JP3175347B2 - Inspection method for foreign substances in sheet products - Google Patents

Inspection method for foreign substances in sheet products

Info

Publication number
JP3175347B2
JP3175347B2 JP29433592A JP29433592A JP3175347B2 JP 3175347 B2 JP3175347 B2 JP 3175347B2 JP 29433592 A JP29433592 A JP 29433592A JP 29433592 A JP29433592 A JP 29433592A JP 3175347 B2 JP3175347 B2 JP 3175347B2
Authority
JP
Japan
Prior art keywords
image
threshold
area
foreign matter
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29433592A
Other languages
Japanese (ja)
Other versions
JPH06148094A (en
Inventor
正壽 杉山
定男 出川
政宏 矢ヶ部
順一 伊藤
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP29433592A priority Critical patent/JP3175347B2/en
Publication of JPH06148094A publication Critical patent/JPH06148094A/en
Application granted granted Critical
Publication of JP3175347B2 publication Critical patent/JP3175347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、シート状製品に混入し
ている異物を検査するためのシート状製品の異物混入の
検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting foreign matter mixed in a sheet-like product for inspecting foreign matter mixed in the sheet-like product.

【0002】[0002]

【従来の技術】紙等のシート状製品に異物が混入すると
製品としての価値が低くなるためこれを検査する必要が
ある。
2. Description of the Related Art If foreign matter is mixed in a sheet-like product such as paper, the value of the product becomes low, and it is necessary to inspect the product.

【0003】[0003]

【発明が解決しようとする課題】この異物を検査する方
法は、目視による検査は、個人差があり不正確である。
また単に光学的に異物を検出しようとしても異物がシー
ト内に埋まっている場合には、単に表面を見ただけでは
検出することができない問題がある。
In the method of inspecting foreign matter, the visual inspection is inaccurate due to individual differences.
Further, there is a problem that even if an attempt is made to optically detect a foreign substance, if the foreign substance is buried in the sheet, it cannot be detected merely by looking at the surface.

【0004】そこで、本発明の目的は、上記課題を解決
し、異物の混入を光学的に確実に検出できるシート状製
品の異物混入検査方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to provide a method for inspecting foreign matter in a sheet-like product, which can surely optically detect the presence of foreign matter.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、シート状製品の裏面から光を当て、その
表面をCCDカメラで撮像し、CCDカメラで撮影した
画像上で設定レベルより黒く写った部分の面積を設定の
大小2つの面積しきい値で抽出し、小さい面積しきい値
以下の異物検出は、その小さな面積しきい値に合わせて
フィルタサイズを決定し、そのフィルタサイズに合わせ
た最大フィルタを施した結果の画像に最小値フィルタを
施して小さい面積しきい値より大きな部分を残した画像
を求め、その画像から上記CCDカメラで撮影した画像
を減算して各画素の濃淡差を求め、この濃淡差と設定し
たしきい値と比較してしきい値を超えた部分のみを抽出
して濃淡モフォロジーによる小型異物を抽出し、他方C
CDカメラで撮影した良品のシート状製品の画像から画
像統計量に基づいて2値化用しきい値を決定しておき、
この2値化用しきい値で、上記異物検査すべき画像を2
値化すると共に上記大きな面積しきい値以上の部分を抽
出し、上記濃淡モフォロジー処理により求めた画像と画
像統計量処理により求めた画像を合成して異物画像を求
め、この異物画像で認識された部分の個数と面積を求め
て製品の良否を判定するものである。
In order to achieve the above object, the present invention illuminates a sheet-like product with light from the back side, images the surface with a CCD camera, and sets a level on an image taken by the CCD camera. Set the area of the blacker part
Extract with two large and small area thresholds, small area threshold
The following foreign substance detection is performed according to the small area threshold.
Determine the filter size and match it with the filter size
The minimum value filter is applied to the image resulting from applying the maximum filter
Image leaving a larger area than the small area threshold
Is obtained from the image and the image taken with the above CCD camera
Is subtracted to obtain the gray level difference of each pixel, and this gray level difference is set.
Extract only the part that exceeds the threshold compared to the threshold
To extract small foreign matter by shading morphology.
Images from images of good sheet products taken with a CD camera
The threshold for binarization is determined based on the image statistics,
With the threshold for binarization, the image to be inspected for foreign matter is defined as 2
Value and extract the area above the large area threshold.
Images and images obtained by the above-mentioned shading morphology processing.
The image obtained by the image statistic processing is synthesized to obtain the foreign object image.
The number and area of the parts recognized in this foreign matter image
To determine the quality of the product .

