JPH0139964B2 - - Google Patents
Info
- Publication number
- JPH0139964B2 JPH0139964B2 JP859984A JP859984A JPH0139964B2 JP H0139964 B2 JPH0139964 B2 JP H0139964B2 JP 859984 A JP859984 A JP 859984A JP 859984 A JP859984 A JP 859984A JP H0139964 B2 JPH0139964 B2 JP H0139964B2
- Authority
- JP
- Japan
- Prior art keywords
- cdse
- parts
- selenium
- powder
- photoconductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011669 selenium Substances 0.000 claims description 22
- 229910052711 selenium Inorganic materials 0.000 claims description 19
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 12
- 239000003638 chemical reducing agent Substances 0.000 claims description 8
- -1 selenium anions Chemical class 0.000 claims description 8
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 claims description 6
- 239000012190 activator Substances 0.000 claims description 5
- 150000001661 cadmium Chemical class 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000012736 aqueous medium Substances 0.000 claims description 3
- OAKJQQAXSVQMHS-UHFFFAOYSA-N hydrazine group Chemical group NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 3
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 claims 2
- AQCDIIAORKRFCD-UHFFFAOYSA-N cadmium selenide Chemical compound [Cd]=[Se] AQCDIIAORKRFCD-UHFFFAOYSA-N 0.000 description 42
- 239000000843 powder Substances 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 239000000243 solution Substances 0.000 description 8
- 238000006722 reduction reaction Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 229910010082 LiAlH Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000006690 co-activation Effects 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012761 high-performance material Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910009112 xH2O Inorganic materials 0.000 description 1
Landscapes
- Photoreceptors In Electrophotography (AREA)
Description
本発明は光導電性セレン化カドミウム(CdSe)
の製造方法に関し、更に詳しく云えば、光導電性
材料にイメージングデバイス用として高出力およ
び高SN比の光導電性CdSeの提供を目的とする。
従来、イメージングデバイス用の光導電性材料
としてCdS、CdSe、アモルフアスSi等が開発さ
れているが、特にイメージングデバイス用として
使用するためには応答速度が速く、また読み取り
を確実にするために高出力および高SN比の光導
電性材料が要求されている。現在これらの用途に
CdS、アモルフアスSiあるいはCdSe等の光導電
性材料が提案されているが、例えばCdSは応答速
度が極端に遅く、アモルフアスSiはSN比が十分
にとれないという欠点がある。CdSeは有望な材
料であるが、高性能の材料を製造する方法が極め
て煩雑である。すなわち従来の光導電性CdSeの
原料であるCdSeの生粉(以下、不純物をドープ
してない未焼成CdSeを生粉という)は気相法で
合成されているため非常に結晶性が高く、粉体の
表面積が小であるためドーパントを均一容易にド
ーピングすることが極めて困難であり、また無理
に十分なドーピングを行うと、暗電流が極端に流
れるようになり十分なSN比がとれないものとな
る欠点が生じる。
本発明者は上述の如き従来技術の欠点を解決す
べく鋭意研究の結果、光導電性CdSeを製造する
に際してその原料として特定のCdSe生粉を使用
することによつて上述の従来技術の欠点が十分に
解決され、非常に容易に高性能の光導電性CdSe
が得られることを知見して本発明を完成した。
すなわち、本発明は水性媒体中でセレンを還元
剤により還元してセレンアニオンを含む溶液を調
製し、該溶液に水溶性カドミウム塩を加えて
CdSeを沈澱させ、次いで得られたCdSeにドーパ
ントをドーピングすることを特徴とする光導電性
CdSeの製造方法である。
本発明方法を詳細に説明すると、本発明の第一
の特徴は光導電性CdSeの原料であるCdSe生粉を
湿式法で調製する点である。このような湿式法に
よる生粉はその製造時に高温にさらされていない
ため殆ど無定形に近い微細な粉末であり、粉末の
表面積が著しく大であり、その結果として次の付
活工程におけるドーピングが非常に容易に且つ均
一に行われる。
本発明において使用するSeはいかなる形状の
セレンでもよいが好ましいものは純度が約99.9%
以上のものである。このようなSe粉末は水中に
おいてアルカリ性の状態で還元するのが好まし
く、還元剤としてはSeを還元できるものであれ
ば、Sn、Cl2・xH2O、NaBH4、LiAlH4、
N2H4・xH2O、液体アンモニア等いずれの還元
剤でもよいが、特に好ましいものはN2H4・
xH2Oの如く合属を含有しない還元剤である。こ
のような好ましいN2H4・xH2O(x=1)還元剤
はセレン1モル(約79g)あたり350〜1500gの
割合で使用するのが好ましい。この使用範囲の下
限以下ではセレンの還元が不十分となり、その結
果最終製品の光導電特性が著しく悪化することに
なる。一方、上記範囲以上の量を使用しても良好
な製品が得られるが、経済的な面で好ましくな
い。このような還元剤によるセレンの還元は水性
媒体、好ましくは純水中でアルカリ性の条件下で
遂行する必要があり、周期律表のA族元素の水
酸化物または炭酸塩、例えばNaOH、LiOH、
KOH、Na2CO3等がアルリ性化に使用できるが、
好ましいものはNaOHであり、このような
NaOHはセレン20重量部あたり約5〜30重量部
の割合で使用するのが好適である。使用する媒
体、例えば純水(イオン交換水)はセレン100重
量部あたり約400〜4000重量部の割合で使用する
のが好ましい。還元反応の温度は常温でもよいが
通常は約90℃〜水の沸点で行うのが良く、90〜
100℃の場合は約5分〜2時間の反応時間が好ま
しい。このような条件下でセレンの還元は円滑に
進行するが、生成したセレンアニオンは空気中で
不安定で酸化を受け易いため、反応雰囲気はN2
気流等の如く不活性ガス雰囲気とするのが望まし
い。
以上の如き還元は予めカドミウムの水溶性塩の
存在下に行つて、還元と同時にCdSeを生成させ
沈澱させることも可能であるが、好ましい方法は
セレンの還元が完了後にカドミウムの水溶性塩を
添加する方法である。使用するカドミウム塩とし
てはCdSO4、CdCl2、CdNO3等の如く水溶性のカ
ドミウム塩がいずれも使用することができる。こ
れらのカドミウム塩は、セレン1モルに対し、約
0.9〜1.2モルの割合で使用するのが好適である。
添加する方法としては固体の塩として一度にある
いは除々に添加してもよいが、生成するCdSeの
沈澱を均一微細にするために好ましくは純水中の
約10〜50重量%程度の水溶液として約90〜100℃
の反応温度で約30分〜2時間を要して上記で調製
したセレンアニオン溶液に滴下するのが好まし
い。CdSeは滴下と同時に生成するが、生成した
懸濁液は約90〜100℃の温度で約30分〜2時間程
度不活性雰囲気下で撹拌し熟成処理を行うのが好
ましい。
以上の如くして本発明を主として特徴づける
CdSeの生粉が得られるが、該CdSe生粉は均一微
細で容易に分散可能な粉末であり、そのX線回折
図では殆ど鋭いピークを示すことがないことか
ら、CdSeの結晶は殆ど成長しておらず、無定形
に近い状態であることが判る。これに対し従来の
気相法で調製したCdSe生粉は結晶性が非常に高
く、従つて粉体の表面積が非常に少さいことか
ら、次のドーピング処理が極めて困難となる。
以上の如き本発明によるCdSe生粉はこの状態
では光導電性が小さく、このCdSe生粉に付活剤
をドーピングすることにより本発明の光導電性
CdSeを得ることができる。このようなドーピン
グ処理は従来公知の方法、例えばCdSe生粉に付
活剤および融剤を混合し高温処理して付活剤の拡
散とCdSeの結晶化を行なう第一次焼成工程およ
び共付活剤であるハロゲンを拡散させる第二次焼
成工程および必要に応じて行う第三次焼成工程あ
るいはこれらの各種の修正方法を用いて行うこと
ができる。しかしながら、本発明者の詳細な研究
によれば、第一次焼成は前記のCdSe生粉に適量
(例えば約100〜3000ppm)の塩化銅等の付活剤お
よび適量(例えば生粉100重量部あたり約0.1〜10
重量部)の塩化カドミウム等の融剤を適当な方法
で混合後、不活性雰囲気中で約500〜800℃の温度
で約15分〜2時間行うが好ましく、このようにし
てわずかに焼結し容易にほぐれる一次焼成物が得
られる。また二次焼成は一次焼成物中のハロゲン
を拡散させ光導電性の増加を目的とするもので、
一次焼成物100重量部あたり約0.1〜10重量部の塩
化カドミウム等の融剤を混合し、不活性雰囲気中
で好ましくは硫黄等の6族元素の存在下で約400
〜600℃の温度で約15分〜2時間程度熱処理して
行う。以上の如くして得られた本発明の光導電性
CdSeは従来方法により得た光導電性CdSeに比し
て以下の実施例に示す通り応答速度がある程度改
善されるとともにLight出力が大巾に向上しその
SN比が著しく改善されている。従つて本発明の
光導電性CdSeはイメージングデバイス用素子と
して極めて有用であり、これらを応用した各種装
置例えばフアクシミリ、レーザープリンタ、コン
ピユーター用入力装置等の感光性材料としても有
用である。
次に実施例および比較例をあげて本発明を具体
的に説明する。なお文中部または%とあるのは重
量基準である。
実施例 1
粉末セレン(純度99.9%)100.24部、N2H4・
H2O742部およびNaOH101.5部を2500部の純水中
に加え、雰囲気を十分にN2置換した後約100℃で
約0.5時間撹拌し、セレンアニオンを含む溶液を
得た。次いで予め用意しておいたCdSO426.46部
を純水100部中に溶解した752部を約100℃の温度
で撹拌している上記セレンアニオン溶液中に約60
分を要して滴下する。反応終了後更に90℃で1.5
時間撹拌してCdSeの熟成を行つた。生成した
CdSe生粉を過、水洗し、120℃で乾燥させた。
次に乾燥粉(純度100%、平均粒子径0.1μ)150部
に、CdCl21.3748部およびCuCl2・2H2O0.3624部
を150部の純水に溶解した溶液を加え十分に混合
後120℃で乾燥する。得られた乾燥粉150部を石英
ルツボに入れN2雰囲気にし約600℃で30分間第一
次焼成を行う。わずかに焼結した一次焼成物をゆ
るやかに粉砕し、500メツシユのフルイに通して
粗大粒子を除去し、十分に水洗して乾燥する。該
一次焼成物150部にCdCl21.3748部を150部の純水
に溶解した溶液を加え十分に混合し120℃で乾燥
する。該乾燥粉末を石英ルツボに入れ硫黄0.15部
とともにN2雰囲気下で約450℃で30分間二次焼成
を行う。次いで水中にてホモミキサーで十分に解
コウし500メツシユフルイを通し十分に水洗し120
℃で乾燥する。このようにして得られた本発明の
光導電性CdSeは容易に分散しうる微細な粉末で
あるがX線回折によれば結晶度の高いものであつ
た。この光導電性CdSe10部をスチレン系樹脂と
トルエンの5:1混合物3部と混合し、クシ型ア
ルミ蒸着電極に厚さ45μで塗布し120℃で乾燥さ
せた後、光量60Lux、波長695nmのパルス光を使
用し応答速度、明所出力、暗所出力およびSN比
を求めたところ、後記第1表の通りであつた。
比較例 1
実施例1のCdSe生粉に代えて気相法で合成し
た粉末状(CdSe純度99.9%、平均粒子径約4μ)
を使用し他は実施例1と同様にして光導電性
CdSeを得、また実施例1と同様にして特性を求
めたところ、第1表の結果を得た。
The present invention uses photoconductive cadmium selenide (CdSe)
More specifically, the present invention aims to provide photoconductive CdSe with high output and high signal-to-noise ratio for use in imaging devices as a photoconductive material. Conventionally, CdS, CdSe, amorphous Si, etc. have been developed as photoconductive materials for imaging devices, but in order to be used for imaging devices, they require fast response speed and high output to ensure reliable reading. and high signal-to-noise ratio photoconductive materials are required. Currently used for these purposes
Photoconductive materials such as CdS, amorphous Si, or CdSe have been proposed, but CdS has extremely slow response speed, and amorphous Si does not have a sufficient signal-to-noise ratio. Although CdSe is a promising material, the methods for producing high-performance materials are extremely complicated. In other words, CdSe raw powder (hereinafter, unfired CdSe that is not doped with impurities is referred to as raw powder), which is the raw material for conventional photoconductive CdSe, is synthesized by a gas phase method and has very high crystallinity. Because the surface area of the body is small, it is extremely difficult to dope the dopant uniformly and easily, and if the dopant is forcibly doped sufficiently, dark current will flow excessively and a sufficient signal-to-noise ratio may not be obtained. This brings about a drawback. As a result of intensive research to solve the above-mentioned drawbacks of the prior art, the present inventor has found that the above-mentioned drawbacks of the prior art can be solved by using a specific CdSe raw powder as a raw material for producing photoconductive CdSe. Well-resolved and highly easily high-performance photoconductive CdSe
The present invention was completed based on the finding that the following could be obtained. That is, the present invention reduces selenium with a reducing agent in an aqueous medium to prepare a solution containing selenium anions, and adds a water-soluble cadmium salt to the solution.
Photoconductivity characterized by precipitating CdSe and then doping the obtained CdSe with a dopant
This is a method for producing CdSe. To explain the method of the present invention in detail, the first feature of the present invention is that CdSe raw powder, which is a raw material for photoconductive CdSe, is prepared by a wet method. The raw powder produced by this wet method is not exposed to high temperatures during production, so it is a fine powder that is almost amorphous, and the surface area of the powder is extremely large. It is done very easily and uniformly. The Se used in the present invention may be any form of selenium, but preferably has a purity of about 99.9%.
That's all. It is preferable to reduce such Se powder in an alkaline state in water, and the reducing agent can be Sn, Cl 2 xH 2 O, NaBH 4 , LiAlH 4 , as long as it can reduce Se.
Any reducing agent such as N 2 H 4 .xH 2 O or liquid ammonia may be used, but N 2 H 4 .
It is a reducing agent that does not contain a compound like xH 2 O. Such a preferred N2H4.xH2O (x=1) reducing agent is preferably used in a proportion of 350 to 1500 g per 1 mole (about 79 g) of selenium . Below the lower limit of this usage range, the reduction of selenium will be insufficient, resulting in a significant deterioration in the photoconductive properties of the final product. On the other hand, although a good product can be obtained even if an amount exceeding the above range is used, it is not preferable from an economic point of view. The reduction of selenium by such reducing agents must be carried out under alkaline conditions in an aqueous medium, preferably pure water, and may be carried out using hydroxides or carbonates of elements of group A of the periodic table, such as NaOH, LiOH,
KOH, Na 2 CO 3 , etc. can be used for alurination, but
Preferred is NaOH, such as
NaOH is preferably used in a proportion of about 5 to 30 parts by weight per 20 parts by weight of selenium. The medium used, for example pure water (ion-exchanged water), is preferably used in a proportion of about 400 to 4000 parts by weight per 100 parts by weight of selenium. The temperature of the reduction reaction may be room temperature, but it is usually better to carry out the reaction at about 90°C to the boiling point of water;
At 100°C, a reaction time of about 5 minutes to 2 hours is preferred. The reduction of selenium proceeds smoothly under these conditions, but the generated selenium anions are unstable in the air and easily oxidized, so the reaction atmosphere is N 2
It is desirable to use an inert gas atmosphere such as an air current. It is also possible to perform the above reduction in advance in the presence of a water-soluble salt of cadmium to produce and precipitate CdSe at the same time as the reduction, but the preferred method is to add a water-soluble salt of cadmium after the reduction of selenium is complete. This is the way to do it. As the cadmium salt to be used, any water-soluble cadmium salt such as CdSO 4 , CdCl 2 , CdNO 3 and the like can be used. These cadmium salts are about 1 mole of selenium.
It is preferred to use it in a proportion of 0.9 to 1.2 moles.
It may be added all at once or gradually as a solid salt, but in order to make the resulting CdSe precipitate uniform and fine, it is preferably added as an aqueous solution of about 10 to 50% by weight in pure water. 90~100℃
The selenium anion solution is preferably added dropwise to the selenium anion solution prepared above at a reaction temperature of about 30 minutes to 2 hours. Although CdSe is produced simultaneously with the dropwise addition, the produced suspension is preferably aged by stirring in an inert atmosphere at a temperature of about 90 to 100°C for about 30 minutes to 2 hours. The present invention is mainly characterized as described above.
CdSe raw powder is obtained, but since the CdSe raw powder is a uniform, fine, and easily dispersible powder, and its X-ray diffraction pattern shows almost no sharp peaks, almost no CdSe crystals grow. It can be seen that the shape is almost amorphous. On the other hand, CdSe raw powder prepared by the conventional gas phase method has very high crystallinity and therefore has a very small surface area, making the subsequent doping process extremely difficult. The CdSe raw powder according to the present invention as described above has low photoconductivity in this state, and by doping the CdSe raw powder with an activator, the photoconductivity of the present invention can be improved.
CdSe can be obtained. Such doping treatment is carried out using conventionally known methods, such as a first calcination step in which raw CdSe powder is mixed with an activator and a flux and treated at high temperature to diffuse the activator and crystallize CdSe, and co-activation. This can be carried out using a second firing step for diffusing the halogen agent, a third firing step if necessary, or various modification methods thereof. However, according to detailed research by the present inventor, the primary calcination involves adding an appropriate amount (e.g., about 100 to 3000 ppm) of an activator such as copper chloride to the CdSe raw powder and an appropriate amount (e.g., per 100 parts by weight of the raw powder). Approximately 0.1~10
After mixing a fluxing agent such as cadmium chloride (parts by weight) by an appropriate method, it is preferably carried out at a temperature of about 500 to 800°C for about 15 minutes to 2 hours in an inert atmosphere, and in this way the mixture is slightly sintered. A primary fired product that can be easily loosened is obtained. The purpose of secondary firing is to diffuse the halogen in the primary fired product and increase photoconductivity.
About 0.1 to 10 parts by weight of a fluxing agent such as cadmium chloride is mixed with 100 parts by weight of the primary fired product, and about 400
Heat treatment is performed at a temperature of ~600°C for approximately 15 minutes to 2 hours. Photoconductivity of the present invention obtained as described above
Compared to photoconductive CdSe obtained by conventional methods, CdSe has a somewhat improved response speed and a significant improvement in light output, as shown in the examples below.
Signal-to-noise ratio has been significantly improved. Therefore, the photoconductive CdSe of the present invention is extremely useful as an element for imaging devices, and is also useful as a photosensitive material for various devices to which these are applied, such as facsimile machines, laser printers, and input devices for computers. Next, the present invention will be specifically explained with reference to Examples and Comparative Examples. Note that "%" or "%" in the middle of the sentence is based on weight. Example 1 100.24 parts of powdered selenium (purity 99.9%), N 2 H 4 .
742 parts of H 2 O and 101.5 parts of NaOH were added to 2500 parts of pure water, and after the atmosphere was sufficiently replaced with N 2 , the mixture was stirred at about 100° C. for about 0.5 hour to obtain a solution containing selenium anions. Next, 752 parts of 26.46 parts of CdSO 4 prepared in advance dissolved in 100 parts of pure water were added to about 60 parts of the selenium anion solution being stirred at a temperature of about 100°C.
It takes several minutes to drip. After the reaction is completed, further heat at 90℃ for 1.5
The CdSe was aged by stirring for hours. generated
CdSe raw powder was filtered, washed with water, and dried at 120°C.
Next, a solution of 1.3748 parts of CdCl 2 and 0.3624 parts of CuCl 2.2H 2 O dissolved in 150 parts of pure water was added to 150 parts of dry powder (purity 100%, average particle size 0.1 μ) and mixed thoroughly. Dry at °C. 150 parts of the obtained dry powder is placed in a quartz crucible and subjected to primary firing at approximately 600° C. for 30 minutes in an N 2 atmosphere. The slightly sintered primary fired product is gently crushed, passed through a 500-mesh sieve to remove coarse particles, thoroughly washed with water, and dried. A solution of 1.3748 parts of CdCl 2 dissolved in 150 parts of pure water is added to 150 parts of the primary fired product, thoroughly mixed, and dried at 120°C. The dry powder is placed in a quartz crucible and subjected to secondary firing at about 450° C. for 30 minutes in an N 2 atmosphere with 0.15 parts of sulfur. Next, thoroughly thaw it in water using a homomixer, pass it through a 500 mesh filter, and wash thoroughly with water.
Dry at °C. The photoconductive CdSe of the present invention thus obtained was a fine powder that could be easily dispersed, but it was found to have a high degree of crystallinity according to X-ray diffraction. 10 parts of this photoconductive CdSe was mixed with 3 parts of a 5:1 mixture of styrene resin and toluene, coated on a comb-shaped aluminum evaporated electrode to a thickness of 45 μm, dried at 120°C, and then pulsed with a light intensity of 60 Lux and a wavelength of 695 nm. When the response speed, light output, dark output, and SN ratio were determined using light, they were as shown in Table 1 below. Comparative Example 1 Powder synthesized by gas phase method in place of raw CdSe powder in Example 1 (CdSe purity 99.9%, average particle size approximately 4μ)
The photoconductive
When CdSe was obtained and its properties were determined in the same manner as in Example 1, the results shown in Table 1 were obtained.
【表】
なお上記第1表における応答速度は、光照射に
より出力が最高値の90%に達するまでの時間であ
り、( )内は光照射を中止した後最高値から90
%出力が低下するまでの時間である。出力は
Load抵抗10MΩにかかる電圧を測定した値であ
る。
上記第1表の結果から明らかな通り、湿式法に
よるCdSe生粉を使用した本発明による光導電性
CdSeは従来のCdSeに比して応答速度が改良され
るとともにLight出力は極端に向上し、従つて著
しく大なSN比を示すものである。[Table] The response speed in Table 1 above is the time it takes for the output to reach 90% of the maximum value after light irradiation.
This is the time until the % output decreases. The output is
This is the measured value of the voltage applied to the load resistor of 10MΩ. As is clear from the results in Table 1 above, photoconductivity according to the present invention using raw CdSe powder obtained by wet method
CdSe has improved response speed and extremely improved light output compared to conventional CdSe, and therefore exhibits a significantly large signal-to-noise ratio.
Claims (1)
セレンアニオンを含む溶液を調製し、該溶液に水
溶性カドミウム塩を加えてセレン化カドミウムを
沈澱させ、次いで得られたセレン化カドミウムに
付活剤をドーピングすることを特徴とする光導電
性セレン化カドミウムの製造方法。 2 還元剤がヒドラジンである特許請求の範囲第
1項に記載の製造方法。[Claims] 1. A solution containing selenium anions is prepared by reducing selenium with a reducing agent in an aqueous medium, and a water-soluble cadmium salt is added to the solution to precipitate cadmium selenide. A method for producing photoconductive cadmium selenide, which comprises doping cadmium chloride with an activator. 2. The manufacturing method according to claim 1, wherein the reducing agent is hydrazine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP859984A JPS60155506A (en) | 1984-01-23 | 1984-01-23 | Preparation of photoconductive cadmium selenide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP859984A JPS60155506A (en) | 1984-01-23 | 1984-01-23 | Preparation of photoconductive cadmium selenide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60155506A JPS60155506A (en) | 1985-08-15 |
JPH0139964B2 true JPH0139964B2 (en) | 1989-08-24 |
Family
ID=11697429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP859984A Granted JPS60155506A (en) | 1984-01-23 | 1984-01-23 | Preparation of photoconductive cadmium selenide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60155506A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5294370A (en) * | 1988-11-15 | 1994-03-15 | Hbt Holland Biotechnology B.V. | Selenium or tellurium elemental hydrosols and their preparation |
GB9711799D0 (en) * | 1997-06-07 | 1997-08-06 | Vecht Aron | Preparation of sulphides and selenides |
US7033564B2 (en) * | 2002-08-02 | 2006-04-25 | Gifu University | Lithium aluminum hydride-based selenating reagent and preparation methods using same |
-
1984
- 1984-01-23 JP JP859984A patent/JPS60155506A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60155506A (en) | 1985-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yu et al. | Controllable synthesis of nanocrystalline CdS with different morphologies and particle sizes by a novel solvothermal process | |
Li et al. | Control of morphology of Zn 2 SiO 4 by hydrothermal preparation | |
US8574538B2 (en) | Solid material in the divided state, process for the production of such a material, and use of such a material in a photovoltaic cell | |
JP2002537204A (en) | Settling process | |
JP4096367B2 (en) | Method for producing particulate composition | |
JP5713756B2 (en) | Copper selenide particle powder and method for producing the same | |
JP7145506B2 (en) | Method for producing vanadium dioxide particles | |
JP3113271B2 (en) | Method for producing precursor powder used in production of varistor and precursor powder produced by this method | |
JPH0139964B2 (en) | ||
JPH02145422A (en) | Production of fine copper oxide powder | |
JPH10310428A (en) | Lithium titanate hydrate and production of lithium titanate | |
JPH09183620A (en) | Bismuth oxycarbonate powder and its production | |
JP2001163619A (en) | Production process of powdery zinc oxide and intermediate for producing the same | |
JP3928023B2 (en) | Method for producing bismuth oxide powder | |
Kandare et al. | One step synthesis of Cu2ZnSnS4 nanoflakes by microwave irradiation technique and effect of Cu concentration | |
JP3639186B2 (en) | Spherical leucite crystal and method for producing the same | |
Gusatti et al. | Effects of reaction temperature on structural properties of ZnO nanocrystals prepared via solochemical technique | |
DE2023750C3 (en) | Process for the production of a fine powdery inorganic photoconductor | |
JP2002274847A (en) | Method of preparing needle zinc oxide | |
US4889706A (en) | Method of manufacturing fine powder of lead stannate | |
JPH02311314A (en) | Production of ultrafine zinc oxide powder | |
JP4185197B2 (en) | Method for producing bismuth (III) oxide | |
Isac et al. | Growth and characterization of rare-earth mixed single crystals of samarium barium molybdate | |
JP7503400B2 (en) | Manufacturing method of iron oxide magnetic powder | |
JPH0335064A (en) | Production of titanyl phthalocyanine by crystallization |