JPH0335064A - Production of titanyl phthalocyanine by crystallization - Google Patents

Production of titanyl phthalocyanine by crystallization

Info

Publication number
JPH0335064A
JPH0335064A JP17035589A JP17035589A JPH0335064A JP H0335064 A JPH0335064 A JP H0335064A JP 17035589 A JP17035589 A JP 17035589A JP 17035589 A JP17035589 A JP 17035589A JP H0335064 A JPH0335064 A JP H0335064A
Authority
JP
Japan
Prior art keywords
titanyl phthalocyanine
titanyl
water
ray diffraction
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17035589A
Other languages
Japanese (ja)
Inventor
Akira Kinoshita
木下 昭
Akihiko Itami
明彦 伊丹
Kazumasa Watanabe
一雅 渡邉
Hisahiro Hirose
尚弘 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP17035589A priority Critical patent/JPH0335064A/en
Publication of JPH0335064A publication Critical patent/JPH0335064A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title crystalline titanyl phthalocyanine which is useful in electrophotographic receptor by treating amorphous titanyl phthalocyanine with a specific organic solvent in the presence of water. CONSTITUTION:(A) Amorphous titanyl phthalocyanine is treated with (B) an aliphatic organic solvent of 8 to 11 solubility parameter such as cyclohexanone, or dichloroethane to convert the crystal structure into the one having peaks of X-rays diffraction spectrum to Cu-Kalpha line at 9.50+ or -0.2 deg., 24.1+ or -2 deg. and 27.2+ or -0.2 thereby the subject titanyl phthalocyanine is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はチタニルフタロシアニンの結晶構造を特定の有
用な形に変換するための方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for converting the crystal structure of titanyl phthalocyanine into a specific useful form.

〔従来技術〕[Prior art]

電子写真感光体としては、古くからセレン、酸化I鉛、
硫化カドミウム等の無機光導電性物質を主成分とする感
光層を設けt;無機感光体が広く使用されてきたが、こ
のような無機感光体は例えば、セレンは熱や指紋の汚れ
等によって結晶化するために特性が劣化しやすく、硫化
カドミウムは耐湿性、耐久性に劣り、酸化亜鉛もまt;
耐久性に劣る等の問題があって、近年は種々の利点を有
する有機光導電性物質が広く電子写真感光体に用いられ
るようになってきた。なかでもフタロシアニン化合物は
光電変換の量子効率が高く、また近赤外領域まで高い分
光感度を示すため、特に半導体レーザ光源に対応する電
子写真感光体用として注目されてきた。
As electrophotographic photoreceptors, selenium, I lead oxide,
A photosensitive layer containing an inorganic photoconductive substance such as cadmium sulfide as a main component is provided; inorganic photoreceptors have been widely used; Cadmium sulfide has poor moisture resistance and durability, and zinc oxide also has poor moisture resistance and durability.
However, in recent years, organic photoconductive materials, which have various advantages, have been widely used in electrophotographic photoreceptors due to problems such as poor durability. Among them, phthalocyanine compounds have high photoelectric conversion quantum efficiency and exhibit high spectral sensitivity up to the near-infrared region, so they have attracted attention, especially as electrophotographic photoreceptors compatible with semiconductor laser light sources.