【0006】[0006]

【作用】上記構成によれば、シート状製品に光を当てそ
の透過光をCCDカメラで撮像することで、異物がある
部分と無い部分とでは、光の濃淡差が顕著にあらわれる
ため、CCDカメラの画像から濃淡モフォロジー処理に
濃淡差の顕著な部分を探し出すと共に大きな異物は画
像統計量処理で探し出すことで、容易に異物混入を検出
でき、これらの個数や面積を求めることで、シート状製
品の良否を判断できる。
According to the above arrangement, by irradiating the sheet-like product with light and imaging the transmitted light with the CCD camera, the difference in light and shade between the portion having the foreign matter and the portion having no foreign matter appears remarkably. Image morphology processing
Large foreign matter is the field along with be out looking for a significant part of the shading difference Te
Detect foreign matter easily by searching by image statistics processing
By calculating the number and area of these,
The quality of goods can be judged.

【0007】[0007]

【実施例】以下、本発明の一実施例を添付図面に基づい
て詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0008】図1(a)において、投光装置10上には
異物混入を検出すべきシート11が配置され、その上部
にシート11を透過した光と共にシート11を撮像する
モノクロCCDカメラ12が配置される。このモノクロ
CCDカメラ12の信号は画像処理装置13に入力さ
れ、コンピュータ14によりその異物混入が検査され
る。
In FIG. 1A, a sheet 11 for detecting foreign matter is disposed on a light projecting device 10, and a monochrome CCD camera 12 for imaging the sheet 11 together with light transmitted through the sheet 11 is disposed above the sheet 11. Is done. The signal of the monochrome CCD camera 12 is input to the image processing device 13, and the computer 14 inspects the foreign matter for contamination.

【0009】この異物検出のアルゴリズムは図1(b)
に示すように、先ず検査が開始され、画像が入力される
とその画像より濃淡モフォロジーと画像統計量による異
物抽出が行われ、その異物の面積・個数が計測され、製
品の良否が判定されて検査を終了する。なお、予め、モ
ノクロCCDカメラに取り付けられているレンズの絞り
は適切な検査ができるように調整されている。
FIG. 1 (b) shows an algorithm for detecting foreign matter.
As shown in (1), first, inspection is started, and when an image is input, foreign matter is extracted from the image based on density morphology and image statistics, the area and number of the foreign matter are measured, and the quality of the product is determined. End the inspection. The aperture of the lens attached to the monochrome CCD camera is adjusted in advance so that an appropriate inspection can be performed.

【0010】この濃淡モフォロジーと画像統計量による
異物混入検査を図2により詳しく説明する。
The inspection of foreign matter contamination based on the density morphology and image statistics will be described in detail with reference to FIG.

【0011】先ず、モノクロCCDカメラで撮像された
1画面の像20は(a)で示すように横512画素、縦
512画素で構成されるものとする。この画素の信号は
例えば濃淡値を8ビット階調で表現すると黒(透過光無
し)で0のレベル,白(100%透過)で255のレベ
ルまで可変である。画像20上で設定レベルより黒く写
った部分21a,21b,22c〜21eを斜線で示し
てある。
First, it is assumed that an image 20 of one screen taken by a monochrome CCD camera is composed of 512 horizontal pixels and 512 vertical pixels as shown in FIG. For example, when the signal of this pixel is expressed in 8-bit gray scale, the level of the signal is variable up to 0 for black (no transmitted light) and 255 for white (100% transmission). Portions 21a, 21b, 22c to 21e of the image 20 which are darker than the set level are indicated by oblique lines.

【0012】この各部分21a,21b,22c〜21
eの異物は、設定した大小2つの面積しきい値S1,S
2で抽出し、その部分21a,21b,22c〜21e
の面積が、小さい面積しきい値S1以下ならば濃淡モフ
ォロジーによって、大きい面積しきい値S2以上ならば
画像統計量の利用により抽出される。
Each of the parts 21a, 21b, 22c to 21
The foreign substance of e is determined by two large and small area thresholds S1 and S
2 and the parts 21a, 21b, 22c to 21e
Area of, the shading morphology if small area threshold S1 below, is extracted by the use of large area threshold S2 higher if it images statistics.

【0013】次に濃淡モフォロジーによる異物検出につ
いて説明する。面積しきい値S1 に合わせてフィルタの
サイズを決定し、フィルタサイズに合わせて画像20に
対し最大値フィルタを施した結果に、引き続き最小値フ
ィルタを施すと、しきい値面積S1 よりも大きな部分2
1a,22dのみを残した画像24が得られる。この結
果、画像20のA−A線の位置の各画素のレベルが
(d)の曲線26で表わされていたものが、画像24で
はA−A線の位置の各画素のレベルは(d)の曲線25
で表される。(d)の曲線25から曲線26を減算し
(e)に示すように濃淡差を求める。同様に各縦方向を
すべてに対して上述のように濃淡差を求めて、つまり画
像24から画像20を減算して各画素の濃淡差を求め、
設定したしきい値T1 と比較し、しきい値T1 を越えた
部分のみを画素値レベル255、それ以外を画素値レベ
ル0として残すと(f)に示したように、面積が面積し
きい値S1 以下で、かつ、周囲との濃淡差がしきい値T
1 よりも大きい部分22c,22eを2値化した画像2
7が得られる。
Next, detection of foreign matter by shading morphology will be described. The size of the filter is determined in accordance with the area threshold value S1, and the maximum value filter is applied to the image 20 in accordance with the filter size. 2
An image 24 leaving only 1a and 22d is obtained. As a result, the level of each pixel at the position of the AA line of the image 20 is represented by the curve 26 of (d), but the level of each pixel at the position of the AA line is (d) in the image 24. Curve 25)
It is represented by By subtracting the curve 26 from the curve 25 in (d), a gray level difference is obtained as shown in (e). Similarly, the gray level difference is calculated for all the vertical directions as described above, that is, the image 20 is subtracted from the image 24 to obtain the gray level difference of each pixel,
Compared with the set threshold value T1, if only the portion exceeding the threshold value T1 is left as the pixel value level 255 and the other portions are left as the pixel value level 0, as shown in FIG. S1 or less, and the difference in density from the surrounding
Image 2 obtained by binarizing portions 22c and 22e larger than 1
7 is obtained.

【0014】次に画像統計量による異物検出について説
明する。検査前に予め、良品の画像を入力し、画像の平
均濃淡値mおよび標準偏差σを求めた後、平均濃淡値m
と標準偏差σから2値化用しきい値T2 (=m+k*σ
+b k:任意係数,b:バイアス値)を決定してお
く。画像20に対してしきい値T2 で2値化をし、面積
しきい値S2 以上の部分を残すと(b)に示したよう
に、画像レベルが特に低く、かつ、面積が面積しきい値
S2 以上の部分21aを含んだ画像23が得られる。
Next, detection of foreign matter based on image statistics will be described. Before inspection, a non-defective image is input in advance, and the average gray level m and the standard deviation σ of the image are obtained.
From the standard deviation σ and the threshold value T2 for binarization (= m + k * σ
+ B k: arbitrary coefficient, b: bias value). When the image 20 is binarized by the threshold value T2 and a portion equal to or larger than the area threshold value S2 is left, as shown in FIG. An image 23 including the portion 21a above S2 is obtained.

【0015】濃淡モフォロジー処理より求めた画像27
と画像統計量処理により求めた画像23とを合成して
(g)に示すように異物画像28を求める。そしてこの
異物として認識された部分21a,22c,22eの個
数を求めると共にその面積も求め、これらから製品の良
否を判断する。
Image 27 obtained by shading morphology processing
And the image 23 obtained by the image statistic processing are combined to obtain the foreign substance image 28 as shown in FIG. Then, the number and the area of the portions 21a, 22c, and 22e recognized as the foreign matter are obtained, and the quality of the product is determined from these.

【0016】本実施例では、モノクロCCDカメラを用
いたが、カラーCCDカメラを用いてもR,G,B各成
分に対して同様の処理を行うことで検査を実施できる。
In this embodiment, a monochrome CCD camera is used. However, even if a color CCD camera is used, the inspection can be performed by performing the same processing for each of the R, G, and B components.

【0017】また、ここでは画像サイズを512×51
2画素とし、画像濃淡値の階調を8ビット256階調、
濃淡値レベル0を黒、255を白として詳述したが、こ
れにとらわれることなく画像サイズ、階調レベルを選択
しても異物の検査は実施可能である。
In this case, the image size is set to 512 × 51.
Two pixels, the gradation of the image grayscale value is 256 gradations of 8 bits,
Although the gray level level 0 is described in detail as black and 255 as white, it is possible to inspect foreign matter even if an image size and a gradation level are selected without being limited to this.

【0018】異物抽出処理として、濃淡モフォロジーと
画像統計量の両方を用いた例を挙げたが、抽出すべき異
物に合わせて個々に用いても異物抽出、検査を実施でき
る。
As an example of the foreign substance extraction processing, both the density morphology and the image statistic are used. However, the foreign substance extraction and inspection can be carried out even when individually used according to the foreign substance to be extracted.

【0019】[0019]

【発明の効果】以上要するに本発明によれば、シート状
製品に光を当てその透過光をCCDカメラで撮像するこ
とで、異物がある部分と無い部分とでは、光の濃淡差が
顕著にあらわれるため、CCDカメラの画像から濃淡モ
フォロジー処理にて濃淡差の顕著な部分を探し出すと共
に大きな異物は画像統計量処理で探し出すことで、容易
に異物混入を検出でき、これらの個数や面積を求めるこ
とで、シート状製品の良否を判断できる。
In summary, according to the present invention, light is applied to a sheet-like product, and the transmitted light is imaged by a CCD camera. Therefore, strike both left looking for a significant portion of the shading difference from the image of the CCD camera at gray morphology processing
Large foreign objects can be easily found by using image statistics processing.
Foreign matter can be detected in the
Thus, the quality of the sheet product can be determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す図である。FIG. 1 is a diagram showing one embodiment of the present invention.

【図2】本発明において異物を検査するための説明図で
ある。
FIG. 2 is an explanatory diagram for inspecting a foreign substance in the present invention.

【符号の説明】[Explanation of symbols]

10 投光装置 11 シート状製品 12 CCDカメラ DESCRIPTION OF SYMBOLS 10 Floodlight device 11 Sheet-shaped product 12 CCD camera

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢ヶ部 政宏 東京都江東区豊洲二丁目1番1号 石川 島播磨重工業株式会社 東京第一工場内 (72)発明者 伊藤 順一 東京都江東区豊洲二丁目1番1号 石川 島播磨重工業株式会社 東京第一工場内 (56)参考文献 特開 昭58−173456(JP,A) 特開 昭61−89544(JP,A) 特開 平3−156349(JP,A) H.Boerner,”FEATUR E EXTRACTION BY GR AYSCALE MORPHOLOGI CAL OPERATIONS − A COMPARISON TO DOG FILTERS”,Internat ional Workshop on IEEE Industrial AP plications of Mach ine Intelligence a nd Vision,1989,p.112− 117 Philippe Salembie r,”MULTIRESOLUTION DECOMPOSITION AND ADAPTIVE FILTERIN G WITH RANK ORDER BASED FILTERS − AP PLICATION TO DEFEC T DETECTION −”,1991 International Conf erence on IEEE Aco ustics,Speech,and Signal Processing, 1991,Vol.4,p.2389−2392 (58)調査した分野(Int.Cl.7,DB名) G01N 21/84 - 21/958 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masahiro Yagabe 2-1-1, Toyosu, Koto-ku, Tokyo Ishikawa Shima-Harima Heavy Industries Co., Ltd. Tokyo First Plant (72) Inventor Junichi Ito Toyosu, Koto-ku, Tokyo 2-1-1, Ishikawa Shima-Harima Heavy Industries Co., Ltd. Tokyo 1st Factory (56) References JP-A-58-173456 (JP, A) JP-A-61-89544 (JP, A) JP-A-3-156349 (JP, A) Boerner, "FEATURE EXTRACTION BY GR AYSCALE MORPHOLOGI CAL OPERATIONS-A COMPARISON TO DOG FILTERS. 112- 117 Philippe Salembie r, "MULTIRESOLUTION DECOMPOSITION AND ADAPTIVE FILTERIN G WITH RANK ORDER BASED FILTERS - AP PLICATION TO DEFEC T DETECTION -", 1991 International Conf erence on IEEE Aco ustics, Speech, and Signal Processing, 1991, Vol. 4, p. 2389-2392 (58) Field surveyed (Int. Cl. 7 , DB name) G01N 21/84-21/958 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シート状製品の裏面から光を当て、その
表面をCCDカメラで撮像し、CCDカメラで撮影した
画像上で設定レベルより黒く写った部分の面積を設定の
大小2つの面積しきい値で抽出し、小さい面積しきい値
以下の異物検出は、その小さな面積しきい値に合わせて
フィルタサイズを決定し、そのフィルタサイズに合わせ
た最大フィルタを施した結果の画像に最小値フィルタを
施して小さい面積しきい値より大きな部分を残した画像
を求め、その画像から上記CCDカメラで撮影した画像
を減算して各画素の濃淡差を求め、この濃淡差と設定し
たしきい値と比較してしきい値を超えた部分のみを抽出
して濃淡モフォロジーによる小型異物を抽出し、他方C
CDカメラで撮影した良品のシート状製品の画像から画
像統計量に基づいて2値化用しきい値を決定しておき、
この2値化用しきい値で、上記異物検査すべき画像を2
値化すると共に上記大きな面積しきい値以上の部分を抽
出し、上記濃淡モフォロジー処理により求めた画像と画
像統計量処理により求めた画像を合成して異物画像を求
め、この異物画像で認識された部分の個数と面積を求め
て製品の良否を判定することを特徴とするシート状製品
の異物混入検査方法。
1. A sheet-like product is irradiated with light from its back side, its surface is imaged by a CCD camera, and an area of a portion which is blacker than a set level on an image taken by the CCD camera is set.
Extract with two large and small area thresholds, small area threshold
The following foreign substance detection is performed according to the small area threshold.
Determine the filter size and match it with the filter size
The minimum value filter is applied to the image resulting from applying the maximum filter
Image leaving a larger area than the small area threshold
Is obtained from the image and the image taken with the above CCD camera
Is subtracted to obtain the gray level difference of each pixel, and this gray level difference is set.
Extract only the part that exceeds the threshold compared to the threshold
To extract small foreign matter by shading morphology.
Images from images of good sheet products taken with a CD camera
The threshold for binarization is determined based on the image statistics,
With the threshold for binarization, the image to be inspected for foreign matter is defined as 2
Value and extract the area above the large area threshold.
Images and images obtained by the above-mentioned shading morphology processing.
The image obtained by the image statistic processing is synthesized to obtain the foreign object image.
The number and area of the parts recognized in this foreign matter image
A method for inspecting for contamination of a sheet-like product by determining whether the product is good or bad .
JP29433592A 1992-11-02 1992-11-02 Inspection method for foreign substances in sheet products Expired - Fee Related JP3175347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29433592A JP3175347B2 (en) 1992-11-02 1992-11-02 Inspection method for foreign substances in sheet products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29433592A JP3175347B2 (en) 1992-11-02 1992-11-02 Inspection method for foreign substances in sheet products

Publications (2)

Publication Number Publication Date
JPH06148094A JPH06148094A (en) 1994-05-27
JP3175347B2 true JP3175347B2 (en) 2001-06-11

Family

ID=17806375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29433592A Expired - Fee Related JP3175347B2 (en) 1992-11-02 1992-11-02 Inspection method for foreign substances in sheet products

Country Status (1)

Country Link
JP (1) JP3175347B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014021074A (en) * 2012-07-23 2014-02-03 Toda Kogyo Corp Monitoring system of tap water contaminated with radioactive substance

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3526431B2 (en) * 1999-04-02 2004-05-17 日本たばこ産業株式会社 Appearance inspection device for cylindrical articles
JP4254323B2 (en) * 2003-04-18 2009-04-15 株式会社デンソー Foreign matter inspection method and foreign matter inspection device
JP7359125B2 (en) * 2020-10-14 2023-10-11 トヨタ自動車株式会社 Transfer substrate recycling device and transfer substrate recycling method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H.Boerner,"FEATURE EXTRACTION BY GRAYSCALE MORPHOLOGICAL OPERATIONS − A COMPARISON TO DOG FILTERS",International Workshop on IEEE Industrial APplications of Machine Intelligence and Vision,1989,p.112−117
Philippe Salembier,"MULTIRESOLUTION DECOMPOSITION AND ADAPTIVE FILTERING WITH RANK ORDER BASED FILTERS − APPLICATION TO DEFECT DETECTION −",1991 International Conference on IEEE Acoustics,Speech,and Signal Processing,1991,Vol.4,p.2389−2392

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014021074A (en) * 2012-07-23 2014-02-03 Toda Kogyo Corp Monitoring system of tap water contaminated with radioactive substance

Also Published As

Publication number Publication date
JPH06148094A (en) 1994-05-27

Similar Documents

Publication Publication Date Title
JPH06229943A (en) Processing method for detecting and mapping contamination on surface of photograph member
Kim et al. Detection of pinholes in almonds through x–ray imaging
KR100250631B1 (en) Image processing method
JP2001184510A (en) Defect detecting method
JP3175347B2 (en) Inspection method for foreign substances in sheet products
KR100754969B1 (en) Image inspecting apparatus, image inspecting method, and computer-readable storage medium
JP3333472B2 (en) Non-destructive detection method and device of blood egg in brown chicken egg
US7668344B2 (en) Stain inspection method and apparatus
JP2001021332A (en) Surface inspecting device and its method
JPH08145907A (en) Inspection equipment of defect
JP3047168B2 (en) Inspection method of chicken eggs
JPH0682390A (en) Method and apparatus for inspecting surface defect
JP3015325B2 (en) Streak inspection method and device
JPH0763695A (en) Outward-appearance inspection apparatus for sheetlike product
JPH04115147A (en) Optical inspection apparatus
JP3609284B2 (en) Detection device
JP3038092B2 (en) Appearance inspection method
JP2564737B2 (en) Automatic magnetic particle flaw detector
JP2756738B2 (en) Apparatus for visual inspection of semiconductor devices
JP3022627B2 (en) Defect inspection equipment
JP2004084498A (en) Engine evaluation device and method
JPH04364446A (en) Defect inspecting apparatus
JPH04299785A (en) Color unevenness inspecting device
JPS63200278A (en) Image quality inspection apparatus
JPH07301609A (en) Defect inspection method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees