JPS6320025B2 - - Google Patents

Info

Publication number
JPS6320025B2
JPS6320025B2 JP57138564A JP13856482A JPS6320025B2 JP S6320025 B2 JPS6320025 B2 JP S6320025B2 JP 57138564 A JP57138564 A JP 57138564A JP 13856482 A JP13856482 A JP 13856482A JP S6320025 B2 JPS6320025 B2 JP S6320025B2
Authority
JP
Japan
Prior art keywords
layer
metal
solar cell
cell according
base electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57138564A
Other languages
Japanese (ja)
Other versions
JPS5929474A (en
Inventor
Hiroshi Morita
Akira Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP57138564A priority Critical patent/JPS5929474A/en
Publication of JPS5929474A publication Critical patent/JPS5929474A/en
Publication of JPS6320025B2 publication Critical patent/JPS6320025B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Description

【発明の詳細な説明】 (技術分野) 本発明は太陽電池に関するものであり、特に光
入射側の電極の構造及びその形成方法を改良した
太陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a solar cell, and particularly to a solar cell in which the structure of the electrode on the light incident side and the method for forming the same are improved.

(発明の技術的背景及び問題点) 太陽電池の光入射側面の電極形成方法として
は、アルミニウム、銀、チタン、ニツケル等の金
属を全面に蒸着して表側電極を微細なくし形、網
目状、格子状等にフオトエツチングする第1の方
法と、ニツケルや銀めつきによる第2の方法及び
銀やアルミニウムを成分としたペーストを印刷し
た後に焼成する第3の方法が最も一般的に知られ
かつ実用化されている。第1の方法は微細なパタ
ーンの形成が容易であり拡散接合が浅い場合に直
列抵抗を下げて光電変換効率を向上させるのに有
効である反面、膜厚を厚くする為には推積速度が
おそいことから非常に時間がかかる欠点があつ
た。第2の方法は装置、操作が比較的簡単である
反面、膜の密着性を良くする為には基板表面を粗
くする必要があり、この為に機械研磨法を用いる
と加工歪が残り、性能を低下させ、またアルカリ
等による異方性エツチングによればエツチピツト
による整然とした面が形成されるものの、接合形
成や電極形成、レジスト塗布、パネルへの装着時
に繊細な表面を傷つけない為に極めて慎重なハン
ドリングが要求された。第3の印刷法はスクリー
ンのマスクを通して直接的に電極が形成される
が、その後に高温焼成プロセスが必要なことと、
充分な導電性を確保する為にはかなりの厚さにし
なければならず微細なパターンの形成が難しかつ
た。
(Technical Background and Problems of the Invention) As a method for forming electrodes on the light incident side of a solar cell, a metal such as aluminum, silver, titanium, or nickel is deposited on the entire surface, and the front electrode is formed in a fine comb shape, a mesh shape, or a lattice shape. The first method is photo-etching into shapes, the second method is nickel or silver plating, and the third method is printing a paste containing silver or aluminum and then firing it. has been made into The first method is easy to form fine patterns and is effective in reducing series resistance and improving photoelectric conversion efficiency when the diffusion junction is shallow. However, in order to increase the film thickness, the deposition speed is The drawback was that it was slow and took a lot of time. Although the second method has relatively simple equipment and operation, it is necessary to roughen the substrate surface in order to improve the adhesion of the film, and if mechanical polishing is used for this purpose, processing distortion remains, resulting in poor performance. Although anisotropic etching with alkali etc. can form a well-ordered surface with etching pits, extreme care must be taken to avoid damaging the delicate surface during bond formation, electrode formation, resist application, and mounting on the panel. required handling. In the third printing method, electrodes are formed directly through a screen mask, but a high-temperature firing process is required afterwards.
In order to ensure sufficient conductivity, it had to be quite thick, making it difficult to form fine patterns.

発明者等は太陽電池の電気特性をさらに改善す
べく従来の方法で得られる電極構造やP−n接合
面の状態をミクロに分析し、電気特性との関係を
調査する中で、最近研究が進んでいる高効率太陽
電池の実用化の為には電極の材料及び性状につい
て特別の工夫が必要であることを見出した。即ち
高い効率を得る為にはまず、短波長の光に対する
感度向上の目的から拡散層を浅くすることが必要
となる。このような浅い接合に対して、通常の電
極金属は、熱処理や経時変化により接合をつきぬ
ける現象が起こることがあつた。この為にシリコ
ンと電極主構成金属間に、拡散や空気中の水や酸
素との反応から電極や接合を防御する為の中間層
が必要となつてきており、チタン、パラジウム又
はチタン、白金の2層を蒸着法、又はスパツタ法
で形成している。このような下地電極はメツキ法
によるニツケルや印刷法でも試みられるが、接合
深さが0.5μm以下となる最近の高効率太陽電池に
は不適当なことがわかつた。即ち接合深さ0.2μm
〜0.3μmに対し実用的に利用できる下地電極は以
上に述べた蒸着やスパツタ法による複層のものの
みであることがわかつた。続いて、拡散層が浅い
時には表面の横方向への電気抵抗が高くなり直列
抵抗成分の影響により効率を低下させる問題があ
つた。そこでこの対策としてまず、電極の構造を
極めて多数の微細な格子状の集合としたいわゆる
微細電極を用いる。以上は下地電極にフオトエツ
チングプロセスを用いた微細加工技術を適用する
ことにより容易にできる。更に、直列抵抗を下げ
る為には電極自体の抵抗を下げなければならな
い。この為には電極の厚さを厚くしてやる必要が
ある。ところが蒸着やスパツタリング法で下地電
極上に更に電気良導体を厚く積層させることは、
微細加工技術的に難しく、又、時間がかかり生産
コスト的に問題であつた。
In order to further improve the electrical characteristics of solar cells, the inventors conducted a microscopic analysis of the electrode structure and the condition of the P-n junction surface obtained by conventional methods, and while investigating the relationship with the electrical characteristics, they discovered that recent research has We have found that in order to put the advanced high-efficiency solar cells into practical use, special innovations are needed in the materials and properties of the electrodes. That is, in order to obtain high efficiency, it is first necessary to make the diffusion layer shallow in order to improve sensitivity to short wavelength light. In contrast to such shallow junctions, ordinary electrode metals may sometimes penetrate through the junction due to heat treatment or changes over time. For this reason, an intermediate layer is required between the silicon and the main electrode constituent metal to protect the electrode and bond from diffusion and reactions with water and oxygen in the air, and titanium, palladium, titanium, and platinum are required. Two layers are formed by a vapor deposition method or a sputtering method. Attempts have been made to create such a base electrode using nickel using a plating method or a printing method, but it has been found that these are inappropriate for recent high-efficiency solar cells where the junction depth is 0.5 μm or less. In other words, the bonding depth is 0.2μm.
It has been found that the only base electrode that can be practically used for a thickness of 0.3 .mu.m is a multi-layered one made by the above-mentioned vapor deposition or sputtering method. Next, when the diffusion layer is shallow, the electrical resistance of the surface in the lateral direction increases, resulting in a reduction in efficiency due to the influence of the series resistance component. Therefore, as a countermeasure to this problem, first, a so-called fine electrode is used, in which the electrode structure is made up of an extremely large number of fine lattice-like collections. The above can be easily achieved by applying a microfabrication technique using a photoetching process to the base electrode. Furthermore, in order to lower the series resistance, the resistance of the electrode itself must be lowered. For this purpose, it is necessary to increase the thickness of the electrode. However, it is difficult to layer a thicker layer of electrically conductive material on the base electrode using vapor deposition or sputtering methods.
This was difficult in terms of microfabrication technology, took time, and was problematic in terms of production costs.

そこで我々は下地電極は蒸着、スパツタリング
法で形成して、この後、めつき法により電気良導
体を積層形成する方法を特願昭56−183750中に示
した。この中では下地電極上に、電気メツキ法
による銀、電気メツキ法による銅を形成する例
を示した。その後、更に実験を追加した結果太陽
電池の効率を更に向上させるべく接合深さを最適
化し、電極を数10μ以下に微細化したところ下地
電極上に電気めつきにより金属層を形成した場
合、内部応力の為に電極が剥離し易くなる傾向を
見出した。特に電極抵抗を下げるべくめつき層を
厚くするとこれが顕著となる。一方、電気的現象
によらない、化学的な原理に基づく無電解めつき
法でもめつき層の形成が可能である。下地電極上
に無電解めつき層を形成したところ、無電解めつ
き特有の表面に凸凹を発生するいわゆるアンカー
効果の為に極めて強い付着力が得られた。しかし
ながら形成できる厚さに限度がある為に充分な抵
抗の低下がみられなかつた。
Therefore, we proposed a method in which a base electrode is formed by vapor deposition or sputtering, and then a good electrical conductor is laminated by plating. In this example, silver was formed by electroplating and copper was formed by electroplating on the base electrode. Subsequently, as a result of further experiments, the junction depth was optimized to further improve the efficiency of solar cells, and the electrodes were made finer than several tens of microns. When a metal layer was formed on the base electrode by electroplating, the internal We found that the electrodes tend to peel off easily due to stress. This becomes especially noticeable when the plating layer is made thicker in order to lower the electrode resistance. On the other hand, it is also possible to form a plated layer by an electroless plating method based on chemical principles that are not based on electrical phenomena. When an electroless plating layer was formed on the base electrode, extremely strong adhesion was obtained due to the so-called anchor effect, which generates unevenness on the surface unique to electroless plating. However, because there is a limit to the thickness that can be formed, a sufficient reduction in resistance was not observed.

以上の基礎実験の結果、両めつき法の長所を組
み合せ、更に下地電極を特別に吟味することによ
り著しく特性、信頼性を改善できることが予想で
きた。
As a result of the above basic experiments, it was predicted that the characteristics and reliability could be significantly improved by combining the advantages of the double glazing method and further carefully examining the underlying electrode.

更に密着性の改善された点に注目して調べたと
ころ次の様な知見を得た。即ち、電気めつき層の
結晶粒径は無電めつき層の結晶粒径に比べ大き
い。このことはシリコン下地との密着性が無電め
つきの方が優れていることに一致し、前記アンカ
ー効果を生む表面の微細な凸凹がこれに原因して
いると判断される。
Further investigation focused on the improved adhesion, and the following findings were obtained. That is, the crystal grain size of the electroplated layer is larger than the crystal grain size of the electroless plated layer. This is consistent with the fact that electroless plating has better adhesion to the silicon base, and it is considered that this is caused by the minute irregularities on the surface that produce the anchor effect.

一方電気電導性を考慮すると電極材料の結晶粒
径は大きい方がより好ましい。
On the other hand, in consideration of electrical conductivity, it is more preferable that the crystal grain size of the electrode material is larger.

発明者らは以上の知見に基き、さらに改良され
た太陽電池及びその製造方法を開発すべく、実験
調査を行なつて本発明を完成した。
Based on the above knowledge, the inventors conducted experimental research and completed the present invention in order to develop a further improved solar cell and method for manufacturing the same.

(本発明の目的) すなわち本発明は基板との密着性が高く、電気
特性の優れた微細電極を有する太陽電池を提供す
ることを目的とする。
(Objective of the present invention) That is, an object of the present invention is to provide a solar cell having a fine electrode with high adhesion to a substrate and excellent electrical properties.

(発明の概要) すなわち本発明は接合を有する半導体基板の表
面に、チタン及び白金、又はチタン及びパラジウ
ムでなる下地電極と、この下地電極上に形成され
る電気良導体とを備える太陽電池において、電気
良導体は結晶粒径が小さい金属でなり下地電極に
接して形成される第1層と、この第1層の金属の
結晶粒径より大きい結晶粒径の金属でなり第1層
の上に形成される第2層とを有することを特徴と
する太陽電池である。
(Summary of the Invention) That is, the present invention provides a solar cell having a base electrode made of titanium and platinum or titanium and palladium on the surface of a semiconductor substrate having a junction, and a good electrical conductor formed on the base electrode. A good conductor consists of a first layer made of a metal with a small crystal grain size and formed in contact with the base electrode, and a metal made of a metal with a crystal grain size larger than the crystal grain size of the metal of this first layer formed on the first layer. The solar cell is characterized in that it has a second layer comprising:

(発明の実施例) 以下、本発明の実施例を第3図により詳しく説
明する。
(Embodiments of the Invention) Hereinafter, embodiments of the present invention will be described in detail with reference to FIG.

第3図は方位(100)、厚さ250μm比抵抗10Ω・
cmのシリコン単結晶を用いて形成した太陽電池の
部分断面図である。まず、P型CZシリコン半導
体基板21に900℃でPocl3を用いてリンを10分間
デボジツトした後、15分間窒素ガス中でシンター
する。このとき表面濃度2×1020cm-2、接合深さ
0.2μmのN+層22が形成された。その後、表面
の酸化膜と裏面の拡散層を除去し、アルミペース
トA−3484(エンゲルハート社型名)を裏面全面
にスクリーン印刷法により形成する。印刷スクリ
ーンには200メツシユのステンレススクリーンを
用いた。続いて大気中850℃で20秒間焼成すると
裏面側のシリコン表層部分が合金化しP+層23
を形成することができる。塩酸と弗酸より成る混
合エツチング液により合金化に寄与せず余つた過
剰のアルミペーストの焼結成分を除去しP+層2
3を露出させる。続いて真空蒸着法によりチタン
膜24を400Å、パラジウム膜25を200Å、基板
温度250℃にて前記P+層23上に裏面側下地電極
26として形成する。
Figure 3 shows orientation (100), thickness 250μm, specific resistance 10Ω・
1 is a partial cross-sectional view of a solar cell formed using a silicon single crystal of cm. First, phosphorus is deposited onto the P-type CZ silicon semiconductor substrate 21 using Pocl 3 at 900° C. for 10 minutes, and then sintered in nitrogen gas for 15 minutes. At this time, the surface concentration is 2×10 20 cm -2 and the junction depth is
A 0.2 μm N + layer 22 was formed. Thereafter, the oxide film on the front surface and the diffusion layer on the back surface are removed, and aluminum paste A-3484 (model name: Engelhardt) is formed on the entire back surface by screen printing. A 200 mesh stainless steel screen was used as the printing screen. Then, when it is fired in the air at 850°C for 20 seconds, the silicon surface layer on the back side becomes alloyed, forming the P + layer 23.
can be formed. Excess sintered components of the aluminum paste that did not contribute to alloying were removed using a mixed etching solution consisting of hydrochloric acid and hydrofluoric acid to form P + layer 2.
Expose 3. Subsequently, a titanium film 24 with a thickness of 400 Å and a palladium film 25 with a thickness of 200 Å are formed on the P + layer 23 as a base electrode 26 at a substrate temperature of 250° C. by vacuum evaporation.

次に表側全面に反射防止膜33としてプラズマ
CVD法により窒化シリコン膜を700Å形成する。
平行平板、容量結合型の装置にウエハーを入れ基
板温度を300℃にしてベルジアーにアンモニアガ
ス、シランガスの反応ガスとキヤリアガスである
窒素ガスを導入し、50KHzの高周波パワーを
500W投入してデボジシヨンした。この結果、反
射率の低い均一な膜を得た。次にOFPR800(東京
応化、商品型名)ポジ型感光樹脂を3000rpmでス
ピンコートする。その後80℃に保持したクリーン
オーブン中で30分のプリベークを行う。次にグリ
ツド幅10μmの微細電極パターンを超高圧水銀灯
を使用したコンタクト露光法で10mJ/cm2の条件
で露光し、専用現像液NMD−3(東京応化、商
品型名)により現像する、リンスは水洗により行
い、140℃、30分のポストベークを行う。この結
果、表面電極形状に対応するパターンの開口を
OFPR−800層に形成する。そしてこの開口を通
じ緩衝粘酸(弗酸:弗化アンモニウム:水=1:
3:4)で窒化シリコンをエツチングし電極パタ
ーン形状に基板を露出させる。ひき続き、真空蒸
着法により全面に導電性被膜としてチタン膜27
400Å、パラジウム膜28200Åを基板温度を140
℃に保持しながら形成し、表面側下地電極29と
する。その後レジスト層をアセトンにより除去す
る。
Next, plasma is applied to the entire front surface as an anti-reflection film 33.
A silicon nitride film with a thickness of 700 Å is formed using the CVD method.
The wafer was placed in a parallel plate, capacitively coupled device, the substrate temperature was set at 300°C, a reaction gas of ammonia gas and silane gas, and nitrogen gas as a carrier gas were introduced into the Belgear, and a high frequency power of 50 KHz was applied.
Devotion was performed by inputting 500W. As a result, a uniform film with low reflectance was obtained. Next, spin coat OFPR800 (Tokyo Ohka, product name) positive photosensitive resin at 3000 rpm. Thereafter, pre-bake for 30 minutes in a clean oven maintained at 80°C. Next, a fine electrode pattern with a grid width of 10 μm is exposed to light at 10 mJ/cm 2 using a contact exposure method using an ultra-high pressure mercury lamp, and developed with a special developer NMD-3 (Tokyo Ohka, product model name). Wash with water and post-bake at 140°C for 30 minutes. As a result, the pattern opening corresponding to the surface electrode shape is
Form into OFPR-800 layer. Then, through this opening, buffered viscous acid (fluoric acid: ammonium fluoride: water = 1:
3:4) to expose the substrate in the shape of an electrode pattern. Subsequently, a titanium film 27 is applied as a conductive film over the entire surface by vacuum evaporation.
400 Å, palladium film 28200 Å, substrate temperature 140 Å
It is formed while being maintained at a temperature of .degree. C., and is used as the surface-side base electrode 29. Thereafter, the resist layer is removed using acetone.

次に無電解メツキ法により表面及び裏面のパラ
ジウム上に0.5μmの無電解銅層を無電解めつき金
属第1層30としてメツキする。メツキ液は硫酸
銅、酒石酸カリウムナトリウム、水酸化ナトリウ
ムを成分とし、ホルマリンを少量添加したフエー
リング液を用いて約0.5μ形成する。続いて硫酸
銅、硫酸、塩素イオン(塩酸)を各々200g/、
50g/、50mg/含むめつき液中25℃で、電
流密度1A/dm2で通電を20分間行い、前記無電
解銅上に電気めつき金属第2層31を5μm形成
する。このように同一の銅成分でも第1層の結晶
粒径を小さく、第2層の結晶粒径を大きくするこ
とにより密着性の良いかつ良導電性の電極が形成
できる。この場合窒化シリコンはメツキマスク効
果を有するのでめつきマスクの形成工程は不要と
なる。本例では電気メツキに無電メツキと同一の
銅を用いたが銀等無電メツキ、電気メツキが異種
金属より成つていても同一の効果が期待できるも
のである。更に電極表面を安定化する為に、硫酸
ニツケル30g/、クエン酸ナトリウム10g/
、コハク酸ナトリウム20g/、酢酸ナトリウ
ム20g/、ジエチルボラザン3ml/、メタノ
ール50ml/に微量の安定剤を混ぜPHを6〜7、
液温を65℃として作つためつき液により無電解ニ
ツケルメツキ層を無電解めつき金属第3層32と
して0.5μm形成する。この結果極めて導電性の高
い、密着性の優れた電極が得られた。一部断面を
電子顕微鏡で観察すると下地電極と接する無電解
めつき層は極めて小さく約1.0〜0.05μm程度の結
晶粒の集合体であり、上層部の電気めつき層の結
晶粒径の約10分の一と小さく、密着性を良くして
いるものと判断できた。従来の電気めつき層のみ
のものでは30μm線幅の微細加工に於て、電極の
剥離が起こり工程中の不良が30〜50%もあつた
が、本発明の構造及び方法では不良率0.5%以下
であつた。また、直列抵抗値を測定したところ、
従来の無電解めつきのみの方法の0.08Ωに比べて
本発明では0.009Ωと一桁も良くなり、従来の電
気めつきのみのものに比べても下地との密着性が
上つたことにより2倍近く良くなつた。直列抵抗
の減少は変換効率の向上をもたらすことが約さ
れ、リード線を結線した上で特性を評価した。
Next, an electroless copper layer of 0.5 μm is plated as a first electroless plating metal layer 30 on the palladium on the front and back surfaces by an electroless plating method. Metsuki's solution consists of copper sulfate, potassium sodium tartrate, and sodium hydroxide, and is formed using Fehring's solution to which a small amount of formalin is added to form a solution of about 0.5 μm. Next, add 200g each of copper sulfate, sulfuric acid, and chloride ions (hydrochloric acid).
Electricity was applied for 20 minutes at a current density of 1 A/dm 2 at 25° C. in a plating solution containing 50 g/dm/dm/dm to form a 5 μm thick electroplated metal second layer 31 on the electroless copper. In this way, even with the same copper component, by reducing the crystal grain size of the first layer and increasing the crystal grain size of the second layer, an electrode with good adhesion and good conductivity can be formed. In this case, since silicon nitride has a plating mask effect, the step of forming a plating mask is not necessary. In this example, the same copper as the electroless plating was used for the electroplating, but the same effect can be expected even if the electroless plating or electroplating is made of different metals such as silver. Furthermore, in order to stabilize the electrode surface, nickel sulfate 30g/, sodium citrate 10g/
, Sodium succinate 20g/, Sodium acetate 20g/, Diethylborazane 3ml/, Methanol 50ml/ mixed with a small amount of stabilizer to bring the pH to 6-7.
An electroless nickel plating layer of 0.5 μm is formed as the third electroless plating metal layer 32 using a plating solution prepared at a liquid temperature of 65° C. As a result, an electrode with extremely high conductivity and excellent adhesion was obtained. When a partial cross section is observed with an electron microscope, the electroless plated layer in contact with the base electrode is an aggregate of extremely small crystal grains of about 1.0 to 0.05 μm, which is about 10 times smaller than the crystal grain size of the upper electroplated layer. It was determined that it was one-times smaller and had improved adhesion. With the conventional electroplated layer only, electrode peeling occurred during microfabrication with a line width of 30 μm, resulting in 30-50% defects during the process, but with the structure and method of the present invention, the defective rate was 0.5%. It was below. In addition, when we measured the series resistance value, we found that
Compared to the 0.08Ω of the conventional method using only electroless plating, the present invention has an improvement of 0.009Ω by an order of magnitude, and the adhesion to the base is improved compared to the conventional method using only electroplating. It's almost twice as good. Reducing the series resistance is expected to improve conversion efficiency, and the characteristics were evaluated after connecting the lead wires.

ソーラーシユミレーターにより、AM1100m
W/cm2の偽似太陽光を照射して評価すると変換効
率が14.9%となり、従来の電気めつき層のみのも
のや無電解めつき層のものよりも1割程度の向上
がみられた。
AM1100m by solar simulator
When evaluated by irradiating with simulated sunlight at W/ cm2 , the conversion efficiency was 14.9%, an improvement of about 10% compared to conventional electroplated layers or electroless plated layers. .

以上、本発明によれば密着性、導電性、微細加
工性に優れ、かつ高効率化の為の浅い接合にも耐
えられる電極を有する信頼性の高い太陽電池を歩
留り良く製造することが可能となつた。
As described above, according to the present invention, it is possible to manufacture with high yield a highly reliable solar cell having electrodes that have excellent adhesion, conductivity, and microfabrication properties and can withstand shallow bonding for high efficiency. Summer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に関する太陽電池の概略断面図
である。 21……半導体基板、22……N+層、23…
…P+層、24,27……チタン膜、25,28
……パラジウム膜、26,29……下地電極、3
0……無電解めつき金属第1層、31……電気め
つき金属第2層、32……無電解めつき金属第3
層、33……反射防止膜。
FIG. 1 is a schematic cross-sectional view of a solar cell according to the present invention. 21...Semiconductor substrate, 22...N + layer, 23...
...P + layer, 24, 27...Titanium film, 25, 28
... Palladium film, 26, 29 ... Base electrode, 3
0... Electroless plated metal first layer, 31... Electroless plated metal second layer, 32... Electroless plated metal third layer
Layer 33...Antireflection film.

Claims (1)

【特許請求の範囲】 1 接合を有する半導体基板の表面に、チタン及
び白金、又はチタン及びパラジウムでなる下地電
極と、この下地電極上に形成される電気良導体と
を備える太陽電池において、電気良導体は結晶粒
径が小さい金属でなり下地電極に接して形成され
る第1層と、この第1層の金属の結晶粒径より大
きい結晶粒径の金属でなり第1層の上に形成され
る第2層とを有することを特徴とする太陽電池。 2 第1層の金属が無電解めつき金属でなり、第
2層の金属が電気めつき金属でなることを特徴と
する特許請求の範囲第1項記載の太陽電池。 3 第2層の金属はこの上に更に無電解メツキ金
属でなる第3層を設けていることを特徴とする特
許請求の範囲第2項記載の太陽電池。 4 第1層及び第2層の金属の主成分は銀又は銅
よりなることを特徴とする特許請求の範囲第1項
及び第2項記載の太陽電池。 5 第3層の金属の主成分はニツケルであること
を特徴とする特許請求の範囲第3項記載の太陽電
池。 6 半導体基板表面の下地電極及び電気良導体が
形成されていない部分の少なくとも一部に反射防
止膜が形成されていることを特徴とする特許請求
の範囲第1項記載の太陽電池。 7 反射防止膜がめつきマスクを兼ねる材料より
なることを特徴とする特許請求の範囲第6項記載
の太陽電池。 8 反射防止膜が窒化シリコン膜でなることを特
徴とする特許請求の範囲第6項及び第7項記載の
太陽電池。
[Claims] 1. In a solar cell comprising a base electrode made of titanium and platinum or titanium and palladium on the surface of a semiconductor substrate having a junction, and a good electrical conductor formed on the base electrode, the good electrical conductor is A first layer made of a metal with a small crystal grain size and formed in contact with the base electrode, and a second layer made of a metal with a crystal grain size larger than the crystal grain size of the metal of this first layer and formed on the first layer. A solar cell characterized by having two layers. 2. The solar cell according to claim 1, wherein the metal of the first layer is an electroless plated metal, and the metal of the second layer is an electroplated metal. 3. The solar cell according to claim 2, wherein the second layer of metal is further provided with a third layer made of electroless plating metal. 4. The solar cell according to claims 1 and 2, wherein the main component of the metal in the first layer and the second layer is silver or copper. 5. The solar cell according to claim 3, wherein the main component of the metal in the third layer is nickel. 6. The solar cell according to claim 1, wherein an antireflection film is formed on at least a portion of the surface of the semiconductor substrate where the base electrode and the electrically conductive material are not formed. 7. The solar cell according to claim 6, wherein the antireflection film is made of a material that also serves as a plating mask. 8. The solar cell according to claims 6 and 7, wherein the antireflection film is a silicon nitride film.
JP57138564A 1982-08-11 1982-08-11 Solar battery Granted JPS5929474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57138564A JPS5929474A (en) 1982-08-11 1982-08-11 Solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57138564A JPS5929474A (en) 1982-08-11 1982-08-11 Solar battery

Publications (2)

Publication Number Publication Date
JPS5929474A JPS5929474A (en) 1984-02-16
JPS6320025B2 true JPS6320025B2 (en) 1988-04-26

Family

ID=15225085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57138564A Granted JPS5929474A (en) 1982-08-11 1982-08-11 Solar battery

Country Status (1)

Country Link
JP (1) JPS5929474A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254971A (en) * 1985-09-04 1987-03-10 Sanyo Electric Co Ltd Photovoltaic device
GB2188774B (en) * 1986-04-02 1990-10-31 Westinghouse Electric Corp Method of forming a conductive pattern on a semiconductor surface
JP2002305311A (en) * 2001-01-31 2002-10-18 Shin Etsu Handotai Co Ltd Method of manufacturing solar battery and solar battery
KR101133028B1 (en) * 2008-11-18 2012-04-04 에스에스씨피 주식회사 Manufacturing Method For Solar Cell's Electrode, Solar Cell And Its Substrate Used Thereby
US9293624B2 (en) * 2012-12-10 2016-03-22 Sunpower Corporation Methods for electroless plating of a solar cell metallization layer
KR102242269B1 (en) * 2013-03-15 2021-04-19 선파워 코포레이션 Conductivity enhancement of solar cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419690A (en) * 1977-07-15 1979-02-14 Agency Of Ind Science & Technol Electrode of semiconductor devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419690A (en) * 1977-07-15 1979-02-14 Agency Of Ind Science & Technol Electrode of semiconductor devices

Also Published As

Publication number Publication date
JPS5929474A (en) 1984-02-16

Similar Documents

Publication Publication Date Title
TWI614912B (en) Methods for electroless conductivity enhancement of solar cell metallization
US20100243059A1 (en) Solar battery cell
JPS61100979A (en) Thin film solar cell
WO1995012898A1 (en) High efficiency silicon solar cells and methods of fabrication
CN1213187A (en) Photovaltaic device, process for production thereof, and zinc oxide thin film
JPH07504785A (en) Solar cell with combined metal coating and method for manufacturing the same
KR20090118056A (en) Method for the producing a solar cell and solar cell produced using said method
JP2000058885A (en) Solar battery and manufacture thereof
JP2011238903A (en) Structure of solar cell grid stacks and method for manufacturing the same
CN106098807A (en) A kind of N-type crystalline silicon solar battery structure and preparation method thereof
JP2010098232A (en) Solar battery and method of manufacturing solar battery
CN103594539A (en) Flexible multi-joint GaAs solar battery and manufacturing method thereof
CN113130671A (en) Silicon heterojunction solar cell and preparation method thereof
JP2014103259A (en) Solar cell, solar cell module, and method of manufacturing the same
US4320250A (en) Electrodes for concentrator solar cells, and methods for manufacture thereof
CN102471912B (en) Light induced electroless plating
JPS6320025B2 (en)
JPS62232973A (en) Method of forming conductive pattern on semiconductor surface
WO2024045807A1 (en) Solar cell and manufacturing process therefor
CN110447109A (en) The method of metal electrode is formed simultaneously on the silicon area of opposite polarity
JP2983746B2 (en) Solar cell manufacturing method
JPH0361348B2 (en)
Bartsch et al. Advanced front side metallization for crystalline silicon solar cells based on a fully plated contact
JP2000332279A (en) Manufacture of solar battery
WO2013143350A1 (en) Solar cell, module and method for manufacturing solar cell electrode