そのような目的に対して、銅7タロシアニン、無金属7
タロシアニン、クロルインジウム7タロシアニン、クロ
ルガリウムフタロシアニンなどを用いた電子写真感光体
が報告されているが、近年特にチタニル7タロシアニン
が注目されるようになり、例えば特開昭61−2392
48号、同62−670943号、同62−27227
2号、同63−116158号のようにチタニルフタロ
シアニンの種々の結晶型を用いた電子写真感光体が多く
技術公開されている。
For such purposes, copper 7 talocyanine, metal-free 7
Electrophotographic photoreceptors using talocyanine, chlorindium 7-thalocyanine, chlorgallium phthalocyanine, etc. have been reported, but in recent years, titanyl 7-thalocyanine has attracted particular attention.
No. 48, No. 62-670943, No. 62-27227
2 and No. 63-116158, many electrophotographic photoreceptors using various crystal forms of titanyl phthalocyanine have been disclosed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一般に7タロシアニン化合物を電子写真感光体に用いる
場合、その結晶状態によって特性は著しく変化するため
結晶状態の制御が重要な技術となる。このためチタニル
フタロシアニンにおいても上述の公開公報に見られるよ
うに種々の結晶型のものが開発されている。しかしなが
ら電子写真感光体としての特性は結晶型によって著しく
変化し、また製造条件によっても変化するため、電子写
真感光体用のチタニルフタロシアニンとしては高感度で
帯電能に優れた結晶型が必要であると同時にそれが安定
した状態で製造できることが必要である。そのような状
況のなかで、Cu−Ka線に対するX線回折スペクトル
の9.5±0.2@、24.1±0.2゜、27.2±
0.2”にピークを示すような結晶状態において、特に
著しく高い感度が達成されることが見いだされた。しか
しながらこの特定の結晶状態は通常の溶媒処理やミリン
グでは安定した製造をすることができなかった。
Generally, when a 7-thalocyanine compound is used in an electrophotographic photoreceptor, the properties thereof vary significantly depending on its crystalline state, so controlling the crystalline state is an important technique. For this reason, various crystal forms of titanyl phthalocyanine have been developed as seen in the above-mentioned publications. However, the characteristics of an electrophotographic photoreceptor vary significantly depending on the crystal type and also depending on the manufacturing conditions, so a crystal type with high sensitivity and excellent charging ability is required for titanyl phthalocyanine for electrophotographic photoreceptors. At the same time, it is necessary that it can be produced in a stable state. Under such circumstances, the X-ray diffraction spectra for the Cu-Ka line were 9.5±0.2@, 24.1±0.2°, 27.2±
It has been found that particularly remarkable sensitivity is achieved in a crystalline state with a peak at 0.2". However, this particular crystalline state cannot be stably produced by conventional solvent treatment or milling. There wasn't.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、電子写真感光体に有用な、CB−Ka
線に対するX線回折スペクトルの9.5±0.2m、2
4.1±0.2゜、27.2±0.2°にピークを示す
ような結晶状態を有するチタニルフタロシアニンの製造
法を提供することにある。
The object of the present invention is to provide CB-Ka, which is useful for electrophotographic photoreceptors.
9.5±0.2m of the X-ray diffraction spectrum for the line, 2
The object of the present invention is to provide a method for producing titanyl phthalocyanine having a crystalline state showing peaks at 4.1±0.2° and 27.2±0.2°.

〔発明の構成及び作用効果〕[Structure and effects of the invention]

本発明の目的とする製造法はチタニル7タロシアニンを
アモルファス状態もしくはその他の熱的に非平衡な結晶
状態にした後、水の存在下に溶解性パラメータ値が8〜
11の範囲に属する脂肪族有機溶媒で処理するものであ
る。
The production method targeted by the present invention involves converting titanyl-7 thalocyanine into an amorphous state or other thermally non-equilibrium crystalline state, and then changing the solubility parameter value from 8 to 8 in the presence of water.
The treatment is carried out with an aliphatic organic solvent falling within the range of No. 11.

チタニル7りロシアニンは次の一般式で表され一般式 但し xi  xM  xl  X4は水素原子、ハロ
ゲン原子、アルキル基、或はアルコキシ基を表し、n、
m、(1,には0〜4の整数を表す。
Titanyl 7-lycyanine is represented by the following general formula, where xi xM xl X4 represents a hydrogen atom, a halogen atom, an alkyl group, or an alkoxy group, and n,
m, (1, represents an integer from 0 to 4.

X線回折スペクトルは次の条件で測定され、ここでのピ
ークは、明瞭にノイズとは異なった鋭角の錐状突起であ
る。
The X-ray diffraction spectrum is measured under the following conditions, and the peak here is an acute-angled pyramidal projection that is clearly different from noise.

X線管球     Cu 電   圧        40.0      kV
電   流        100       mA
スタート角度   6.Odeg。
X-ray tube Cu voltage 40.0 kV
Current 100 mA
Starting angle 6. Odeg.

ストップ角度   35.Odog。Stop angle 35. Odog.

ステップ角度    0.02   dos。Step angle 0.02 dos.

測定時間     0.50   sec。Measurement time 0.50 sec.

本発明において、アモルファス状態とは、X線回折スペ
クトルにおいて全体にピークがブロードであるか若しく
はピークがみられない状態であり、例えばチタニル7タ
ロシアニンを硫酸に溶解させた後、水中にあけて析出さ
せるこ之によって得ることができる。この方法はアシッ
ドペースト処理と呼ばれるが、アシッドペースト処理に
よって得られたアモルファスのチタニル7タロシアニン
は一般に、X線回折スペクトルの6〜8°の領域にピー
クをもつことが多い。
In the present invention, the amorphous state is a state in which the peak is generally broad or no peak is observed in the X-ray diffraction spectrum, and for example, titanyl-7 talocyanine is dissolved in sulfuric acid and then poured into water to precipitate. You can get it by doing this. This method is called acid paste treatment, and the amorphous titanyl-7-talocyanine obtained by acid paste treatment generally has a peak in the 6-8° region of the X-ray diffraction spectrum.

使用水量は広い範囲に選ぶことができる。水はチタニル
7タロシアニンの直ぐ近傍での濃度が重要であり、した
がってアシッドペースト処理直後のウェットペーストを
用いた場合などは、チタニル7タロシアニンの表面が水
で潤されているため溶媒全体量に対して非常に少量の水
で十分となる。
The amount of water used can be selected within a wide range. The concentration of water in the immediate vicinity of titanyl-7-thalocyanine is important, so when using wet paste immediately after acid paste treatment, the surface of titanyl-7-thalocyanine is moistened with water, so A very small amount of water is sufficient.

脂肪族の有機溶媒は溶解性パラメータで分類できるが、
溶解性パラメータが大きすぎるとチタニル7タロシアニ
ンの結晶成長において目的とする結晶型以外の結晶状態
が優先的に生成するようになり、目的の結晶状態を安定
して得ることができなくなる。また溶解性パラメータが
小さすぎる溶媒ではチタニルフタロシアニンに対する親
和性が低すぎるために結晶配列を作り上げる力が不足し
、目的の結晶を十分成長させることができなくなる。
Aliphatic organic solvents can be classified by solubility parameters,
If the solubility parameter is too large, a crystalline state other than the desired crystalline type will preferentially be produced during crystal growth of titanyl-7-talocyanine, making it impossible to stably obtain the desired crystalline state. Furthermore, if a solvent has a too small solubility parameter, the affinity for titanyl phthalocyanine will be too low, and the ability to create a crystal arrangement will be insufficient, making it impossible to sufficiently grow the desired crystal.

本発明の製造法においては溶解性パラメータが8〜11
の範囲にある溶媒が用いられる。このような範囲の溶媒
としては、例えば、シクロヘキサノン、メチルエチルケ
トン、メチル−t−ブチルケトン等のケトン類、テトラ
ヒドロ7ラン、ジオキサン、ジインブチルエーテル等の
エーテル類、ジクロルメタン、クロロホルム、四塩化炭
素、1.2−ジクロルエタン、1.1.2−トリクロル
エタン、1.1.2.2−テトラクロルエタン、ブロム
グロバン、1.1.24リクロルエチレン等のハロゲン
化炭化水素類、酢酸エチル、酢酸イソプロピル、酢fi
−t−ブチル、プロピオン酸メチル等のエステル類、シ
クロヘキサノール、ペンタノール等の長鎖アルコール類
などが挙げられる。
In the production method of the present invention, the solubility parameter is 8 to 11.
A solvent within the range of is used. Examples of solvents in this range include ketones such as cyclohexanone, methyl ethyl ketone, and methyl t-butyl ketone, ethers such as tetrahydro7rane, dioxane, and diimbutyl ether, dichloromethane, chloroform, carbon tetrachloride, and 1,2- Halogenated hydrocarbons such as dichloroethane, 1.1.2-trichloroethane, 1.1.2.2-tetrachloroethane, bromogloban, 1.1.24-lichlorethylene, ethyl acetate, isopropyl acetate, vinegar fi
Examples include esters such as -t-butyl and methyl propionate, and long chain alcohols such as cyclohexanol and pentanol.

処理の方法としては一般的な撹拌装置で撹拌するもので
あるが、その他にホモミキサー ディスパーザ、アジタ
ー或はボールミル、サンドミル、アトライタ、超音波分
散装置等を用い機械的な力を利用することもできる。
The processing method is to stir with a general stirring device, but it is also possible to use mechanical force using a homomixer, disperser, agitator, ball mill, sand mill, attritor, ultrasonic dispersion device, etc. .

このようにして得られたチタニルフタロシアニンは電子
写真感光体のキャリア発生物質として用いた時に特に優
れl;特性を発揮する。そのような用途においては、ま
ず、チタニルフタロシアニンを適当な溶媒中にサンドミ
ル、ボールミル等を用いて分散し、導電性の支持体上に
塗布してキャリア発生層を形成し、その上にキャリア輸
送物質をバインダとともに溶媒に溶解した液を塗布して
キャリア輸送層を形成して電子写真感光体を作ることが
できる。
The titanyl phthalocyanine thus obtained exhibits particularly excellent properties when used as a carrier generating material for electrophotographic photoreceptors. In such applications, titanyl phthalocyanine is first dispersed in a suitable solvent using a sand mill, ball mill, etc., and coated on a conductive support to form a carrier generation layer, and a carrier transport material is applied on top of this. An electrophotographic photoreceptor can be produced by coating a solution obtained by dissolving the above and a binder in a solvent to form a carrier transport layer.

次に本発明における具体的な!l!施例をしめす。Next, the specifics of the present invention! l! An example is shown.

〔実施例〕〔Example〕

(チタニル7タロシアニンの合皮) 1.3−ジイミノインインドリン: 29.2gとα−
クロルナフタレン; 20Gm+2を混合し、チタニウ
ムテトラブトキシド; 20.4gを加えて、窒素雰囲
気下に140〜150℃で2時間加熱し、統いて180
℃で3時間反応させた。放冷した後析出物を濾取し、a
−クロルナフタレンで洗浄、次いでクロロホルムで洗浄
し、さらに2%塩酸水溶液で洗浄、水洗、最後にメタノ
ール洗浄して、乾燥の後26.2g(91,0%)のチ
タニル7タロシアニンを得た。
(Synthetic leather of titanyl 7 thalocyanine) 1.3-diiminoinindoline: 29.2g and α-
Mix 20Gm+2 of chlornaphthalene, add 20.4g of titanium tetrabutoxide, heat at 140-150°C for 2 hours under nitrogen atmosphere, and heat to 180°C.
The reaction was carried out at ℃ for 3 hours. After cooling, the precipitate was collected by filtration, a.
- Washing with chlornaphthalene, then washing with chloroform, further washing with 2% aqueous hydrochloric acid, washing with water, and finally washing with methanol to obtain 26.2 g (91.0%) of titanyl 7-talocyanine after drying.

(実施例1) チタニルフタロシアニン; 100gを2kgの濃硫酸
に溶解し、2012の水にあけて析出させて濾取し、ア
モルファス状態のウェットペーストを得I;。
(Example 1) Titanyl phthalocyanine; 100 g was dissolved in 2 kg of concentrated sulfuric acid, poured into 2,012 ml of water, precipitated and collected by filtration to obtain an amorphous wet paste.

またこのウェットペーストの一部を乾燥させてアモルフ
ァス状態の乾燥粉を得た。乾燥粉のX線回折スペクトル
を第1図に示す。
Further, a part of this wet paste was dried to obtain an amorphous dry powder. The X-ray diffraction spectrum of the dry powder is shown in FIG.

アモルファス状態のウェットペースト;2gに1.2−
ジクロルエタン; 200m12を加え室温において2
時間撹拌した。その後メタノール; 400mgで希釈
して濾過しメタノールで洗浄して乾燥し、第2図のX線
回折パターンをもつ結晶を得た。
Amorphous wet paste; 1.2- to 2g
Dichloroethane; Add 200ml and leave at room temperature 2
Stir for hours. Thereafter, the mixture was diluted with 400 mg of methanol, filtered, washed with methanol, and dried to obtain crystals having the X-ray diffraction pattern shown in FIG.

<*施例2) !lI施例1で用いたアモルファス状態のウェットペー
スト;2gにナト2ヒドロフラン:200・aを加え、
水冷下に1時間の撹拌を行った。メタノールで希釈して
濾過し、メタノール洗浄後乾燥して第3図のX線回折パ
ターンをもつ結晶を得た。
<*Example 2)! lI Add 200·a of nat-2-hydrofuran to 2 g of the amorphous wet paste used in Example 1,
Stirring was performed for 1 hour while cooling with water. The mixture was diluted with methanol, filtered, washed with methanol, and dried to obtain crystals having the X-ray diffraction pattern shown in FIG.

(実施例3) 実施例1で得たアモルファス状態の乾燥粉1gに1.1
.2.2−テトラクロルエタン; 100−aを加え、
撹拌下に水; 100mff1を滴下した後50℃で3
時間撹拌した。放冷の後メタノール; 400m12で
希釈して濾過しメタノール洗浄して乾燥し、第4図のX
線回折パターンをもつ結晶を得た。
(Example 3) 1.1 g of the amorphous dry powder obtained in Example 1
.. 2.2-tetrachloroethane; add 100-a,
Water; 100 mff1 was added dropwise with stirring, and then 3 at 50°C.
Stir for hours. After cooling, dilute with methanol; 400ml, filter, wash with methanol, dry, and
A crystal with a line diffraction pattern was obtained.

(応用例) 合或例1で得た第1図のチタニル7タロシアニン:2g
とシリコーン樹脂rKR−5240,15%キシレン−
ブタノール溶液」 (信越化学社製)の30gをインク
ロルノール; 100m12中にサンドミルヲ用いて分
散し、これをアルミニウムを蒸着したポリエステルベー
ス上にワイヤバーで塗布して厚さ0.3ハのキャリア発
生層を形成した。次いで、その上にキャリア輸送物質と
してN、N−ジエチルアミノ−p−ベンズアルデヒドジ
フェニルヒドラゾン; 1.2gとポリカーボネート樹
脂「ニーピロンZ−200J  (三菱瓦斯化学社製)
;1.5gとを1.2−ジクロルエタン; 10m+1
に溶かした液をブレード塗布機で塗布して厚さ20μ嘗
のキャリア輸送層を形成して、電子写真感光体としl;
(Application example) Titanyl 7 thalocyanine shown in Figure 1 obtained in Example 1: 2 g
and silicone resin rKR-5240, 15% xylene-
Disperse 30 g of "butanol solution" (manufactured by Shin-Etsu Chemical Co., Ltd.) in a 100 m2 inklorol solution using a sand mill, and apply this onto a polyester base coated with aluminum using a wire bar to form a carrier generation layer with a thickness of 0.3 mm. was formed. Next, 1.2 g of N,N-diethylamino-p-benzaldehyde diphenylhydrazone as a carrier transport substance and a polycarbonate resin "Nipilon Z-200J (manufactured by Mitsubishi Gas Chemical Co., Ltd.)" were added thereon.
;1.5g and 1,2-dichloroethane; 10m+1
A carrier transport layer having a thickness of 20 μm was formed by applying a solution dissolved in the above using a blade coating machine, and an electrophotographic photoreceptor was prepared.
.

このようにして得られた感光体は、ペーパアナライザE
PA−8100(川口電気社製)を用いて次のような評
価を行った。すなわち、表面に負のコロナ帯電を行って
約1200Vとし、5秒間の電位減衰率りを求め、統い
て表面照度が2 (lux)となるような露光を行って
、表面電位を露光開始時の1/2値まで低下させるのに
必要な露光量E l/1を求めた。
The photoreceptor thus obtained was processed using a paper analyzer E.
The following evaluation was performed using PA-8100 (manufactured by Kawaguchi Electric Co., Ltd.). That is, the surface is negatively corona charged to approximately 1200V, the potential decay rate is determined for 5 seconds, and the surface is exposed to light such that the surface illuminance is 2 (lux). The exposure amount E 1/1 required to reduce the value to 1/2 was determined.

その結果、D−21%であり、E I/!−0,7(1
ux−sec)であって、帯電能、感度ともに優れた特
性を示した。
The result was D-21% and E I/! −0,7(1
(ux-sec), and exhibited excellent characteristics in both charging ability and sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアモルファス状態のチタニルフタロシアニンの
X線回折図、第2図乃至第4図は本発明に係るチタニル
7タ ロシアニンのX線回折図であ る。
FIG. 1 is an X-ray diffraction diagram of titanyl phthalocyanine in an amorphous state, and FIGS. 2 to 4 are X-ray diffraction diagrams of titanyl 7-thalocyanine according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 水の存在下に、アモルファスのチタニルフタロシアニン
を溶解性パラメータ値が8〜11の範囲に属する脂肪族
有機溶媒で処理することにより、Cu−Ka線に対する
X線回折スペクトルの9.5±0.2゜、24.1±0
.2゜、27.2±0.2゜にピークを示すような結晶
状態に変換することを特徴とするチタニルフタロシアニ
ンの製造方法。
By treating amorphous titanyl phthalocyanine with an aliphatic organic solvent having a solubility parameter value in the range of 8 to 11 in the presence of water, the X-ray diffraction spectrum for the Cu-Ka line was 9.5±0.2.゜、24.1±0
.. A method for producing titanyl phthalocyanine, which comprises converting the titanyl phthalocyanine into a crystalline state exhibiting peaks at 2° and 27.2±0.2°.
JP17035589A 1989-06-30 1989-06-30 Production of titanyl phthalocyanine by crystallization Pending JPH0335064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17035589A JPH0335064A (en) 1989-06-30 1989-06-30 Production of titanyl phthalocyanine by crystallization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17035589A JPH0335064A (en) 1989-06-30 1989-06-30 Production of titanyl phthalocyanine by crystallization

Publications (1)

Publication Number Publication Date
JPH0335064A true JPH0335064A (en) 1991-02-15

Family

ID=15903398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17035589A Pending JPH0335064A (en) 1989-06-30 1989-06-30 Production of titanyl phthalocyanine by crystallization

Country Status (1)

Country Link
JP (1) JPH0335064A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0997783A3 (en) * 1998-10-28 2000-10-18 Sharp Kabushiki Kaisha Crystalline oxotitanylphthalocyanine and electrophotographic photoreceptor using the same
US6225015B1 (en) 1998-06-04 2001-05-01 Mitsubishi Paper Mills Ltd. Oxytitanium phthalocyanine process for the production thereof and electrophotographic photoreceptor to which the oxytitanium phthalocyanine is applied
US6521387B2 (en) 2000-05-09 2003-02-18 Ricoh Company, Ltd. Electrophotographic photoreceptor, method of manufacturing the photoreceptor, and electrophotographic image forming method and apparatus using the photoreceptor
EP1553079A2 (en) 2003-12-03 2005-07-13 Orient Chemical Industries, Ltd. Triarylamine dimer derivative having amorphous phase

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225015B1 (en) 1998-06-04 2001-05-01 Mitsubishi Paper Mills Ltd. Oxytitanium phthalocyanine process for the production thereof and electrophotographic photoreceptor to which the oxytitanium phthalocyanine is applied
EP0997783A3 (en) * 1998-10-28 2000-10-18 Sharp Kabushiki Kaisha Crystalline oxotitanylphthalocyanine and electrophotographic photoreceptor using the same
US6521387B2 (en) 2000-05-09 2003-02-18 Ricoh Company, Ltd. Electrophotographic photoreceptor, method of manufacturing the photoreceptor, and electrophotographic image forming method and apparatus using the photoreceptor
EP1553079A2 (en) 2003-12-03 2005-07-13 Orient Chemical Industries, Ltd. Triarylamine dimer derivative having amorphous phase

Similar Documents

Publication Publication Date Title
JPH01221459A (en) Gallium phthalocyanine compound and electrophotographic photoreceptor containing the same
JPH08259835A (en) Production of hydroxygallium phthalocyanine and laminated photoconductive image forming member
JP2657836B2 (en) Electrophotographic photoreceptor
JPH0335064A (en) Production of titanyl phthalocyanine by crystallization
JP3141157B2 (en) Method for producing titanyl phthalocyanine by crystal transformation
JPH06279704A (en) Preparation of iv type oxytitanium phthalocyanine
JPH05333575A (en) Electrophotographic sensitive body
JP4461011B2 (en) μ-Oxo bridged heterogeneous metal phthalocyanine compound and method for selective production thereof
JPH04224872A (en) Preparation of titanylphthalocyanine crystal
JPH03217462A (en) Production of titanyl phthalocyanine by crystal transformation
JPH03217461A (en) Production of titanyl phthalocyanine by crystal transformation
JP2873597B2 (en) Method for producing titanyl phthalocyanine by crystal transformation
JPH0352056B2 (en)
JPH02256059A (en) Electrophotographic sensitive body
JP3036352B2 (en) Electrophotographic photoreceptor
JP5052217B2 (en) Dispersion and method for producing electrophotographic photosensitive member
JPH05345867A (en) Dispersion of titanylphthalocyanine crystal
JP2532795B2 (en) Method for manufacturing electrophotographic photoreceptor
JPH07207184A (en) Production of x-type nonmetallophthazlocyanine
JP4326032B2 (en) Process for producing β-type titanyl phthalocyanine
JPH02215867A (en) Preparation of oxytitanium phthalocyanine crystal
JPH0310256A (en) Electrophotographic sensitive body
JP2008174677A (en) Process for producing y-type titanyl phthalocyanine crystal
JPH08176458A (en) Phthalocyanine composition and eletrophotographic photoreceptor
JPH0335063A (en) Treating method for phthalocyanine acid paste