JPS6320029B2 - - Google Patents

Info

Publication number
JPS6320029B2
JPS6320029B2 JP57198967A JP19896782A JPS6320029B2 JP S6320029 B2 JPS6320029 B2 JP S6320029B2 JP 57198967 A JP57198967 A JP 57198967A JP 19896782 A JP19896782 A JP 19896782A JP S6320029 B2 JPS6320029 B2 JP S6320029B2
Authority
JP
Japan
Prior art keywords
cdse
cds
photoconductive
particles
maximum sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57198967A
Other languages
Japanese (ja)
Other versions
JPS5989472A (en
Inventor
Osamu Suda
Shigeo Sasaki
Hisamitsu Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP57198967A priority Critical patent/JPS5989472A/en
Publication of JPS5989472A publication Critical patent/JPS5989472A/en
Publication of JPS6320029B2 publication Critical patent/JPS6320029B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は光導電性無機材料に関し、更に詳しく
云えば、事務用複写機、レーザープリンタ、その
他の感光装置に有用であり、且つ硫化カドミウム
(以下CdSという)よりも長波長側に最大感度波
長を有するCdS−CdSe(セレン化カドミウム)系
光導電性無機材料の提供を目的とする。 従来、CdS系、CdSe系およびCdS−CdSe系の
光導電性材料は公知であり、CdS系は視感度曲線
に近い所に最大感度を有し、CdSe系は比較的長
波長側に最大感度を有しているが、各種感光装置
においては、それらの光源が多様化するととも
に、それらに対応する高感度の光導電性材料が要
求されてきている。これらの要求に対応するため
に、CdS−CdSe系光導電性材料が提案されてい
るが、これらの混合系のものはCdSeのコストが
高いために、CdSeの使用量の増加とともに製品
コストがアツプし、また、CdSeの使用によつて
得られる光導電性材料の暗所での絶縁性が低下す
るという欠点がある。 本発明者は、上述の如き従来技術の欠点を解決
すべく鋭意研究の結果、CdS−CdSe系光導電性
材料の構成を特定の構成とすることによつて、上
記の従来技術の欠点が同時に解決されることを知
見して本発明を完成したものである。 すなわち、本発明は、硫化カドミウム粒子を該
硫化カドミウム1重量部あたり0.05〜9.0重量部
のセレン化カドミウムで被覆したことを特徴とす
る光導電性材料である。 本発明を詳細に説明すると、本発明のCdS−
CdSe系光導電性材料、従来公知の材料が、CdS
系材料とCdSe系材料との混合物または固溶体で
あるに対して、CdS系粒子をCdSe系化合物で被
覆していることを特徴としており、理論的な理由
は必ずしも明らかではないが、上記の如き構成と
することによつて、従来のものに比して、より少
量のCdSeの使用であつても、得られる光導電性
材料の最大感度波長をより長波長側に移させるこ
とができるのであり、この点において従来の欠点
であつたCdSeの使用によるコスト高を軽減した
ものである。更に、従来のものに比して、暗所に
おける絶縁性を著しく高めることができたもので
ある。また、更に、CdSe系化合物の使用量を必
要に応じて変更することによつて、CdS系光導電
性材料の最大感度波長とCdSe系光導電性材料の
最大感度波長との間において、その最大感度波長
を任意に変更し得るという利点も達成された。 本発明におけるCdS−CdSe系光導電性材料は、
好ましくは、以下の如き方法によつて製造するこ
とができる。 CdS系粒子は、従来公知の方法によつて得られ
るものであつて、CdS単独でもよいし、酸化亜鉛
その他の材料との固溶体や混合物であつてもよ
い。また、付活剤によつてすでに増感処理済のも
のであつてもよいし、あるいは未処理のものであ
つてもよい。また、それらの粒子径としては、約
1.0〜6.0μのものを使用するのが好ましい。 上記の如きCdS系粒子を、塩化カドミウム、硫
酸カドミウムその他の水溶性カドミウム塩の水溶
液中に分散させておき、該分散液中にセレン化水
素、セレンのナトリウム塩等のセレン化合物を導
入することによつて、CdSe化合物をCdS系化合
物粒子の表面に析出沈着せしめる。この操作時
に、CdS系粒子とともに、酸化亜鉛、セレン化亜
鉛、硫化亜鉛、酸化チタン等の粒子あるいはこれ
らとCdSとの固溶体粒子あるいは亜鉛塩等の塩類
を併存させておくことにより、得られる光導電性
材料の特性を修正してもよい。また、上記操作時
に、ナトリウム、カリウム、カルシウム、マグネ
シウム、銅、銀、金、アルミニウム等の化合物の
如き周期律表第a、第b、a、b、b
族元素の化合物を水溶液中に加えておいて、CdS
−CdSe系粒子の生成時に、それらの付活用元素
を該粒子に吸着、吸蔵あるいは共沈させておいて
もよい。 以上の如くして得られたCdS−CdSe系粒子は、
必要に応じて上記の如き付活剤を加え、あるいは
塩化アンモニウム、食塩、塩化カリウム、塩化カ
ドミウム、塩化亜鉛等の融剤を必要量添加し、好
ましくは窒素雰囲気中で約400〜800℃の温度で、
約30〜120分間程度一次焼成を行い、更に必要に
応じて融剤を添加し、好ましくは硫黄雰囲気中
で、約400〜600℃の温度で、約30〜120分間程度
二次焼成を行うことにより、本発明のCdS−
CdSe系光導電性材料が得られる。 本発明においては、CdS−CdSe系光導電性材
料において使用するCdSe系化合物の量は、CdS
系成分1重量部あたり、約0.05〜9.0重量部、好
ましくは0.1〜5.0重量部であり、0.05部以下の割
合であると最大感度波長の長波長側への移行が不
十分となり、また、9.0部より大なる割合ではコ
スト的な利点がない。また、CdS−CdSe系に包
含させる付活剤の量は、例えばCuが約100〜
300ppm、Clが約100〜1000ppm程度が好ましい。
また、最終的に得られる製品の粒子径は約10μ以
下が好ましい。 以上の如くして得られた本発明のCdS−CdSe
系光導電性材料は、従来のCdS−CdSe系材料と
比較すると、比較的少割合のCdSeの使用によつ
て最大感度波長を長波長側に移行させることがで
き、同時に暗所での電気絶縁性が著しく高められ
ている。 次に、参考例および実施例を挙げて本発明を更
に具体的に説明する。 参考例 1 粒径約2〜4μのCdS粉末100g、CdCl2・5/2
H2O10g、CuCl2・2H2O0.05gおよび純水150c.c.
を十分に混合し、乾燥した。該乾燥物を小塊にく
だき、石英管中で窒素気流中で600℃で30分間焼
成後、純水中に十分に解膠し、十分に水洗する。
その後0.1mol/のNH4Cl水溶液150c.c.中に浸
し、過し、乾燥する。乾燥したものを硫黄0.1
gが予め入れてある石英管に入れて窒素気流中で
500℃で30分間焼成し、その後純水中に十分に分
散させて水洗し、乾燥して、光導電性材料A(粒
径は約6〜8μ)を得た。 参考例 2 粒径約2〜3μのCdSe粉末100g、CdCl2・5/2
H2O10g、CdCl2・2H2O0.05gおよび純水150c.c.
を使用し、他は参考例1と同様にして光導電性材
料E(粒径約7〜8μ)を得た。 参考例 3〜5 参考例1におけるCdS粉末に代えて、CdSと
CdSeとの粉末混合物を使用し、他は参考例1と
同様にして混合系光導電性材料B、CおよびDを
得た。 参考例1〜5のCdS−CdSeのモル比(CdS/
CdSe)は次の通りである。
The present invention relates to a photoconductive inorganic material, and more specifically, it is useful for office copiers, laser printers, and other photosensitive devices, and has a maximum sensitivity wavelength on the longer wavelength side than cadmium sulfide (hereinafter referred to as CdS). The purpose of the present invention is to provide a CdS-CdSe (cadmium selenide)-based photoconductive inorganic material. Conventionally, CdS-based, CdSe-based, and CdS-CdSe-based photoconductive materials are known. However, as the light sources of various photosensitive devices become more diverse, there is a demand for highly sensitive photoconductive materials corresponding to these light sources. In order to meet these demands, CdS-CdSe based photoconductive materials have been proposed, but due to the high cost of CdSe in these mixed systems, the product cost increases as the amount of CdSe used increases. However, there is also the disadvantage that the insulating properties of the photoconductive material obtained by using CdSe in the dark are reduced. As a result of intensive research in order to solve the above-mentioned drawbacks of the conventional technology, the inventors of the present invention have found that by making the CdS-CdSe-based photoconductive material have a specific structure, the above-mentioned drawbacks of the prior art can be solved at the same time. The present invention was completed based on the knowledge that the problem could be solved. That is, the present invention is a photoconductive material characterized in that cadmium sulfide particles are coated with 0.05 to 9.0 parts by weight of cadmium selenide per 1 part by weight of the cadmium sulfide. To explain the present invention in detail, the CdS-
CdSe-based photoconductive material, the conventionally known material is CdS
Although it is a mixture or solid solution of a CdSe-based material and a CdSe-based material, it is characterized by coating CdS-based particles with a CdSe-based compound, and although the theoretical reason is not necessarily clear, the above structure By doing so, the maximum sensitivity wavelength of the resulting photoconductive material can be shifted to the longer wavelength side even if a smaller amount of CdSe is used than in the conventional method. In this respect, the high cost due to the use of CdSe, which was a drawback of the conventional method, is reduced. Furthermore, compared to conventional products, insulation in dark places can be significantly improved. Furthermore, by changing the amount of CdSe-based compound used as necessary, the maximum sensitivity wavelength can be adjusted between the maximum sensitivity wavelength of the CdS-based photoconductive material and the maximum sensitivity wavelength of the CdSe-based photoconductive material. The advantage that the sensitivity wavelength can be changed arbitrarily has also been achieved. The CdS-CdSe-based photoconductive material in the present invention is
Preferably, it can be produced by the following method. The CdS-based particles are obtained by a conventionally known method, and may be CdS alone, or may be a solid solution or a mixture with zinc oxide or other materials. Further, it may be already sensitized with an activator, or it may be untreated. In addition, their particle size is approximately
It is preferable to use one with a diameter of 1.0 to 6.0μ. CdS particles as described above are dispersed in an aqueous solution of cadmium chloride, cadmium sulfate, and other water-soluble cadmium salts, and a selenium compound such as hydrogen selenide or sodium selenium salt is introduced into the dispersion. Therefore, the CdSe compound is precipitated and deposited on the surface of the CdS-based compound particles. During this operation, by coexisting with CdS-based particles particles such as zinc oxide, zinc selenide, zinc sulfide, titanium oxide, solid solution particles of these and CdS, or salts such as zinc salt, photoconductive electricity can be obtained. The properties of the material may also be modified. In addition, during the above operation, compounds such as sodium, potassium, calcium, magnesium, copper, silver, gold, aluminum, etc. in periodic table a, b, a, b, b, etc.
CdS group elements are added to an aqueous solution.
When producing -CdSe-based particles, the elements for use may be adsorbed, occluded, or co-precipitated in the particles. The CdS-CdSe particles obtained as above are
If necessary, add an activator as described above, or add a necessary amount of a flux such as ammonium chloride, common salt, potassium chloride, cadmium chloride, zinc chloride, etc., preferably at a temperature of about 400 to 800°C in a nitrogen atmosphere. in,
Primary firing is performed for approximately 30 to 120 minutes, and a flux is further added as necessary, and secondary firing is performed for approximately 30 to 120 minutes at a temperature of approximately 400 to 600°C, preferably in a sulfur atmosphere. Accordingly, the CdS-
A CdSe-based photoconductive material is obtained. In the present invention, the amount of CdSe-based compound used in the CdS-CdSe-based photoconductive material is
The amount is about 0.05 to 9.0 parts by weight, preferably 0.1 to 5.0 parts by weight, per 1 part by weight of the system component. If the ratio is less than 0.05 parts, the shift of the maximum sensitivity wavelength to the longer wavelength side will be insufficient, and the maximum sensitivity will be 9.0 parts by weight. There is no cost advantage in a proportion larger than that. In addition, the amount of activator included in the CdS-CdSe system is, for example, about 100 to
300 ppm, and Cl is preferably about 100 to 1000 ppm.
Further, the particle size of the final product is preferably about 10 μm or less. CdS-CdSe of the present invention obtained as described above
Compared to conventional CdS-CdSe based materials, the maximum sensitivity wavelength can be shifted to longer wavelengths by using a relatively small proportion of CdSe, and at the same time, it is possible to improve electrical insulation in the dark. sex is significantly enhanced. Next, the present invention will be explained in more detail with reference to Reference Examples and Examples. Reference example 1 100g of CdS powder with a particle size of approximately 2 to 4μ, CdCl 2・5/2
H 2 O 10g, CuCl 2・2H 2 O 0.05g and pure water 150c.c.
were thoroughly mixed and dried. The dried product is broken into small pieces, calcined in a quartz tube at 600°C for 30 minutes in a nitrogen stream, thoroughly peptized in pure water, and thoroughly washed with water.
Then, it is immersed in 150 c.c. of 0.1 mol/NH 4 Cl aqueous solution, filtered, and dried. Dried sulfur 0.1
Place it in a quartz tube pre-filled with g and put it in a nitrogen stream.
It was baked at 500° C. for 30 minutes, then thoroughly dispersed in pure water, washed, and dried to obtain photoconductive material A (particle size: about 6 to 8 μm). Reference example 2 100g of CdSe powder with a particle size of approximately 2 to 3μ, CdCl 2・5/2
10g of H 2 O, 0.05g of CdCl 2・2H 2 O and 150c.c. of pure water.
A photoconductive material E (particle size of approximately 7 to 8 μm) was obtained in the same manner as in Reference Example 1. Reference Examples 3 to 5 Instead of CdS powder in Reference Example 1, CdS and
Mixed photoconductive materials B, C and D were obtained in the same manner as in Reference Example 1 except that a powder mixture with CdSe was used. CdS-CdSe molar ratio (CdS/
CdSe) is as follows.

【表】 実施例 1 粒径約2〜4μのCdS粉末63.8g、CdSO4・8/3
H2O48.5gおよび純水500c.c.をよく混合分散し、
該分散液中にセレン化水素ガスをCdイオンが無
くなるまで通気し、CdS粒子表面にCdSeを析出
沈着させ、次いで生成した沈澱を十分に水洗し、
乾燥し、以下参考例1と同様にして焼成を行い光
導電性粉体Fを得た。 実施例 2および3 実施例1におけるCdSO4・8/3H2Oの量を変
え、他は実施例1と同様にしてCdS−CdSe系光
導電性材料GおよびHを得た。 実施例F〜HのCdS−CdSe系のモル比は次の
通りである。
[Table] Example 1 63.8g of CdS powder with a particle size of approximately 2 to 4μ, CdSO 4・8/3
Mix and disperse 48.5 g of H 2 O and 500 c.c. of pure water,
Hydrogen selenide gas is passed through the dispersion liquid until Cd ions disappear, CdSe is precipitated and deposited on the surface of the CdS particles, and then the generated precipitate is thoroughly washed with water,
After drying, baking was performed in the same manner as in Reference Example 1 to obtain photoconductive powder F. Examples 2 and 3 CdS-CdSe-based photoconductive materials G and H were obtained in the same manner as in Example 1 except that the amount of CdSO 4 .8/3H 2 O in Example 1 was changed. The molar ratio of the CdS-CdSe system in Examples F to H is as follows.

【表】 実施例 4 (最大感度波長の測定) 参考例1〜5および実施例1〜3で得られた光
導電性材料の最高感度波長を測定したところ、下
記の結果が得られた。
[Table] Example 4 (Measurement of Maximum Sensitivity Wavelength) When the maximum sensitivity wavelength of the photoconductive materials obtained in Reference Examples 1 to 5 and Examples 1 to 3 was measured, the following results were obtained.

【表】 上記測定結果によれば、CdS/CdSe比におい
て、B=F、C=G、D=Hであるが、最大感度
波長はいずれもF>B、G>C、H>Dであり、
CdSとCdSeとを単に混合して焼成した参考例よ
りも、本発明による方法が、同一のCdSe量で最
大感度波長を長波長側に移行できる、すなわち、
少量のCdSe量で長波長側に移行させることがで
き、経済的であることが判る。 実施例 5 (電流の測定) 参考例1〜5および実施例1〜3の光導電性材
料の暗電流および明電流を測定したところ、下記
の結果が得られた。
[Table] According to the above measurement results, in the CdS/CdSe ratio, B=F, C=G, and D=H, but the maximum sensitivity wavelengths are all F>B, G>C, and H>D. ,
Compared to the reference example in which CdS and CdSe were simply mixed and fired, the method according to the present invention can shift the maximum sensitivity wavelength to the longer wavelength side with the same amount of CdSe, that is,
It can be seen that it is possible to shift to the long wavelength side with a small amount of CdSe, which is economical. Example 5 (Measurement of current) When the dark current and bright current of the photoconductive materials of Reference Examples 1 to 5 and Examples 1 to 3 were measured, the following results were obtained.

【表】 上記結果によれば、参考例のものは、CdSeの
量が増加するに従つて、暗抵抗が激減するが、本
発明のものは、暗抵抗の低下の傾向が少なく、
CdSeの量が増加してもすぐれた絶縁性を保持し
ていることが明らかであり、明電流も十分であ
り、明電流/暗電流の比も十分に大きい。 実施例 6 CdS粉末43g、CdSO4・8/3H2O57.4g、
CdCl2・5/2H2O16.8g、CuCl2・2H2O0.05gおよ
び純水500c.c.をホモミキサーで十分混合分散させ、
カドミウムイオンが無くなるまでセレン化水素ガ
スを通気し、CdS粒子表面にCdSeを析出沈着せ
しめ、次いで生成した粒子を十分に洗浄し、乾燥
し、その後石英管に入れて、窒素気流中で600℃
で30分間焼成し、次いで、硫黄雰囲気中で、500
℃、30分間焼成し、本発明のCdS−CdSe系光導
電性材料(CdS/CdSeモル比1/1)を得た。 実施例 7 実施例6におけるCuCl2・2H2O0.05gを沈澱時
に加えず、焼成時に加える以外は実施例6と同様
にして本発明のCdS−CdSe系光導電性材料Jを
得た。 参考例 6 参考例1で得られたCdS粉末43g、参考例2で
得られたCdSe粉末57g、CdCl2・5/2H2O10gお
よび純水150c.c.を使用し、他は参考例1と同様に
して光導電性材料K(CdS/CdSeモル比1/1)
を得た。 上記の光導電性材料I〜Kについて、最大感度
波長および電流を求めたところ、下記の結果が得
られた。
[Table] According to the above results, as the amount of CdSe increases in the reference example, the dark resistance decreases drastically, but in the case of the present invention, there is less tendency for the dark resistance to decrease.
It is clear that excellent insulation properties are maintained even when the amount of CdSe increases, the bright current is sufficient, and the bright current/dark current ratio is also sufficiently large. Example 6 CdS powder 43g, CdSO 4 8/3H 2 O 57.4g,
Thoroughly mix and disperse 16.8 g of CdCl 2・5/2H 2 O, 0.05 g of CuCl 2・2H 2 O, and 500 c.c. of pure water using a homomixer.
Hydrogen selenide gas is aerated until cadmium ions disappear, and CdSe is precipitated on the surface of the CdS particles.Then, the generated particles are thoroughly washed and dried, and then placed in a quartz tube at 600°C in a nitrogen stream.
Calcinate for 30 minutes at
C. for 30 minutes to obtain a CdS-CdSe-based photoconductive material (CdS/CdSe molar ratio 1/1) of the present invention. Example 7 A CdS-CdSe-based photoconductive material J of the present invention was obtained in the same manner as in Example 6 except that 0.05 g of CuCl 2 .2H 2 O in Example 6 was not added during precipitation but was added during firing. Reference Example 6 43g of CdS powder obtained in Reference Example 1, 57g of CdSe powder obtained in Reference Example 2, 10g of CdCl 2 5/2H 2 O, and 150 c.c. of pure water were used, and the rest were as in Reference Example 1. Similarly, photoconductive material K (CdS/CdSe molar ratio 1/1)
I got it. When the maximum sensitivity wavelength and current were determined for the above photoconductive materials I to K, the following results were obtained.

【表】 (アンペア)
[Table] (Ampere)

【表】 (モル比)
上記測定結果によれば、粉末同士の混合系であ
る光導電性材料Kに対して、本発明の光導電性材
料IおよびJの最大感度波長は、より長波長側に
移行しており、且つ暗抵抗は著しくすぐれている
ことが明らかである。 なお、上記における電流は下記の条件で行つた
ものである。 照射光:モノクロメーター、60mW/m2(6000
Å) 印加電圧:DC500V 電極:ギヤツプタイプ(ギヤツプ0.5mm)
[Table] (Mole ratio)
According to the above measurement results, the maximum sensitivity wavelength of the photoconductive materials I and J of the present invention is shifted to the longer wavelength side compared to the photoconductive material K, which is a mixed system of powders. It is clear that the dark resistance is significantly better. In addition, the current in the above was conducted under the following conditions. Irradiation light: Monochromator, 60mW/m 2 (6000
Å) Applied voltage: DC500V Electrode: Gap type (gap 0.5mm)

Claims (1)

【特許請求の範囲】[Claims] 1 硫化カドミウム粒子を該硫化カドミウム1重
量部あたり0.05〜9.0重量部のセレン化カドミウ
ムで被覆したことを特徴とする光導電性材料。
1. A photoconductive material characterized in that cadmium sulfide particles are coated with 0.05 to 9.0 parts by weight of cadmium selenide per 1 part by weight of the cadmium sulfide.
JP57198967A 1982-11-15 1982-11-15 Photoconductive material Granted JPS5989472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57198967A JPS5989472A (en) 1982-11-15 1982-11-15 Photoconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57198967A JPS5989472A (en) 1982-11-15 1982-11-15 Photoconductive material

Publications (2)

Publication Number Publication Date
JPS5989472A JPS5989472A (en) 1984-05-23
JPS6320029B2 true JPS6320029B2 (en) 1988-04-26

Family

ID=16399901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57198967A Granted JPS5989472A (en) 1982-11-15 1982-11-15 Photoconductive material

Country Status (1)

Country Link
JP (1) JPS5989472A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5036376A (en) * 1986-01-31 1991-07-30 Texas Instruments Incorporated Passivation oxide conversion
JP4596705B2 (en) * 2001-08-31 2010-12-15 富士フイルム株式会社 Composite fine particles and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0874980A (en) * 1994-09-09 1996-03-19 Kubota Corp Belt-type continuously variable transmission

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0874980A (en) * 1994-09-09 1996-03-19 Kubota Corp Belt-type continuously variable transmission

Also Published As

Publication number Publication date
JPS5989472A (en) 1984-05-23

Similar Documents

Publication Publication Date Title
GB1581830A (en) Phosphors
Wachtel CaS: Cu, Eu Electroluminescent Phosphors
JPS6320029B2 (en)
US2876202A (en) Photoconducting powders and method of preparation
US3238150A (en) Photoconductive cadmium sulfide powder and method for the preparation thereof
US3077386A (en) Process for treating selenium
CA1061082A (en) Method for the preparation of cdsse
US2421207A (en) Method of manufacturing luminescent sulfides and selenides
Phillips Properties of cathodochromic sodalite
US2995474A (en) Photoconductive cadmium sulfide and method of preparation thereof
US4197122A (en) Process for preparing raw particles of cadmium sulfide for electrophotography
US2988515A (en) Electroluminescent phosphor
US4090983A (en) Photoconductive cadmium sulfide and process for producing same
Warren et al. The Interaction of Color Centers and Cd+ 2 and Sb+ 3 Ions in Calcium Fluorophosphate
JPH0139964B2 (en)
GB1577775A (en) Process for preparing raw cadmium sulphide for electrophotography
Schulman et al. Concentration dependence of quantum efficiency of luminescence in KCl: Tl
JPS58185408A (en) Preparation of cadmium selenide sulfide particle
Oikawa et al. Early stages of latent image formation in AgCl grains undoped or doped with iridium ions
JPH0238482A (en) Coated electroluminescent phosphor
Deb et al. Influence of Irradiation on Discharge Current in an Ozonizer
DE1522603B2 (en) Process for the production of a photoconductor or a photoconductive layer
JPS63216057A (en) Production of photoconductive powder
JPS5849619A (en) Preparation of photoconductive cadmium sulfide
SU1031953A1 (en) Ceramic material