるいは混合粉末中に前記不純物が混入しない混合
方法を採用しながら、前記混合粉末または圧粉体に前述
の超高圧焼結法を施すことによって製造することができ
、例えば、混合粉末調製中に、ボールミルのような混合
装置から混入してきた前記不純物を除去するには1例え
ば、アセトン等の溶剤と混ざり合って、まだスラリー状
となっている混合粉末中で磁石をゆるやかに回転させ、
それによって鉄族金属およびそれらと結合しているWを
磁石に吸着する方法、あるいは混合粉末を乾燥した後、
それを酸洗して前記不純物を選択的に溶解する方法など
を利用することができる。
In addition, the CBN-based sintered material of the present invention, in which the content of impurities consisting of iron group metals and W is reduced to 0.5% or less, has impurities consisting of iron group metals and W in the mixed powder or green compact. For example, by adding or adopting a suitable method for removing the impurities during or after the preparation of the mixed powder, or by adding or adopting a suitable method to prevent the impurities from being mixed in the mixed powder, It can be manufactured by applying the above-mentioned ultra-high pressure sintering method to the mixed powder or green compact while employing the above-mentioned method. To remove impurities 1. For example, gently rotate a magnet in a mixed powder that is still in the form of a slurry after being mixed with a solvent such as acetone.
A method of adsorbing iron group metals and W combined with them to a magnet, or after drying the mixed powder,
A method of selectively dissolving the impurities by pickling it can be used.

さらに、この発明のCBN基焼結材料を切削工具として
使用するに当っては、単独で、あるいはWCC超超硬合
金サーメットなどの高剛性材料と複合させた状態で、ス
ローアウェイチップとして用いても、さらにこれらのチ
ップをWCC超超硬合金焼入鋼などでつくられたホルダ
の先端部にろう付けによシ取シ付けた状態で用いてもよ
い。
Furthermore, when using the CBN-based sintered material of the present invention as a cutting tool, it can also be used as an indexable tip, either alone or in combination with a high-rigidity material such as WCC cemented carbide cermet. Furthermore, these tips may be used in a state where they are attached by brazing to the tip of a holder made of WCC cemented carbide hardened steel or the like.

〔実施例〕〔Example〕

ついで、この発明のCBN基焼結材料を実施例によって
説明する。
Next, the CBN-based sintered material of the present invention will be explained by way of examples.

原料粉末として、平均粒径:0.8μ、■、5μ、およ
び3μを有するCBN粉末、同04μ、1μ。
As raw material powder, CBN powder having average particle diameters of 0.8μ, ■, 5μ, and 3μ, 04μ and 1μ.

および3μを有するTiN粉末、および同1.5μ、3
μおよび6μを有するT I C0,5NO,5粉末を
用意し、これら原料粉末を、それぞれ第1表に示される
配合組成成分のうち、鉄族金属とWからなる不純物を除
いた成分の配合比で互に配合した後、ボールミルによジ
アセトン中で5時間混合し、乾燥させることによって、
それぞれ第1表に示される配合組成を有し、かついずれ
も、主として混合装置に由来する鉄族金属とWからなる
不純物を2チ含む混合粉末を形成させた。
and TiN powder with 3 μ, and 1.5 μ, 3
Prepare T I C0,5NO,5 powders with μ and 6μ, and mix these raw powders with the blending ratio of the components shown in Table 1, excluding impurities consisting of iron group metals and W. After mixing with each other in diacetone using a ball mill for 5 hours and drying,
Mixed powders were formed, each having a blending composition shown in Table 1, and each containing two impurities mainly consisting of iron group metals and W originating from the mixing device.

ついで、このように調製した混合粉末を2torL/C
IIL2の圧力で直径:13wX厚さ:1.5uの寸法
を有する円板状圧粉体に成形した後、これらの圧粉体を
、超高圧高温発生装置の容器内に挿入し、圧カニ50K
b、温度:150CIC1保持時間:5分の条件で超高
圧焼結することによって、実質的に配合組成と同一の成
分組成をもち、かつ原料粉末と実質的に同一の平均粒径
な有するTi化合物粒子とCBN粒子からなる本発明C
BN基焼結材料1〜8をそれぞれ製造し、また、前記混
合粉末がまだアセトンと混ざってスラリー状となってい
る段階で、表面をテフロンシート(ただしテフロンは米
国デュポン社の商標)で被った丸棒状の永久磁石を前記
スラリー中でゆるやかに2時間回転させて鉄族金属とW
からなる不純物を吸着除去し、それによってこの不純物
含有量がm1表に示されるように低減した混合粉末を調
製したこと以外は、上述の方法と同様な手順を経て、本
発明CBN基焼結材料9〜11をそれぞれ製造した。
Then, the mixed powder thus prepared was heated to 2 torrL/C.
After molding into a disc-shaped powder compact with dimensions of diameter: 13w x thickness: 1.5u at a pressure of IIL2, these compacts were inserted into a container of an ultra-high pressure and high temperature generator, and heated with a pressure crab of 50K.
b. By performing ultra-high pressure sintering under the conditions of temperature: 150CIC1 holding time: 5 minutes, a Ti compound having substantially the same component composition as the blended composition and substantially the same average particle size as the raw material powder is produced. Invention C consisting of particles and CBN particles
Each of BN-based sintered materials 1 to 8 was produced, and while the mixed powder was still mixed with acetone and turned into a slurry, the surface was covered with a Teflon sheet (Teflon is a trademark of DuPont, USA). A round bar-shaped permanent magnet was gently rotated in the slurry for 2 hours to separate the iron group metal and W.
The CBN-based sintered material of the present invention was prepared using the same procedure as the above-mentioned method, except that the impurities consisting of were adsorbed and removed, thereby reducing the impurity content as shown in the m1 table. 9 to 11 were produced, respectively.

さらに比較のだめ、成分組成範囲、T1化合物とCBH
の平均粒径、およびこれら平均粒径相互の比のうちのい
ずれかがこの発明の範囲から外れた(外れた条件を第1
表中に※印で示す)比較CBN基焼結材料1〜5を上記
と同様な方法によってそれぞれ製造した。
Further comparison, component composition range, T1 compound and CBH
Any one of the average particle diameters of the particles and the ratio of these average particle diameters to each other falls outside the scope of the present invention (deviating conditions are referred to as the first condition).
Comparative CBN-based sintered materials 1 to 5 (indicated by * in the table) were each produced in the same manner as above.

ついで、この結果得られた本発明CBN基焼結材料1〜
8.および比較CBN基焼結材料1〜5について、靭性
を評価する目的で抗折力を測定し、また高温における耐
溶着性並びに耐摩耗性を評価するとともに高硬度鋼の仕
上加工において得られる寸法精度と面粗度を評価する目
的で、上記各焼結材料から切削チップを切出し、we基
超超硬合金製ホルダろう付けし、研磨仕上げした後、被
削材:SCM−415の浸炭焼入鋼(表面硬さ: HR
C60±1、浸炭セ深さ:07u以上)の丸棒(直径:
150ruL)、 切削速度:100m/狐、 切込み:0.05m。
Next, the resulting CBN-based sintered materials 1 to 1 of the present invention
8. For comparative CBN-based sintered materials 1 to 5, transverse rupture strength was measured for the purpose of evaluating toughness, welding resistance and wear resistance at high temperatures were evaluated, and dimensional accuracy obtained in finishing of high-hardness steel. For the purpose of evaluating the surface roughness, cutting chips were cut from each of the above sintered materials, brazed to a we-based cemented carbide holder, and polished. (Surface hardness: HR
C60±1, carburizing depth: 07u or more) round bar (diameter:
150ruL), cutting speed: 100m/fox, depth of cut: 0.05m.

送 1!) 二  〇、  2 4  mt/ rev
、  。
Send 1! ) 20, 24 mt/rev
, .

切削時間:2o甑、 の条件で連続切削試験を実施して、切刃の逃げ面摩耗幅
を測定するとともに、切断後の製品について、面粗度を
表面粗さ計によって測定し、さらに本発明CBN基焼結
材料9〜11についても、上記と同じ特性を調べるとと
もに、切削速度のみを15Qm/miuに増大させたこ
とを除き、上記と同じ条件の下で同様な切削試験を施し
て、同じく切刃の逃げ面摩耗幅、および製品の面粗度を
測定して、これらの結果も第1表に合わせて示した。
A continuous cutting test was carried out under the conditions of cutting time: 2o, and the flank wear width of the cutting edge was measured, and the surface roughness of the cut product was measured using a surface roughness meter. Regarding CBN-based sintered materials 9 to 11, the same properties as above were investigated, and the same cutting tests were performed under the same conditions as above, except that only the cutting speed was increased to 15 Qm/miu, and the same results were obtained. The flank wear width of the cutting edge and the surface roughness of the product were measured, and these results are also shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明CBN基焼結材料1
〜11は、いずれも高い靭性と耐摩耗性をそなえている
ところから、すぐれた切削性能を発揮するとともに、浸
炭焼入鋼の仕上加工においてすぐれた寸法精度と面粗度
を有する製品を製造することができ、また、これらの焼
結材料のうち。
From the results shown in Table 1, the CBN-based sintered material 1 of the present invention
-11 all have high toughness and wear resistance, so they exhibit excellent cutting performance and produce products with excellent dimensional accuracy and surface roughness in finishing of carburized and hardened steel. You can also out of these sintered materials.

本発明CBN基焼結材料9〜11は、いずれも鉄族金属
とWからなる不純物が除かれて耐熱性が向上したものと
なっているところから、高速切削においても他の本発明
CBN基材料と同等の性能を発揮するのに対し、成分組
成範囲、平均粒径、および平均粒径比のいずれかがこの
発明の範囲から外れている比較CBN基焼結材料1〜5
では、前記寸法精度と面粗度が劣っていることがわかる
CBN-based sintered materials 9 to 11 of the present invention all have improved heat resistance due to the removal of impurities consisting of iron group metals and W. Comparative CBN-based sintered materials 1 to 5 exhibit performance equivalent to that of CBN-based sintered materials 1 to 5, but any of the component composition range, average particle size, and average particle size ratio are outside the scope of this invention.
It can be seen that the dimensional accuracy and surface roughness are inferior.

上述のように、この発明のCBN基焼結材料は、特にす
ぐれた「粒子の耐脱落性」をそなえているので、浸炭焼
入鋼などの高硬度鋼の仕上加工に切削工具として使用し
た場合、寸法精度と面粗度の向上した製品を製造するこ
とができ、さらにその焼結材料のうち、特に鉄族金属と
Wからなる不純物が所定量以下に低減されて、耐熱性お
よび靭性にもすぐれたものとなっているこの発明のCB
N基焼結材料は、さらに高速切削にも耐えて、加工能率
を向上できるという効果も奏する。
As mentioned above, the CBN-based sintered material of the present invention has particularly excellent "particle dropout resistance", so when used as a cutting tool for finishing of high-hardness steel such as carburized and hardened steel. , it is possible to manufacture products with improved dimensional accuracy and surface roughness, and in addition, the impurities of the sintered material, especially those consisting of iron group metals and W, are reduced to below a specified amount, resulting in improved heat resistance and toughness. The CB of this invention is excellent.
The N-based sintered material also has the effect of being able to withstand high-speed cutting and improving processing efficiency.

Claims (2)

【特許請求の範囲】[Claims] (1)平均粒径:0.5〜5μを有するTiの窒化物、
および炭窒化物のうちの1種または2種:40〜60%
、 平均粒径:0.5〜5μを有する立方晶窒化硼素および
不純物:残り、 からなる組成(以上、容量%)を有し、かつ、前記Ti
の窒化物、および炭窒化物のうちの1種または2種と、
前記立方晶窒化硼素との平均粒径比が、相互に0.5〜
2.0の範囲内にあることを特徴とする、切削工具用立
方晶窒化硼素基超高圧焼結材料。
(1) Ti nitride having an average particle size of 0.5 to 5 μ;
and one or two carbonitrides: 40-60%
, cubic boron nitride having an average particle size of 0.5 to 5 μm and the remainder impurities (volume %), and the Ti
nitride, and one or two of carbonitrides,
The average particle size ratio with the cubic boron nitride is 0.5 to
A cubic boron nitride-based ultra-high pressure sintered material for cutting tools, characterized in that the pressure is within the range of 2.0.
(2)前記不純物のうち、Fe、Co、Ni、およびW
から選ばれた1種または2種以上からなる不純物の含有
量が0.5容量%以下であることを特徴とする、特許請
求の範囲第(1)項記載の焼結材料。
(2) Among the impurities, Fe, Co, Ni, and W
The sintered material according to claim 1, wherein the content of one or more impurities selected from the following is 0.5% by volume or less.
JP62030838A 1987-02-13 1987-02-13 Manufacturing method of cubic boron nitride based ultra high pressure sintered body for cutting tool Expired - Fee Related JPH0776130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62030838A JPH0776130B2 (en) 1987-02-13 1987-02-13 Manufacturing method of cubic boron nitride based ultra high pressure sintered body for cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62030838A JPH0776130B2 (en) 1987-02-13 1987-02-13 Manufacturing method of cubic boron nitride based ultra high pressure sintered body for cutting tool

Publications (2)

Publication Number Publication Date
JPS63201064A true JPS63201064A (en) 1988-08-19
JPH0776130B2 JPH0776130B2 (en) 1995-08-16

Family

ID=12314836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62030838A Expired - Fee Related JPH0776130B2 (en) 1987-02-13 1987-02-13 Manufacturing method of cubic boron nitride based ultra high pressure sintered body for cutting tool

Country Status (1)

Country Link
JP (1) JPH0776130B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056496A1 (en) * 2003-12-11 2005-06-23 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic sintered compact, method for producing ceramic sintered compact, exothermic element for vapor deposition of metal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473810A (en) * 1977-11-22 1979-06-13 Sumitomo Electric Industries Sintered body for tool and method of making same
JPS61146763A (en) * 1984-12-17 1986-07-04 三菱マテリアル株式会社 Manufacture of sintered body for cutting tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473810A (en) * 1977-11-22 1979-06-13 Sumitomo Electric Industries Sintered body for tool and method of making same
JPS61146763A (en) * 1984-12-17 1986-07-04 三菱マテリアル株式会社 Manufacture of sintered body for cutting tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056496A1 (en) * 2003-12-11 2005-06-23 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic sintered compact, method for producing ceramic sintered compact, exothermic element for vapor deposition of metal
JPWO2005056496A1 (en) * 2003-12-11 2007-12-06 電気化学工業株式会社 Ceramic sintered body, method for producing ceramic sintered body, heating element for metal vapor deposition
US7632768B2 (en) 2003-12-11 2009-12-15 Denki Kagaku Kogyo Kabushiki Kaisha Ceramics sintered and exothermic body for metal vapor deposition
JP4728811B2 (en) * 2003-12-11 2011-07-20 電気化学工業株式会社 Ceramic sintered body, method for producing ceramic sintered body, heating element for metal vapor deposition

Also Published As

Publication number Publication date
JPH0776130B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
JPS583903A (en) Cubic system boron nitride-base material for cutting tool sintered under superhigh pressure
JP2007084382A (en) Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same
EP0816304A2 (en) Ceramic bonded cubic boron nitride compact
JPS61141672A (en) Manufacture of cubic boron nitride base sintered body for cutting tool
JPS63201064A (en) Cubic boron nitride base superhigh pressure sintering material for cutting tool
JPS6319585B2 (en)
JPS63176367A (en) Cubic boron nitride base superhigh pressure sintering material for cutting tool
JPH06198504A (en) Cutting tool for high hardness sintered body
JPS61146763A (en) Manufacture of sintered body for cutting tool
JP3146803B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance
JPS607022B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPS6246510B2 (en)
JPH054102A (en) Cutting tool of sintered body high in hardness
JPS58164750A (en) Material sintered under superhigh pressure for cutting tool
JPS6369760A (en) Sintered body for high hardness tools and manufacture
JPS6137221B2 (en)
JPS6056783B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPS63201065A (en) Cubic boron nitride base superhigh pressure sintering material for cutting tool
JPS6242988B2 (en)
JPS63201066A (en) Manufacture of cubic boron nitride base superhigh pressure sintered body for cutting tool
JPS58113349A (en) Cubic system boron nitride-base material to be sintered under superhigh pressure for wear resistant cutting tool
JPS62983B2 (en)
JPH0377151B2 (en)
JPS639009B2 (en)
JPH02167606A (en) Cutting tip made of cubic system boron nitride group super high pressure sintered material capable of cutting workpiece difficult to cut

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees