JPS63200278A - Image quality inspection apparatus - Google Patents

Image quality inspection apparatus

Info

Publication number
JPS63200278A
JPS63200278A JP62032565A JP3256587A JPS63200278A JP S63200278 A JPS63200278 A JP S63200278A JP 62032565 A JP62032565 A JP 62032565A JP 3256587 A JP3256587 A JP 3256587A JP S63200278 A JPS63200278 A JP S63200278A
Authority
JP
Japan
Prior art keywords
small
area
uniformity
image
small area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62032565A
Other languages
Japanese (ja)
Inventor
Hideo Numagami
沼上 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62032565A priority Critical patent/JPS63200278A/en
Publication of JPS63200278A publication Critical patent/JPS63200278A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect the variance in density contained in an ambiguous video signal in accordant with human visual characteristics, by dividing a memory area into smaller pieces and performing comparison of the evenness of image quality among those divided small areas. CONSTITUTION:A light box 1 radiates white light on an image pickup device 2 to be inspected. Video signals given from the device 2 are stored in an image memory 4 of an image quality inspector 10 via a decoder 3. A density variance detection controlling part 5 divides the memory area of the memory 4 into smaller pieces and obtains the evenness in picture quality for each of these divided small areas. In case the evenness of a noticed small area is higher than those of its nearby small areas, said small area is extracted as the maximum small area. Then this small area is decided as a density variance area if the evenness obtained by normalizing once the evenness of said maximum small area is higher than a prescribed threshold value.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、搬&装置等の映像信シ号中に存在づるしみ等
の?1度むらのイ】無を検査する画質検査装置に関する
ものである。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) The present invention is directed to the prevention and control of defects such as stains that exist in video signals from transportation and equipment. This invention relates to an image quality inspection device that inspects for one-degree unevenness.

〈従来の技術) 例えば、CCDカラーイメージセン4すとしては、赤、
青、緑の三原色フィルタを各CCD1lii&素子に貼
着し、画像を三原色に分割して読取るものが知られてい
る。ところが、上記フィルタの貼着が不均一、不完全で
あると、得られた映像信号中に色むら<濃度むら)が発
生し、良質の画像を得ることができない。
(Prior art) For example, as a CCD color image sensor, red,
It is known that three primary color filters of blue and green are attached to each CCD element and the image is divided into the three primary colors and read. However, if the attachment of the filter is uneven or incomplete, color unevenness <density unevenness) will occur in the obtained video signal, making it impossible to obtain a high-quality image.

上述のように映像信号中に根源的に存在する淵度むらを
検出する装置としては、従来より微分二値化方式を使用
した装置が知られている。この装置は濁度むらを含む映
像信号を微分フィルタでフィルタリングし、次いで予め
設定された閾値で二値化して濁度むらと背景との境界部
分を検出するものである。
As a device for detecting the depth unevenness that fundamentally exists in a video signal as described above, a device using a differential binarization method is conventionally known. This device filters a video signal containing uneven turbidity using a differential filter, then binarizes it using a preset threshold to detect the boundary between the uneven turbidity and the background.

しかしながら、上記従来装置は、濃度むらと背景との差
が明瞭な場合には容易に境界部分を検出することができ
るものの、濃度がゆるやかに変化してl11度むらと背
景との境界部分が不明瞭な場合には十分な検出ができな
い。
However, although the conventional device described above can easily detect the boundary portion when the difference between the density unevenness and the background is clear, the density changes slowly and the boundary portion between the 11° unevenness and the background is unclear. In clear cases, sufficient detection is not possible.

このことを第6図、第7図と用いてさらに詳しく説明す
る。第6図は濃度むらのある映像信号の、第7図は正常
な映像信号の各画素列を示している。
This will be explained in more detail using FIGS. 6 and 7. FIG. 6 shows each pixel row of a video signal with uneven density, and FIG. 7 shows each pixel row of a normal video signal.

また、第6図(A)、第7図(A)は、16×16の構
成の画素列を伊予化したもので、図中の数字は各画素の
濃度値を示している。さらに、第6S度値を示すもので
ある。第6図中の囲み部分は濃度むら部分である。
6(A) and FIG. 7(A) are pixel arrays having a 16×16 configuration, and the numbers in the figures indicate the density value of each pixel. Furthermore, it indicates the 6th S degree value. The boxed area in FIG. 6 is an uneven density area.

第6図(B)と第7図(13)とを比較しでみると、第
6図([3)の囲み部分は濁度むらの部分であるが、背
頚部分との差が小さく、背n部分と濁度むら部との区別
が困難である。また、第7図([3)の正常な画像信号
と比較しても濁度むら部分tよ(よとlυどわからない
Comparing Figure 6 (B) and Figure 7 (13), the boxed area in Figure 6 ([3) is an area with uneven turbidity, but the difference from the dorsal and neck area is small; It is difficult to distinguish between the back part and the uneven turbidity part. Also, even if we compare it with the normal image signal in Figure 7 ([3)], we cannot tell where the turbidity is uneven.

一方、上記従来例では、微分フィルタ処理は、フィルタ
の中心画素と近傍画素との間の絶対的な漠1哀差を阜木
としているので、例えば、値10の背景濃度の映像信号
中に溌1α差が±10の濃度むらが存在するものに対し
てhTiが100の背1i4111度をもつ映像信号中
に濃度差±20の1Iil!度むらがq在り−る場合の
方が微分フィルタリング後の結果が人ぎくなる。ところ
が、人間の視覚特性tよ相対的な111度差が大きい前
者の濃度むらを強く感じる。
On the other hand, in the conventional example described above, the differential filter processing is based on the absolute difference between the center pixel of the filter and the neighboring pixels. 1Iil with a density difference of ±20 in a video signal with a height of 1i4111 degrees with hTi of 100 where there is density unevenness with a 1α difference of ±10! When there are q degrees of unevenness, the result after differential filtering is more appealing. However, the difference in density of the former, which has a relative difference of 111 degrees compared to the human visual characteristic t, is strongly felt.

さらに、画像全体に一様にしみ状の、濁度むらが存在す
る場合よりも、じみが一つだけ存在1−る場合の方が強
く感じるという特性がある。
Furthermore, there is a characteristic that the presence of only one smear is felt more strongly than when there is uniformly smudge-like turbidity unevenness throughout the image.

このように、従来のものは人間の視覚特性に合った濁度
むら検出がされていないという問題点があった。
As described above, the conventional method has a problem in that turbidity unevenness is not detected in a way that matches the visual characteristics of humans.

〈発明が解決しようとする問題点) 上)本のように、従来の画質検査装置にあっては、濁度
むら部分と背州部分との差が不明瞭な場合には検査が困
難であった。また、人間の視覚特性に基づく検査が行わ
れていないので、検査結果が不充分1’K 6のであっ
た。
<Problems to be solved by the invention> 1) As mentioned above, with conventional image quality inspection equipment, it is difficult to inspect when the difference between the uneven turbidity area and the backwater area is unclear. Ta. In addition, since no test was conducted based on human visual characteristics, the test results were insufficient.

本発明は上記従来の問題点に鑑みてなされたものであり
、ぞの目的は、濁度むら部分と背景部分との差が不明瞭
な映像信号中の濁度むらも検出できるととらに、人間の
視覚特性に適合した81度むらを検出りることができる
画質検査装置を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to be able to detect uneven turbidity in a video signal in which the difference between the uneven turbidity portion and the background portion is unclear. An object of the present invention is to provide an image quality inspection device capable of detecting 81-degree unevenness that is compatible with human visual characteristics.

[発明の構成] 〈問題点を解決するだめの手段) −1−記問題点を解決するために本発明は、撮像装置等
の検査対象の映像信号中に含まれる濃度むらの有無を検
査する装置であって、 基準となる白色光源を囮像した前記検査ス・j象からの
映像信号を1子化してX×Y個の領域に記憶する記憶手
段と、 画像記憶手段上の上記記憶領域をmxn個の小領域に分
割する分割手段と、 各小領域fuに画質の均一度を求める均一度演口手段と
、 石目した小領域と該小領域が隣接する近傍小領域との均
一度を比較して該小領域の均一度が近傍小領域のいずれ
かの均一度よりも大きい場合には極大小領域として抽出
づる極大小領域抽出手段と、抽出された極大小領域の均
一度を正規化し、この正規化された均−匪が予め設定さ
れた閾値以上である場合に該小領域を濁度むら領域と判
定ツる判定手段と、 を有することを特徴とげる1、 (作用) 本発明では、銀像装置の映像信号中に濁度むらが含まれ
るか否かを検査づるために、まず、基準となる白色光源
を層像し、その映像信号が記憶−T一段に記憶される。
[Structure of the Invention] <Means for Solving the Problems> In order to solve the problems mentioned in -1-, the present invention inspects the presence or absence of density unevenness contained in a video signal of an object to be inspected, such as an imaging device. The apparatus comprises: storage means for converting video signals from the test object, which is a decoy image of a reference white light source, into one and storing it in X×Y areas; and the storage area on the image storage means. a dividing means for dividing the image into m×n small regions, a uniformity performance means for determining the uniformity of image quality in each small region fu, and a uniformity ratio between the rough small region and neighboring small regions to which the small region is adjacent. A local maximum/small area extraction means that compares the uniformity of the small area and extracts it as a local maximum/small area if the uniformity of the small area is greater than the uniformity of any of the neighboring small areas, and a local maximum/small area extraction means that normalizes the uniformity of the extracted local maximum/small area. and determining means for determining the small area as a turbidity uneven area when the normalized average power is equal to or higher than a preset threshold value. 1. (Operation) The present invention In order to test whether turbidity unevenness is included in the image signal of the silver imager, first, a reference white light source is layered, and the image signal is stored in one stage of memory-T.

次いで、その記憶領域がmxn個の小領域に分割され、
各小領域毎に画質の均一度が求められる。
Next, the storage area is divided into mxn small areas,
The uniformity of image quality is determined for each small region.

そして、着目した小領域の均一度が該小領域が11g1
接する近傍小領域の均一度のいずれよりも大きい場合に
、その小領域を極大小領域として抽出し、この抽出され
た極大小領域の均一度(極大値)を正規化した後の均一
度が予め設定された閾値以上である場合に該小領域を濃
度むら領域と判定する。
Then, the uniformity of the focused small area is 11g1
If the uniformity is greater than any of the adjacent small regions, the small region is extracted as a local maximum and small region, and the uniformity after normalizing the uniformity (maximum value) of this extracted local maximum and small region is determined in advance. If the value is greater than or equal to the set threshold, the small area is determined to be an uneven density area.

(実施例) 第1図は本発明に係る装置の一実施例の構成を示してい
る。
(Embodiment) FIG. 1 shows the configuration of an embodiment of the apparatus according to the present invention.

本実施例の画質検査装置10は、ライトボックス1の照
用光を画像した搬像装置2の映像信号S1を取り込んで
、この映像化pJS1に含まれるしみ等の濃度むらを人
間の視覚特性を考慮して検出ザるものである。
The image quality inspection device 10 of this embodiment takes in the video signal S1 of the image carrier 2, which is an image of the illumination light of the light box 1, and examines the density unevenness such as spots contained in this visualized pJS1 by human visual characteristics. It is something that should be considered and detected.

ライトボックス1は、基準光源となる白色光源を有し、
検査対象である画像装置2へ向けて白色光を照射りる。
The light box 1 has a white light source serving as a reference light source,
White light is irradiated toward the imaging device 2 to be inspected.

搬像装置2は、例えばCODカラーイメージセン1すで
あり、画素毎にi、f5.緑のいずれかのカラーフィル
タが貼着されて構成されている。前)23したように、
これらのカラーフィルタを各素子に貼着する際の不均一
や不完全等に起因して、この搬像装置2の映像信号中に
は根源的にしみ状の濃度むらを含むおそれがある。
The image carrier 2 is, for example, a COD color image sensor 1, and each pixel has i, f5, . It consists of a green color filter attached. Previous) As I did 23,
Due to non-uniformity, imperfection, etc. when these color filters are attached to each element, there is a possibility that the video signal of the image carrier 2 fundamentally contains density unevenness in the form of spots.

画質検査装置10は、転像装置2からの映像信号S1を
ザンブリングして量子化するデコーダ3と、fl(子化
された映像信号を第3図に示すようにX×Y−256X
256の大きさで記憶づる画像メモリ4と、装置全体を
制御するとともに画像メモリ4内に記憶された映像信号
内から濃度むらを検出づるために、第2図に示1処理を
実行可能4【Ia麿むら検出制御部5と、映像信号S1
を画像表示するとともに、検出された濃度むらの位置表
示をするC RTディスプレイで構成された表示部6と
を備えている。
The image quality inspection device 10 includes a decoder 3 that zumbling and quantizing the video signal S1 from the image transfer device 2, and a decoder 3 that zumbling and quantizing the video signal S1 from the image transfer device 2,
In order to control the entire apparatus and detect unevenness in density from the video signal stored in the image memory 4, the image memory 4 stores data in a size of 256 pixels, and can execute the process 4 shown in FIG. Ia unevenness detection control section 5 and video signal S1
The display unit 6 includes a CRT display that displays images and displays the position of detected density unevenness.

本実施例は以上の構成であり、以下その作用を第2図以
下の図面を用いて説明づる。
The present embodiment has the above-described configuration, and its operation will be explained below with reference to FIG. 2 and subsequent drawings.

第2図のブローチ1r−トに示寸ように、検査対象であ
る撮@装置2で画像された基準白色光による映像信号S
1はデコーダ3で量子化されて画像メモリ4に記憶され
る。(ステップ201)。その画像の大きさは、第3図
に示すようにX×Y=256X256 (画!#)テあ
る。
As shown in the broach 1r-t of Fig. 2, a video signal S based on the reference white light imaged by the photographing device 2 to be inspected.
1 is quantized by the decoder 3 and stored in the image memory 4. (Step 201). The size of the image is X×Y=256×256 (picture!#) as shown in FIG.

次に第3図に示すように入力されたデータを1小領域が
1 (3x 16構成で、X方向に半分(8画素分)重
?12Jるように31X16個の小領域に分割する。つ
まり、各小領域はX方向にm=l〜31、Y方向にn=
1〜16に分割され、その位置は(m、口)で示される
Next, as shown in Fig. 3, the input data is divided into 31 x 16 small areas such that each small area overlaps by half (eight pixels) by 12J in the X direction, in a 3 x 16 configuration. , each small area has m=l~31 in the X direction, and n=1 in the Y direction.
It is divided into 1 to 16, and its position is indicated by (m, mouth).

次に分割された各小領域の濃度の均一度を求める処理が
実行される(ステップ203〜ステツプ215)、11
11mの均一度は、11aの標準偏差3mn(m =1
〜31.n=1〜16)として求められる。
Next, a process for determining the density uniformity of each divided small area is executed (steps 203 to 215).
The uniformity of 11m is the standard deviation of 11a of 3mn (m = 1
~31. n=1 to 16).

まず、ステップ203で、初期化処理がされ、標準偏差
Smn=0. y =i、 n =iとされる。そして
、(m、n)=(1,1>の小領域から順次性へし偏差
3mnが求められる。
First, in step 203, initialization processing is performed and standard deviation Smn=0. It is assumed that y = i and n = i. Then, a deviation of 3 mn from the small region of (m, n)=(1, 1>) is determined from the sequentiality.

先ず、小領域内の平均温度Pが以下の(1)式により求
められる。
First, the average temperature P within a small area is determined by the following equation (1).

また、その標準偏差Smnは で求められる。Also, its standard deviation Smn is is required.

上)蚤のように、小領域(1,1)の標準偏差S11が
求められると、次に、小頭1i!(2,1)の標準偏差
S2+ が求められる。このようにして、小frf域(
31,16)までの全領域に渡って、各標準偏差S I
 nが求められる(ステップ205°〜215)。
Above) Like a flea, once the standard deviation S11 of the small region (1, 1) is found, next, the small head 1i! The standard deviation S2+ of (2, 1) is found. In this way, the small frf region (
31, 16), each standard deviation S I
n is determined (steps 205° to 215).

次のステップ217〜233では、各小領域について1
11度むらがあるか否かの判定処理が実行される。
In the next steps 217 to 233, 1
A process for determining whether there is an 11 degree unevenness is executed.

ずなわら、小領域(2,2>から小頭域(30゜15)
まひの各小領域につい′Cその8近傍領域との均一度が
比較される。例えば、第3図中斜線で示す小領域(2,
2>の均一度822については、その8近傍領域である
(1.1)、(1,2)。
Zunawara, small area (2, 2> to small head area (30°15)
The uniformity of each small region of paralysis with its eight neighboring regions is compared. For example, the small area (2,
Regarding the uniformity 822 of 2>, its 8 neighboring regions are (1.1) and (1,2).

(1,3)、   (2,1)、   <2. 3)、
   (3,1)、(3,2>及び(3,3)の各均一
度S管1゜S+ 2 、82 + 、 823 、83
 + 、 832及びS33とが比較される。その結果
、均一度822が上記8近傍の均一度のいずれよりも大
きい場合、Jなわら均一度822が極大値である場合に
は小領域(2,2>は極大小領域として抽出される。
(1,3), (2,1), <2. 3),
(3,1), (3,2> and (3,3) uniformity S tube 1°S+ 2 , 82 + , 823 , 83
+, 832 and S33 are compared. As a result, if the uniformity 822 is larger than any of the eight neighboring uniformities, and if the uniformity 822 is the maximum value, a small region (2, 2> is extracted as a maximum/small region).

そして、この均一度(極大値)S22は近傍の均一度と
の相対的な比を求めるために次の一般式により正規化さ
れる。
Then, this uniformity (maximum value) S22 is normalized by the following general formula in order to obtain a relative ratio with the neighboring uniformity.

ただし、(i、j)=(m、n)である。However, (i, j)=(m, n).

次いで、正規化後の均一度S=mriと予め設定された
閾値l−bとの大小が判定され、この均一度S = m
nが閾値Th以上であれば、その小領域は“lHI[む
ら″と判定される。
Next, the magnitude of the uniformity S=mri after normalization and a preset threshold value lb is determined, and this uniformity S=mri
If n is greater than or equal to the threshold Th, the small area is determined to be “lHI [unevenness”].

閾値Thの値としては、人間の視覚特性を考慮して適宜
2(値が選択される。そして、その濃度むら位置が表示
部6に表示される。
As the value of the threshold Th, a value of 2 (2) is appropriately selected in consideration of human visual characteristics.Then, the position of the density unevenness is displayed on the display unit 6.

次に本実施例の作用をざらに具体的に説明する。Next, the operation of this embodiment will be explained in detail.

第4図(A>は温度むらを含む映像信号の、及び第5図
(A)は良品の映像信号の、それぞれ各小領域の均一度
5Ilnを示すものである。また、第4図(B)及び第
5図(B)は、第4図([3)及び第5図(Δ)の均一
度3nnの前記極大値を求め、その極大値を8近傍領域
の均一度でIF現化した結果を示すものである。第4図
中実線で「111υだ部分が濃度むら領域である。
Figure 4 (A> shows the uniformity 5Iln of each small area of a video signal containing temperature unevenness, and Figure 5 (A) shows a good video signal, respectively. ) and FIG. 5(B) are obtained by calculating the maximum value of uniformity 3nn in FIG. 4([3) and FIG. The results are shown.The solid line in Fig. 4 indicates the density unevenness region.

第4図くΔ)の濃度むら領域と第5図(△)の破線部分
の均一度とを比較づると、それぞれ値22と値34で良
品サンプルの方が絶対値は大ぎい。
Comparing the uniformity of the density unevenness area shown in FIG. 4 (Δ) and the broken line area in FIG.

ところが、第4図(B)と第5図N3)とを比較すると
、極大値を正規化した後は、温度むらWlf分は値18
1で良品ザンブルの破線部分は埴127となり、濃度む
ら部分の値の方が大ぎ<<rっていることがわかる。
However, when comparing Figure 4 (B) and Figure 5 N3), after normalizing the maximum value, the temperature unevenness Wlf has a value of 18
It can be seen that the broken line area of the non-defective sample with 1 is 127, and the value of the uneven density area is larger.

従って、例えば、閾値を値150に設定すると、第4図
(B)の実線囲み部分は温度むらとして検出されるが、
第5図(B)の破線囲み部分は温度むらとはされないの
である。
Therefore, for example, if the threshold value is set to a value of 150, the area surrounded by the solid line in FIG. 4(B) will be detected as temperature unevenness, but
The area surrounded by the broken line in FIG. 5(B) is not considered to be temperature unevenness.

このように二、本実施例では、第6図及び第7図に示し
た従来例に比べて′a度むら部分と背景部分との境界が
不明瞭な映像信号中の濃度むらをも検出できる。また、
絶対的な均一度ではなく、近傍領域との相対的な均一度
でもって11度むらか否かの判定をしているので、人間
の視覚特性を考慮した正確な画像むら検出が可能となる
In this way, in this embodiment, compared to the conventional examples shown in FIGS. 6 and 7, it is possible to detect density unevenness in a video signal where the boundary between the uneven portion and the background portion is unclear. . Also,
Since the determination of 11 degree unevenness is made based on the relative uniformity with neighboring areas rather than the absolute uniformity, it is possible to accurately detect image unevenness in consideration of human visual characteristics.

[発明の効果] 以上説明したように本発明によれば、温度むら部分と背
景部分との差が不明瞭な映像信号中の温度むらも検出r
き、また、人間の視覚特性に適合した正確なiiむらを
検出することが可能となる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to detect temperature unevenness in a video signal in which the difference between the temperature uneven part and the background part is unclear.
Furthermore, it is possible to accurately detect ii unevenness that is compatible with human visual characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置の一実施例の構成を示すブロ
ック図、第2図は本発明に係る装置の一実施例の処理手
順を示すフローチャート、第3図は画像メモリの構成図
、第4図及び第5図は本発明に係る一実施例の作用説明
図、第6図及び第7図は従来例の作用説明図である。 1・・・ライトボックス 2・・・IfJi像装置 3・・・デコーダ 4・・・画像メモリ 5・・・温度むら検出制御部 6・・・表示部 10・・・画質検査装置
FIG. 1 is a block diagram showing the configuration of an embodiment of the apparatus according to the present invention, FIG. 2 is a flowchart showing the processing procedure of an embodiment of the apparatus according to the present invention, and FIG. 3 is a configuration diagram of an image memory. 4 and 5 are explanatory diagrams of the operation of an embodiment according to the present invention, and FIGS. 6 and 7 are explanatory diagrams of the operation of a conventional example. 1... Light box 2... IfJi image device 3... Decoder 4... Image memory 5... Temperature unevenness detection control section 6... Display section 10... Image quality inspection device

Claims (2)

【特許請求の範囲】[Claims] (1)撮像装置等の検査対象の映像信号中に含まれる濃
度むらの有無を検査する装置であつて、基準となる白色
光源を撮像した前記検査対象からの映像信号を量子化し
てX×Y個の領域に記憶する記憶手段と、 画像記憶手段上の上記記憶領域をm×n個の小領域に分
割する分割手段と、 各小領域毎に画質の均一度を求める均一度演算手段と、 着目した小領域と該小領域が隣接する近傍小領域との均
一度を比較して該小領域の均一度が近傍小領域のいずれ
かの均一度よりも大きい場合には極大小領域として抽出
する極大小領域抽出手段と、抽出された極大小領域の均
一度を正規化し、この正規化された均一度が予め設定さ
れた閾値以上である場合に該小領域を濃度むら領域と判
定する判定手段と、 を有することを特徴とする画質検査装置。
(1) A device that inspects the presence or absence of density unevenness contained in a video signal of an inspection target such as an imaging device, which quantizes the video signal from the inspection target that captures an image of a reference white light source and performs X×Y a storage means for storing the image into three areas; a dividing means for dividing the storage area on the image storage means into m×n small areas; a uniformity calculation means for calculating uniformity of image quality for each small area; Compare the uniformity of the focused small region and neighboring small regions to which the small region is adjacent, and if the uniformity of the small region is greater than the uniformity of any of the neighboring small regions, extract it as a local maximum/small region. a local maximum/small area extracting unit; and a determining unit that normalizes the uniformity of the extracted local maximum/small area and determines the small area to be an uneven density area if the normalized uniformity is equal to or higher than a preset threshold. An image quality inspection device comprising:
(2)上記分割手段は、分割された小領域が互いに重複
するように分割する手段であることを特徴とする特許請
求の範囲第1項に記載の画質検査装置。
(2) The image quality inspection apparatus according to claim 1, wherein the dividing means is a means for dividing the divided small areas so that they overlap with each other.
JP62032565A 1987-02-17 1987-02-17 Image quality inspection apparatus Pending JPS63200278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62032565A JPS63200278A (en) 1987-02-17 1987-02-17 Image quality inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62032565A JPS63200278A (en) 1987-02-17 1987-02-17 Image quality inspection apparatus

Publications (1)

Publication Number Publication Date
JPS63200278A true JPS63200278A (en) 1988-08-18

Family

ID=12362433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62032565A Pending JPS63200278A (en) 1987-02-17 1987-02-17 Image quality inspection apparatus

Country Status (1)

Country Link
JP (1) JPS63200278A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325587A (en) * 2000-05-16 2001-11-22 Dainippon Printing Co Ltd Outward appearance inspecting device
JP2008123208A (en) * 2006-11-10 2008-05-29 Seiko Precision Inc Image analyzer, image analysis method and computer program
JP2015036913A (en) * 2013-08-14 2015-02-23 オリンパス株式会社 Device, method and program for processing image

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325587A (en) * 2000-05-16 2001-11-22 Dainippon Printing Co Ltd Outward appearance inspecting device
JP2008123208A (en) * 2006-11-10 2008-05-29 Seiko Precision Inc Image analyzer, image analysis method and computer program
JP2015036913A (en) * 2013-08-14 2015-02-23 オリンパス株式会社 Device, method and program for processing image

Similar Documents

Publication Publication Date Title
US7978903B2 (en) Defect detecting method and defect detecting device
WO2010146732A1 (en) Defect inspection method and defect inspection device for display panel
US5917957A (en) Method of and apparatus for processing an image
CN108090890B (en) Inspection device and inspection method
JP5088165B2 (en) Defect detection method and defect detection apparatus
JP2009229197A (en) Linear defect detecting method and device
JP2005172559A (en) Method and device for detecting line defect on panel
JPH07159337A (en) Fault inspection method for semiconductor element
JP4244046B2 (en) Image processing method and image processing apparatus
JP2009036582A (en) Inspection method, inspection device and inspection program of plane display panel
US7668344B2 (en) Stain inspection method and apparatus
JP3695120B2 (en) Defect inspection method
JPS63200278A (en) Image quality inspection apparatus
JP2004279239A (en) Method of detecting display defect in liquid crystal panel, and inspection device for display defect therein
JP2007285868A (en) Luminance gradient detection method, flaw detection method, luminance gradient detector and flaw detector
JP5239275B2 (en) Defect detection method and defect detection apparatus
JP6623545B2 (en) Inspection system, inspection method, program, and storage medium
JPH0843315A (en) Automatic diagnosing method for coating film deterioration
JPH08327497A (en) Method for inspecting color liquid crystal display panel
JP3175347B2 (en) Inspection method for foreign substances in sheet products
JPH0682390A (en) Method and apparatus for inspecting surface defect
JP2004219072A (en) Method and apparatus for detecting streak defect of screen
KR101120165B1 (en) Detection method of invisible mark on playing card and a medium thereof
JP2004170109A (en) Apparatus and method for inspecting irregular color
JP2001083474A (en) Method for inspecting liquid crystal display panel