JPS63200106A - Constant polarization optical fiber - Google Patents

Constant polarization optical fiber

Info

Publication number
JPS63200106A
JPS63200106A JP62034313A JP3431387A JPS63200106A JP S63200106 A JPS63200106 A JP S63200106A JP 62034313 A JP62034313 A JP 62034313A JP 3431387 A JP3431387 A JP 3431387A JP S63200106 A JPS63200106 A JP S63200106A
Authority
JP
Japan
Prior art keywords
glass
core
refractive index
stress
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62034313A
Other languages
Japanese (ja)
Inventor
Yoshinori Hibino
善典 日比野
Fumiaki Hanawa
文明 塙
Makoto Shimizu
誠 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62034313A priority Critical patent/JPS63200106A/en
Publication of JPS63200106A publication Critical patent/JPS63200106A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To improve the double refraction efficiency by providing stress giving parts consisting of a silicon oxynitride glass in axially symmetrical positions on both sides of a core in a clad part. CONSTITUTION:A core 1 consists of a glass having a refractive index n1, and a clad consists of a glass having a refractive index n2, and stress giving parts 3 which consist of a silicon oxynitride (Si-O-N) glass and have a refractive index n3 are provided in axially symmetrical positions on both sides of the core 1 in the part of the clad 2, and refractive indexes have relations n1>n2>=n3. It is preferable that the N content of the Si-O-N glass is 1-5wt.%. In the case of use of these stress giving parts 3, any material is used as materials of the core 1 and the clad 2 if it has a softening point lower than that of stress giving parts 3, and classifications of materials of the core 1 and the clad 2 are not limited fundamentally. That is, the Si-O-N glass whose softening point is higher than that of SiO2 is used in stress giving parts 3 to enable an SiO2 tube to be used as a start tube and a high double refraction efficiency is obtained.

Description

【発明の詳細な説明】 〔発明の産業上利用分野〕 本発明は定偏波光ファイバ、さらに詳細にはコヒーレン
ト光通信や光応用計測器などに用いられる定偏波光ファ
イバに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field of the Invention] The present invention relates to a polarization-controlled optical fiber, and more particularly to a polarization-controlled optical fiber used in coherent optical communications, optical application measuring instruments, and the like.

〔発明の従来技術〕[Prior art to the invention]

従来の定偏波ファイバ(あるいは単一偏波保持光ファイ
バ)として、コアに異方性応力を与えて複屈折率を持た
せることにより、偏波面を保持する方式の定偏波フ1°
イバが開発されている。
As a conventional polarization constant fiber (or single polarization maintaining optical fiber), the polarization constant fiber 1° is a method that maintains the plane of polarization by applying anisotropic stress to the core and giving it a birefringent index.
Iba is being developed.

このうち、第1図(a)に示すように、コア1、クラッ
ド2および応力付与部3からなる光ファイバで、コア1
がGeO@  SiO@ %クラッド2がF−GeO窒
SiO*で、応力付与部3が、5102であるファイバ
が提案されている。このファイバの屈折率分布は第1図
〜)に示すようになっている。
Among these, as shown in FIG.
A fiber has been proposed in which the cladding 2 is F-GeO nitride SiO* and the stress applying portion 3 is 5102. The refractive index distribution of this fiber is as shown in Figures 1-).

前記応力付与部3の屈折率fla(Si01の屈折率n
o)がクラッドガラスの屈折率n!より大きいとタラフ
ドモードが発生し、シングルモードファイバとして好ま
しくないので、このファイバではクラッドガラスに添加
するFとGem、、 eの添加量を調節し、屈折率をS
iO11の屈折率n0以上にする必要があった。このフ
ァイバでは線引き過程において、応力付与部3が最初に
硬化し、それ以外の部分が低粘度であるため、線引きに
よりファイバに加わる線引き張力は応力付与部3のみで
ささえられ、全体が硬化した後も応力付与部3には熱膨
張係数の差に起因した応力よりもはるかに大きな応力が
残留する。これらの残留応力によりコア1に異方性応力
が加わり、複屈折率が生じる。
The refractive index fla of the stress applying portion 3 (the refractive index n of Si01
o) is the refractive index of the cladding glass n! If it is larger than this, a Tarafed mode will occur, which is not desirable as a single mode fiber. Therefore, in this fiber, the amount of F, Gem, and e added to the cladding glass is adjusted to increase the refractive index of S.
It was necessary to make the refractive index n0 or more of iO11. In this fiber, during the drawing process, the stress-applying part 3 hardens first, and since the other parts have low viscosity, the drawing tension applied to the fiber during drawing is supported only by the stress-applying part 3, and only after the entire part is hardened. However, a much larger stress remains in the stress applying portion 3 than the stress caused by the difference in coefficient of thermal expansion. These residual stresses cause anisotropic stress to be applied to the core 1, resulting in birefringence.

〔発明が解決すべき問題点〕[Problems to be solved by the invention]

この系のガラスを用いたファイバでは、次の3点の欠点
があった。
Fibers using this type of glass had the following three drawbacks.

■ 応力付与部にSiOtを用いるためには、クランド
部の屈折率を8102の屈折率と同程度かやや大きくす
ることが必要であるが、FとGeOtのドープ量を変え
て調節することが作製上困難である。
■ In order to use SiOt for the stress-applying part, it is necessary to make the refractive index of the gland part similar to or slightly larger than that of 8102, but it is possible to adjust the refractive index by changing the doping amount of F and GeOt. It is difficult to do so.

■ 実際に第1図(a)の構造のファイバで応力付与部
に残留する応力はファイバ軸方向のものであり、定偏波
に必要なコアの複屈折率性を誘起するにはファイバ断面
内の応力が大きくなくてはならない。ファイバ断面内の
応力は応力付与部のガラスのポアソン比によりて決まる
ので、ポアソン比が大きいガラスはど応力付与部に通し
ている。しかし、SiO2はポアソン比が小さいのでS
i02を応力付与部とした定偏波ファイバでは複屈折率
が向上しないという欠点があった。このため一定の距離
を伝搬する時に、一つの偏波が直交する他の偏波へ結合
する度合が大きくなり、良好な偏波保持性を確保できな
いことになる。
■ In fact, in the fiber with the structure shown in Figure 1 (a), the stress remaining in the stress-applying part is in the fiber axial direction, and in order to induce the birefringence of the core necessary for constant polarization, it is necessary to The stress must be large. Since the stress in the cross section of the fiber is determined by the Poisson's ratio of the glass in the stress applying section, a glass having a large Poisson's ratio is passed through the stress applying section. However, since SiO2 has a small Poisson's ratio, S
A polarization constant fiber in which i02 is used as a stress applying portion has a drawback that the birefringence index cannot be improved. For this reason, when propagating over a certain distance, the degree of coupling of one polarized wave to another orthogonal polarized wave increases, making it impossible to ensure good polarization maintenance.

■ 応力付与部にSiOtを用いて線引き張力を分担さ
せるため、Si02のジャケット管を用いることができ
ず、SiO5+の出発管を必要とする内付けCVD法な
どの作製法によって母材を作製することができない。
■ Since the stress applying part uses SiOt to share the drawing tension, it is not possible to use a jacket tube of Si02, and the base material is manufactured by a manufacturing method such as internal CVD, which requires a starting tube of SiO5+. I can't.

本発明の目的は、線引き張力によって軟化温度が高い応
力付与部に残留する応力を利用してコアに複屈折性を誘
起する定偏波ファイバにおいて、SiO@の応力付与部
ではポアソン比が小さくファイバ断面の複屈折性が向上
しないという点、クラッド部の屈折率を調節しなくては
ならないという点およびSiO*ジャケット管を用いる
ことができないという点を解決した定偏波ファイバを提
供することにある。
An object of the present invention is to provide a constant polarization fiber in which birefringence is induced in the core by utilizing the stress remaining in the stress applying part where the softening temperature is high due to drawing tension, and the Poisson's ratio is small in the stress applying part of SiO@. The object of the present invention is to provide a constant polarization fiber that solves the problems of not improving the birefringence of the cross section, of having to adjust the refractive index of the cladding part, and of not being able to use a SiO* jacket tube. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、コアとクラッドからなる光ファイバにおいて
クラッド部のコアの両側の軸対称の位置にシリコン・オ
キシ・ナイトライド(Si −0−N )ガラスからな
る応力付与部を有することを最も主要な特徴とする。
The most important feature of the present invention is that an optical fiber consisting of a core and a cladding has stress applying parts made of silicon oxy nitride (Si-0-N) glass at axially symmetrical positions on both sides of the core in the cladding part. Features.

従来の技術では前記応力付与部にSiO*を用いていた
が、本発明ではSiO*より軟化点が高く、かつポアソ
ン比が大きいSi −0−Nガラスを用いることが異な
る* Si −0−Nガラスでは、5i−N結合におい
て、1個の酸素が2個のSiと結合するかわりに1個の
窒素が3個のSiと結合するため、網目構造の強さに支
配される粘性すなわち軟化点は大幅に向上する。
In the conventional technology, SiO* was used for the stress applying part, but the present invention differs in that Si-0-N glass, which has a higher softening point than SiO* and a larger Poisson's ratio, is used* Si-0-N In glass, in the 5i-N bond, instead of one oxygen bonding to two Si atoms, one nitrogen bonding to three Si atoms causes the viscosity, or softening point, to be controlled by the strength of the network structure. will be significantly improved.

次に、ポアソン比の重要性について示す。Next, the importance of Poisson's ratio will be explained.

構造としては、第1図(a)の形をしている光ファイバ
にお(1>て応力付与部にS −0−Nガラスを用い、
クラッド部にGeO@ −5iOt  (低屈折率)、
コアにGeO@ −3iOt  (高屈折率)を用いた
場合を考える。線引きではSt −0−Nガラスが最初
に硬化し、線引き張力はSi −0−Nガラス部で支え
られる。クラッド部は線引き張力で引き延ばされた応力
付与部の囲りにそって次に硬化する。冷却後、線引き張
力が開放されるとすると、引き延ばされていた応力付与
部は元に戻ろうとして縮む。
As for the structure, an optical fiber having the shape shown in FIG.
GeO@-5iOt (low refractive index) in the cladding part,
Consider a case where GeO@-3iOt (high refractive index) is used for the core. During wire drawing, the St -0-N glass is first hardened, and the drawing tension is supported by the Si -0-N glass portion. The cladding is then hardened around the stressed area that has been stretched under wire drawing tension. After cooling, when the wire drawing tension is released, the stress-applying portion that has been stretched tends to return to its original state and shrinks.

このときポアソン比が大きいほど応力付与部はファイバ
断面内においてクラッド部に大きな歪を与えることにな
る。これによりコア部に大きな複屈折性を引き起こすこ
とができる。このため、本発明では応力付与部にSiO
@より、ポアソン比の大きいSi −0−Nガラスを用
いて、コアに、より大きな複屈折性を得ることにしたの
である。
At this time, the larger the Poisson's ratio is, the greater the stress-applying portion will give to the cladding portion within the cross section of the fiber. This makes it possible to induce large birefringence in the core portion. Therefore, in the present invention, SiO2 is used in the stress applying part.
We decided to use Si-0-N glass, which has a large Poisson's ratio, to obtain greater birefringence in the core.

本発明による定偏波光ファイバによれば、前述コア1、
クラッド2および応力付与部3であるSS−0−N系ガ
ラスの屈折率をそれぞれnl、ng、naとしたとき、
ml >ng kn3の関係にあることが必要なのは、
前述のように、ngがnaより小さいと、クラッドモー
ドになってしまい、シングルモード光ファイバとして好
ましくないからである。
According to the polarization constant optical fiber according to the present invention, the core 1,
When the refractive index of the SS-0-N glass that is the cladding 2 and the stress applying part 3 is nl, ng, and na, respectively,
It is necessary that the relationship ml > ng kn3 exists.
This is because, as described above, if ng is smaller than na, the fiber becomes a cladding mode, which is not preferable as a single mode optical fiber.

前記Si −0−N系ガラスのN含量は、一般にに含量
が多くなるほど、ポアソン比が大きくなり、軟化点が高
くなる傾向がある。しかしながら、前記N含量が多くな
りすぎると、発泡を生じる傾向がある。したがって、前
記ガラスのN含量は、好ましくは、1〜5重量%(れ%
)である、N含量が、1れ%であると、前記ガラスの軟
化点が十分高くならず、またポアソン比も小さく、良好
な複屈折性が得られない虞があり、一方、5wt%を超
えると、Si −0−Nガラスに発泡が生じ、応力付与
部として用いることができなくなる虞があるからである
In general, as the N content of the Si-0-N glass increases, the Poisson's ratio tends to increase and the softening point tends to increase. However, if the N content becomes too high, foaming tends to occur. Therefore, the N content of the glass is preferably 1 to 5% by weight.
), if the N content is 1%, the softening point of the glass will not be sufficiently high, and the Poisson's ratio will also be small, so there is a risk that good birefringence may not be obtained. This is because if it exceeds the limit, foaming may occur in the Si-0-N glass, and there is a possibility that it cannot be used as a stress applying part.

このような応力付与部3を使用する場合、前記コア1お
よびクラッド2材料としては、上記応力付与部より軟化
点の小さいものであれば、基本的にいかなるものでもよ
く、前記コア1およびクラッド2の種類は、本発明にお
いて基本的に限定されるものではないのは明らかである
When using such a stress applying section 3, basically any material may be used as the material for the core 1 and the cladding 2 as long as it has a lower softening point than the stress applying section. It is clear that the type of is not fundamentally limited in the present invention.

〔実施例1〕 第2図(a)は本発明の詳細な説明する図であって、作
製した光ファイバの断面図である。
[Example 1] FIG. 2(a) is a diagram for explaining the present invention in detail, and is a cross-sectional view of the produced optical fiber.

1aはコア(GeO2−3iO! 、屈折率をn 、 
l とする。ml゛の値をSiO@の屈折率n0に対す
る比屈折率差で表すと、約0.7%である。以下これを
n 11〜0.7%と略す、)、2aはクラッド(Ge
O@ −3iO@ 、 02 ’ 〜0.3%)、3a
は応力付与部(S −0−Nガラス na ’ 〜0.
2%、N〜1.5wt%)、4は肉付CvD法用(7)
SiOtからなる出発管である。第2図(b)はファイ
バ断面χ方向にそった屈折率分布を示す。
1a is the core (GeO2-3iO!, refractive index n,
Let it be l. When the value of ml is expressed as a relative refractive index difference with respect to the refractive index n0 of SiO@, it is approximately 0.7%. Hereinafter, this will be abbreviated as n11~0.7%), 2a is the cladding (Ge
O@-3iO@, 02' ~0.3%), 3a
is the stress applying part (S-0-N glass na'~0.
2%, N ~ 1.5wt%), 4 is for fleshy CvD method (7)
The starting tube is made of SiOt. FIG. 2(b) shows the refractive index distribution along the fiber cross-section χ direction.

このファイバを作製するには、SiO、管を出発管とし
て肉付CVD法によりまず屈折率n2°0.3%のGe
O黛SiO@クラッド層およびni’0.7%のコア層
を順次形成した、この後酸水素バーナで加熱し、中実化
し、次にその母材のGeOを−3iO@クラッド部のコ
アの両側部分に超音波開孔器を用いて直径6鶴の穴を2
個開けた。2個の穴にはNIIとO2の混合ガスを用い
たマイクロ波、プラズマCVD法によって作製した5t
−ONガラス・ロンドを挿入し、その後これを加熱、一
体化した。
To fabricate this fiber, firstly, using a SiO tube as a starting tube, a Ge fiber with a refractive index of n2°0.3% was used using a CVD method with a solid surface.
A SiO@cladding layer and a core layer of 0.7% Ni' were sequentially formed, which was then heated with an oxyhydrogen burner to solidify it, and then the base material GeO was formed into a core layer of -3iO@cladding. Two 6-diameter holes were made on both sides using an ultrasonic hole puncher.
I opened one. The two holes were filled with 5t holes made by microwave and plasma CVD using a mixed gas of NII and O2.
-ON glass rond was inserted and then heated and integrated.

得られたガラス母材を炉温的1950℃、線引き張力1
00gで線引きして外径125μmの定偏波ファイバを
得た。
The obtained glass base material was heated to a furnace temperature of 1950°C and a drawing tension of 1
A constant polarization fiber with an outer diameter of 125 μm was obtained by drawing at 00 g.

得られたファイバのカットオフは1.20μ−であり、
波長λ=1.30μ−の光源を用いて光学的磁界印加法
によりビート長を測定したところ、L−1,0鶴であっ
た。このことから本発明のファイバの複屈折率は1.2
 Xl0−3であることがわかった。従来の軸対称応力
付与形ファイバの最大複屈折率が1.1 Xl0−3程
度であったことを考えると、本発明の定偏波ファイバは
従来品以上の性能が容易に得られていることがわかる。
The cutoff of the resulting fiber was 1.20 μ-
When the beat length was measured by an optical magnetic field application method using a light source with a wavelength λ=1.30 μ-, it was found to be L-1.0. Therefore, the birefringence index of the fiber of the present invention is 1.2.
It was found to be Xl0-3. Considering that the maximum birefringence of conventional axially symmetric stress-applied fibers was approximately 1.1 I understand.

なお、本実施例では応力付与部に用いたSi −0−N
ガラスのN濃度を1.5eet%としたが、N濃度が1
〜5wt%でも同様の効果が得られた。しかし、5wt
%を超えてNを添加したSi −0−Nガラスには発泡
が生じ、応力付与部として用いることができなかった。
In addition, in this example, the Si-0-N used for the stress applying part
The N concentration of the glass was set to 1.5eet%, but when the N concentration was 1.
A similar effect was obtained even at ~5 wt%. However, 5wt
Foaming occurred in the Si-0-N glass to which more than 1% of N was added, and it could not be used as a stress applying part.

また、N濃度1wt%未満では上記複屈折性の効果が出
なかった。
Moreover, the above-mentioned birefringence effect was not obtained when the N concentration was less than 1 wt%.

〔実施例2〕 第3図(a)、第3図(b)はそれぞれ実施例2で作製
した定偏波ファイバの断面図と屈折率分布である。
[Example 2] FIG. 3(a) and FIG. 3(b) are a cross-sectional view and a refractive index distribution of a polarization constant fiber produced in Example 2, respectively.

実施例1ではコア・クラッド母材をVAD内付肉付VD
法で作製したが、本実施例ではコア・クラッド母材をV
AD法で作製した。VAD法ではGeOを−3iO@の
コア(屈折率n1”)を角バーナで形成し、同時にその
外側に第2のバーナでGeO2−5iOHのクラッド層
(屈折率nII”)を形成した。
In Example 1, the core/cladding base material is VAD with internal fillet.
However, in this example, the core/clad base material was
It was produced using the AD method. In the VAD method, a GeO core (refractive index n1'') of -3iO@ was formed using a square burner, and at the same time, a GeO2-5iOH cladding layer (refractive index nII'') was formed on the outside using a second burner.

作製した母材には、実施例1と同様に、2つの穴を開け
、マイクロ波プラズマCvD法で作製した同様のSi 
−0−Nガラスを応力付与部として入れ、加熱一体化し
た。得られた母材を線引き張力100gで線引きし、直
径125μ−の定偏波ファイバを得た0本ファイバでは
実施例1と違い、最外層にSiOを層□がないが、Si
 −0−Nガラスの応力付与部としての効果は同じで、
実施例1と同程度の高複屈折性が得られた。
In the prepared base material, two holes were made in the same manner as in Example 1, and a similar Si made by the microwave plasma CvD method was inserted.
-0-N glass was put in as a stress applying part and integrated by heating. The obtained base material was drawn with a drawing tension of 100 g to obtain a constant polarization fiber with a diameter of 125 μ-.Unlike in Example 1, the outermost layer did not have a SiO layer □.
-0-N glass has the same effect as a stress applying part,
High birefringence comparable to that of Example 1 was obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の定偏波ファイバでは、応
力付与部にSiOtより軟化点が高い5t−0−Nガラ
スを用いることによって、SiOを管を出発管として用
いることが可能で、かつ従来の定偏波ファイバでは実現
が困難であった高複屈折性を有することが簡単にできる
という利点がある。
As explained above, in the polarization constant fiber of the present invention, by using 5t-0-N glass, which has a higher softening point than SiOt, in the stress applying part, it is possible to use a SiO tube as a starting tube, and It has the advantage of easily achieving high birefringence, which has been difficult to achieve with conventional polarization-constant fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は従来の定偏波ファイバの断面図、第1図
(b)は従来の定偏波ファイバの屈折率分布、第2図(
a)は本発明(実施例1)の定偏波ファイバの断面図、
第2図(b)は本発明(実施例1)の定偏波ファイバの
屈折率分布、第3図(a)は実施例2の定偏波ファイバ
の断面図、第3図(b)は実施例2の定偏波ファイバの
屈折率分布。 1.1a、1b・・・コア、2.2a、 2b・・−ク
ラッド、3.3a、 3b・・・応力付与部、4・・・
ジャケット管。
Figure 1 (a) is a cross-sectional view of a conventional polarization constant fiber, Figure 1 (b) is a refractive index distribution of a conventional polarization constant fiber, and Figure 2 (
a) is a cross-sectional view of the polarization constant fiber of the present invention (Example 1);
Figure 2(b) is the refractive index distribution of the polarization constant fiber of the present invention (Example 1), Figure 3(a) is a cross-sectional view of the polarization constant fiber of Example 2, and Figure 3(b) is Refractive index distribution of the polarization constant fiber of Example 2. 1.1a, 1b...core, 2.2a, 2b...-cladding, 3.3a, 3b...stress applying part, 4...
jacket tube.

Claims (2)

【特許請求の範囲】[Claims] (1)コアとクラッドからなる石英系光ファイバにおい
て、コアは屈折率n_1のガラスよりなり、クラッドは
屈折率n_2のガラスからなり、クラッド部分のコアの
両側の軸対称位置にシリコン・オキシ・ナイトライドガ
ラスよりなる屈折率n_3の応力付与部を有し、かつn
_1>n_2≧n_3の関係があることを特徴とする定
偏波光ファイバ。
(1) In a silica-based optical fiber consisting of a core and a cladding, the core is made of glass with a refractive index of n_1, the cladding is made of glass with a refractive index of n_2, and silicon oxynit is placed at axially symmetrical positions on both sides of the core in the cladding part. It has a stress applying part with a refractive index of n_3 made of ride glass, and
A polarization-constant optical fiber characterized by having a relationship of _1>n_2≧n_3.
(2)前記シリコン・オキシ・ナイトライドの応力付与
部の窒素含有量が1から5wt%であることを特徴とす
る特許請求の範囲第1項記載の定偏波光ファイバ。
(2) The polarization constant optical fiber according to claim 1, wherein the silicon oxy nitride stress applying portion has a nitrogen content of 1 to 5 wt%.
JP62034313A 1987-02-17 1987-02-17 Constant polarization optical fiber Pending JPS63200106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62034313A JPS63200106A (en) 1987-02-17 1987-02-17 Constant polarization optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62034313A JPS63200106A (en) 1987-02-17 1987-02-17 Constant polarization optical fiber

Publications (1)

Publication Number Publication Date
JPS63200106A true JPS63200106A (en) 1988-08-18

Family

ID=12410670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62034313A Pending JPS63200106A (en) 1987-02-17 1987-02-17 Constant polarization optical fiber

Country Status (1)

Country Link
JP (1) JPS63200106A (en)

Similar Documents

Publication Publication Date Title
KR20010020930A (en) Method of manufacturing polarization-maintaining optical fiber coupler
JPS631252B2 (en)
JPS63200106A (en) Constant polarization optical fiber
JPS59164505A (en) Single-polarization single-mode optical fiber
JPS61228404A (en) Optical fiber for constant polarized wave
JPS6054644B2 (en) Single polarization fiber for very long wavelengths
JPH0212887B2 (en)
JPS58104035A (en) Preparation of optical fiber having single polarization diversity and single mode
JPS6367168B2 (en)
JPS58135141A (en) Preparation of single polarized optical fiber
JP2828251B2 (en) Optical fiber coupler
JPS6283708A (en) Constant polarization optical fiber
JPS6033513A (en) Single linear polarization optical fiber
JPS59197001A (en) Stress applying base material for optical fiber maintaining polarization
JP2855531B2 (en) Quartz glass-based high-strength optical fiber and method of manufacturing the same
JPH0623805B2 (en) Polarization-maintaining optical fiber
JPS6283706A (en) Constant polarization optical fiber
JPS59135402A (en) Single polarization optical fiber
JPH0350505A (en) Single polarization optical fiber
JPS612106A (en) Optical fiber for maintaining plane of polarization
JPS59190234A (en) Preparation of fiber for maintenance of straight polarization
JPH0467105A (en) Polarization maintaining optical fiber
JP2827231B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JPS63194207A (en) Optical fiber for absolutely single polarized wave
JPS63306403A (en) Polarization maintaining fiber