JPS6283706A - Constant polarization optical fiber - Google Patents

Constant polarization optical fiber

Info

Publication number
JPS6283706A
JPS6283706A JP60222800A JP22280085A JPS6283706A JP S6283706 A JPS6283706 A JP S6283706A JP 60222800 A JP60222800 A JP 60222800A JP 22280085 A JP22280085 A JP 22280085A JP S6283706 A JPS6283706 A JP S6283706A
Authority
JP
Japan
Prior art keywords
core
glass
point temperature
softening point
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60222800A
Other languages
Japanese (ja)
Inventor
Hiroshi Yokota
弘 横田
Hiroshi Suganuma
寛 菅沼
Gotaro Tanaka
豪太郎 田中
Shuzo Suzuki
鈴木 修三
Shigeru Tanaka
茂 田中
Tetsuharu Abe
阿部 徹治
Yutaka Mitsunaga
満永 豊
Hiroaki Koga
古賀 広昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60222800A priority Critical patent/JPS6283706A/en
Publication of JPS6283706A publication Critical patent/JPS6283706A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain the satisfactory polarization characteristic by constituting the core of two kinds of glass and having the special relation between the refraction index and the softening point temperature of respective pieces of glass in the optical fiber composed of the core and the clad. CONSTITUTION:In the optical fiber composed of the core and the clad, the core is composed of two kinds of glass having n1 refraction index, T1 softening point temperature and n2 refraction index and T2 softening point temperature respectively, and the clad is composed of the glass having n3 refraction index T3 point temperature and between the refraction index and the softening point temperature of respective pieces of glass, the relation of n1>n3, n2>n3, T2>T1 and T2>T3 is satisfied. For example, when SiO2-GeO2 is composed as the mate rial for a core part 1, SiO2 is composed as the material for a core part 2 and SiO2-P205-F or SiO2-GeO2-F is composed as the material for a clad part 3, the glass softening temperature of the core part material 12 can be set higher than a core member 11 and a clad material 13. Thus, the very satisfactory polarization characteristic can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコヒーレント通信や光応用計測器などに用いら
れる定偏波光ファイバに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polarization constant optical fiber used in coherent communications, optical application measuring instruments, and the like.

〔従来の技術〕[Conventional technology]

光通信技術の進展に伴って現在種々の装置に光ファイバ
が使用されている。その中で、各種通信装置に用いられ
ている光ICや光へテ党ダイン方式では、光ファイバか
らの出力が指定された方向の直線偏波であることが前提
とされ、また、各種の測定装置では、光ファイバを伝搬
する光が直線偏波であることが要求されている。
With the progress of optical communication technology, optical fibers are currently being used in various devices. Among these, optical ICs and optical fiber optic systems used in various communication devices assume that the output from the optical fiber is linearly polarized in a specified direction, and are also used for various measurements. The device requires that the light propagating through the optical fiber be linearly polarized.

そこで、偏波面を保持したまま光を伝搬させる定偏波フ
ァイバが開発されている。
Therefore, polarization constant fibers have been developed that propagate light while maintaining the plane of polarization.

従来この定偏波ファイバとして、コアに異方性応力を与
えてコアに複屈折性を持たせることにより、偏波面を保
持する方式の定偏波ファイバが提案されている。これは
第6図に示すように、ファイバ中に熱膨張係数が大きな
ガラス材例えばSiO!−%O藁 ガラスからなる応力
付与部64を非軸対称に配置し、線引時の冷却過程にお
いてこの熱膨張係数差によって生ずる応力を利用してコ
ア61に異方性応力を与えていた。なお第6図中63は
クラッドを示す。
Conventionally, a polarization constant fiber has been proposed in which the plane of polarization is maintained by applying an anisotropic stress to the core to impart birefringence to the core. As shown in FIG. 6, this is because the fiber is made of a glass material with a large coefficient of thermal expansion, such as SiO! -%O straw The stress applying portions 64 made of glass were arranged axisymmetrically, and an anisotropic stress was applied to the core 61 by utilizing the stress generated by the difference in thermal expansion coefficient during the cooling process during wire drawing. Note that 63 in FIG. 6 indicates a cladding.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記した従来の定偏波ファイバにおいては
、ガラスの熱膨張係数はたかだか107℃でア)、また
このときに利用する温度差も103℃程度、であること
から、これによって応力付与部74に生じる軸方向応力
は10に97m* ”程度であル、またコアt1に与え
られる異方性応力は数klF/、”程度となシ、これに
よって生じる複屈折率もI X 10=以下であっ九こ
のようにガラスの熱膨張差を利用して生じさせる応力に
はおのずと限界があp1今後よシーそう高度の偏波面保
持能力を′要求されると考えられる定偏波ファイバにお
いては、さらに高い応力を発生できる構造を開発するこ
とが重要な問題であった。
However, in the conventional polarization constant fiber described above, the thermal expansion coefficient of the glass is at most 107°C (a), and the temperature difference used at this time is also about 103°C. The generated axial stress is on the order of 10 to 97m*'', and the anisotropic stress applied to the core t1 is on the order of several klF/,'', and the birefringence caused by this is also less than I x 10. 9. There is a natural limit to the stress generated by utilizing the difference in thermal expansion of glass. In polarization-controlled fibers, which are likely to require a high degree of polarization maintaining ability in the future, the stress will be even higher. The key issue was to develop a structure capable of generating stress.

本発明は上記の問題点を解決し、従来の構造のものく比
べ数倍大きな応力を発生することが可能な定偏波ファイ
バの構造を提供しようとするものである。
The present invention aims to solve the above-mentioned problems and provide a polarization constant fiber structure capable of generating stress several times larger than that of conventional structures.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はコアとクラッドからなる光ファイバに訃いて、
コアが屈折率n1で軟化点温度TIのガラスおよび屈折
率nlと軟化点温度Tlのガラスの2種のガラスからな
り、クラッドが屈折率n3で軟化点温度T3のガラスか
らな)、それぞれのガラスの屈折率および軟化点温度の
間に、nl > ns%ns> nl、 Tl> Tt
、T、)T、、の関係があるととを特徴とする定偏波フ
ァイバである。
The present invention is based on an optical fiber consisting of a core and a cladding.
The core is made of two types of glass: a glass with a refractive index n1 and a softening point temperature TI, and a glass with a refractive index nl and a softening point temperature Tl, and the cladding is made of a glass with a refractive index n3 and a softening point temperature T3), each glass Between the refractive index and softening point temperature, nl > ns% ns > nl, Tl > Tt
, T, )T, , is a polarization-constant fiber characterized by the following relationships: and .

以下、図面を参照して説明する。第1図は本発明の定偏
波ファイバの実施態様を示すが、これに限定されるもの
でないことは自明である。
This will be explained below with reference to the drawings. Although FIG. 1 shows an embodiment of the polarization constant fiber of the present invention, it is obvious that the present invention is not limited to this.

該ファイバは、コアを形成する屈折率n1で軟化点温度
T1のコア部1及び屈折率nlで軟化点温度−のコア部
2とクラッド部5からなり、コア部1とコア部2を構成
するガラスの軟化点温度T1とT2は異なっており、コ
ア部2のガラス軟化点温度T3はコア部1及びクラッド
部3の軟化点温度T1及び’rsよりも高い。第2図(
イ)及び侶)に第1図に示すファイバのI軸方向及びy
軸方向におけるガラス軟化点温度分布のグラフを示す。
The fiber consists of a core portion 1 with a refractive index n1 and a softening point temperature T1 forming a core, a core portion 2 with a refractive index nl and a softening point temperature −, and a cladding portion 5, which constitute the core portion 1 and the core portion 2. The softening point temperatures T1 and T2 of the glass are different, and the glass softening point temperature T3 of the core portion 2 is higher than the softening point temperatures T1 and 'rs of the core portion 1 and the cladding portion 3. Figure 2 (
b) and d) the I-axis direction and y-axis direction of the fiber shown in Figure 1.
A graph of glass softening point temperature distribution in the axial direction is shown.

また、クラッド部3の屈折率n$はコア部1及び2の屈
折率n1およびn8よシも低くなるように調整されてい
る。すなわち、Ts> Tl x Tn> Ts * 
nt >nl、n鵞> nsである。
Further, the refractive index n$ of the cladding portion 3 is adjusted to be lower than the refractive indexes n1 and n8 of the core portions 1 and 2. That is, Ts>Tl x Tn>Ts *
nt > nl, n > ns.

ここで一般にSin、ガラスの軟化点温度は約1800
℃でl)、これK Ge、 P、 A1.、 Ga、 
Sb。
Generally, the softening point temperature of Sin and glass is approximately 1800.
l), which K Ge, P, A1. , Ga,
Sb.

B、 F 等の屈折率調整用の添加剤を添加することに
よシ軟化点温度は下がる。従って、例えばコア部1用材
(以下コア部材11という)として810鵞−G e 
O@を、コア部2用材(以下コア部材12という)とし
て8101を、クラッド部3用材(以下クラツド材13
という)として810.−P、oa−F あるいは81
0.−GeO,−F’のような組成で構成すると、コア
部材12のガラス軟化点温度をコア部材11及びクラツ
ド材15よ)も高く設定できる。
By adding additives for adjusting the refractive index such as B and F, the softening point temperature is lowered. Therefore, for example, as a material for the core part 1 (hereinafter referred to as the core member 11), 810 Goose-G e
O@ is the material for the core part 2 (hereinafter referred to as the core member 12), 8101 is the material for the cladding part 3 (hereinafter referred to as the cladding material 13).
) as 810. -P, oa-F or 81
0. By using a composition such as -GeO and -F', the glass softening point temperature of the core member 12 can be set higher than that of the core member 11 and the cladding material 15.

クラツド材13の屈折率nlは、添加剤の添加量を適宜
コントロールレ、コア部材11及び120屈折率n1及
びnlよシも低くなるようKする。
The refractive index nl of the cladding material 13 is adjusted so that the refractive index n1 and nl of the core members 11 and 120 is also lower by appropriately controlling the amount of additive added.

コア部の屈折率n4及びnzについてはどちらが高くて
もよく、例えば第1図の断面を有するファイバにおいて
、コア部1の屈折率n1がコア部2の屈折率よシ高い(
nt> ns )場合のI軸、y軸における屈折率分布
は第5図−)及び[有])に示すようになる。図示は省
略したがnz>nxの場合も当然本発明に包含される。
Either of the refractive indexes n4 and nz of the core portion may be higher; for example, in a fiber having the cross section shown in FIG. 1, the refractive index n1 of the core portion 1 is higher than the refractive index of the core portion 2 (
When nt > ns), the refractive index distributions on the I-axis and y-axis are shown in FIGS. Although not shown, the present invention naturally also covers the case where nz>nx.

さらに、クラッド部5の外側にコア/外径比を調整する
丸めのジャケット層を設けてもよい。
Furthermore, a rounded jacket layer may be provided on the outside of the cladding portion 5 to adjust the core/outer diameter ratio.

とのようなガラス構造のプリフォームを、コア部材12
の軟化点TIに近い温度例えば1900℃にて線引きす
ると、コア部2は線引後直ちに硬化するが、それ以外の
部分は依然低粘度である。このとき、線引きによシファ
イバに加えられる線引張力は、ガラス軟化点温度の高い
コア部2のみでささえられ、ファイバ全体が硬化した後
も、コア部2には大きな応力が残留する。
A preform having a glass structure such as the core member 12 is
When wire is drawn at a temperature close to the softening point TI of, for example, 1900° C., the core portion 2 hardens immediately after drawing, but the other portions still have a low viscosity. At this time, the drawing tension applied to the fiber during drawing is supported only by the core portion 2, which has a high glass softening point temperature, and even after the entire fiber is hardened, a large stress remains in the core portion 2.

線引張力は200を程度までかけることは可能であシ、
とれによシ、コア部2に残留する応力を軸方向に数十k
g/4”以上の大きな値にすることができる。従って、
従来の熱膨張係数の差を利用した定偏波ファイバにおけ
るものの数倍の複屈折率性を実現することができる。
It is possible to apply a wire tension of up to 200,
To prevent this, the stress remaining in the core part 2 can be reduced to several tens of kilograms in the axial direction.
It can be set to a large value of g/4" or more. Therefore,
It is possible to achieve a birefringence several times that of a conventional polarization constant fiber that utilizes the difference in thermal expansion coefficients.

このように、本発明のファイバは、従来の非軸対称応力
付与形ファイバでは得ることが難しかった大きな異方性
応力をコアに加えることが可能となシ、非常に良好な偏
波特性を有することが可能となった。
In this way, the fiber of the present invention can apply large anisotropic stress to the core, which was difficult to obtain with conventional non-axisymmetric stress-applying fibers, and has very good polarization characteristics. It is now possible to have

また第4図に示すように、本発明の構成のファイバに、
さらに熱膨張率の高いガラス層4を付加し、熱応力効果
と組み合せることによシ、さらに複屈折率性を増すこと
も有効である。
Further, as shown in FIG. 4, the fiber having the structure of the present invention has
Furthermore, it is also effective to further increase the birefringence by adding a glass layer 4 having a high coefficient of thermal expansion and combining this with the thermal stress effect.

〔実施例〕〔Example〕

実施例 VAD法によシ作製した5iO1−GeOl−F組成(
Ge038重量%、 F’ 1. ?重fk%)のガラ
スフッドの中心に超音波開孔器を用いて、10■φの穴
あけ、肉付CVD法用の出発母材用管、とし、60 r
pmで回転する該管内に5iCz41 o Q cc 
7分、0.800CC,7分を導入し、110瓢/分で
移動する酸水素バーナにて加熱し、読管の内側にsio
、ガラス膜を5回堆積させた。このときの断面構造は第
5図(&)のごとくで、図中12Iはsio1層、15
1は5iO1−GeOl−7層である。次に該管内に導
入するガスをSF・200CC/分、0雪100CC/
分に切換え、また読管の回転を停止し管の両側から対称
位置に配置された酸水素バーナで加熱することによシ、
堆積した5108ガラス膜の一部を気相エツチング除去
した。このときの管断面構造を第5図(ロ)に示す。
Example 5iO1-GeOl-F composition (
Ge038% by weight, F'1. ? Using an ultrasonic hole puncher, a hole of 10 φ was made in the center of a glass hood of 60 r
5iCz41 o Q cc inside the tube rotating at pm
7 minutes, 0.800CC, 7 minutes was introduced, heated with an oxyhydrogen burner moving at 110 gourds/minute, and sio
, the glass film was deposited five times. The cross-sectional structure at this time is as shown in Fig. 5 (&), where 12I is the sio1 layer,
1 is a 5iO1-GeOl-7 layer. Next, the gas introduced into the pipe is SF・200CC/min, 0 snow 100CC/min.
By switching the reading tube to 1 minute, and by stopping the rotation of the reading tube and heating it with oxyhydrogen burners placed symmetrically from both sides of the tube,
A portion of the deposited 5108 glass film was removed by vapor phase etching. The cross-sectional structure of the tube at this time is shown in FIG. 5(b).

その後再び管を回転させ管内に導入するガスを5iC4
? Occ7’分、 GeC411cc /分、o36
00CC/分に切換え、酸水素炎バーナで加熱し、コア
となる8101−GeO1ガラス膜を堆積させて複合管
とした。このときの管断面構造を第5図(C)に示す。
After that, the tube is rotated again and the gas introduced into the tube is 5iC4
? Occ7'min, GeC411cc/min, o36
00 CC/min, heated with an oxyhydrogen flame burner, and deposited a core 8101-GeO1 glass film to form a composite tube. The cross-sectional structure of the tube at this time is shown in FIG. 5(C).

図中11’はコアとなる8 10鵞−G e O2層で
ある。該複合管を酸水素バーナで高温加熱し、中実化し
第5図(ti)に示す構造のブリ7オーズロンドを作製
した。
In the figure, 11' is an 810-G e O2 layer serving as a core. The composite tube was heated at a high temperature with an oxyhydrogen burner and made into a solid material, thereby producing a Buri 7 Ozrond having the structure shown in FIG. 5(ti).

以上により得られたプリフォームロッドのクラッド部3
Iとコア部2Iの屈折率差は[L14%。
Clad part 3 of preform rod obtained as above
The refractive index difference between I and the core portion 2I is [L14%.

またクラッド部31とコア部11の屈折率差は145%
であった。該ブリ7オームロンドは、コアと外径の比が
1720  となるように、さらに前記の肉付CVD用
出発母材と同じ方法で作られたS10!−GeOl−F
ガラス管に挿入し、中実化した。次に抵抗炉線引炉にて
約1900℃に加熱し、線引張力120tで線引きして
、外径125μm のファイバを得た。
Also, the refractive index difference between the cladding part 31 and the core part 11 is 145%.
Met. The yellowtail 7 ohm rond was made in the same manner as the starting base material for CVD with a core so that the ratio of the core to the outer diameter was 1720. -GeOl-F
It was inserted into a glass tube and solidified. Next, it was heated to about 1900° C. in a resistance furnace drawing furnace and drawn at a drawing tension of 120 t to obtain a fiber with an outer diameter of 125 μm.

このファイバを波長λ=1.3μmの光源を用いてビー
ト長を測定したところ、L=1.3−であシ、これよシ
ファイバの複屈折率はI X 10−”と見積られ、非
常に大きな複屈折率性を有するととが確認された。
When we measured the beat length of this fiber using a light source with wavelength λ = 1.3 μm, we found that L = 1.3-, and the birefringence of this fiber was estimated to be I x 10-'', which is very It was confirmed that the material had a large birefringence.

〔発明の効果〕〔Effect of the invention〕

本発明の定偏波ファイバは、従来の熱膨張係数の差を利
用した定偏波ファイバでは実現が困難であった高複屈折
性を有することが可能であシ、これによシ非常に良好な
偏波特性を示すものである。
The polarization-constant fiber of the present invention can have high birefringence, which was difficult to achieve with conventional polarization-constant fibers that utilize differences in thermal expansion coefficients. It shows polarization characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の定偏波ファイバの1例の構造を示す断
面図であり、 vJ2図(a)及び(b)は、第1図のファイバのI軸
及びy軸における軟化点温度分布を示すグラフでちる。 第3図(a)及び(ロ)は、第1図の断面構造を有する
ファイバのI軸及びy軸における屈折率分布の1例(n
s> nlの場合)を示すグラフである。 第4図は本発明の定偏波ファイバに熱膨張係数差による
応力付与層を設けた実施態様を説明する断面図、 第5図(ト)〜(d)は本発明の実施例の“各工程にお
ける石英管又はプリフォームの断面図、第6図は従来の
熱膨張係数差による応力付与層を有する定偏波7ア゛イ
バの断面図である。
FIG. 1 is a cross-sectional view showing the structure of an example of the polarization constant fiber of the present invention, and vJ2 diagrams (a) and (b) show the softening point temperature distribution in the I-axis and y-axis of the fiber in FIG. Draw a graph showing. 3(a) and 3(b) show an example of the refractive index distribution (n
s>nl). FIG. 4 is a sectional view illustrating an embodiment in which a polarization constant fiber of the present invention is provided with a stress imparting layer based on a difference in thermal expansion coefficient, and FIGS. FIG. 6 is a cross-sectional view of a quartz tube or preform in a process, and is a cross-sectional view of a conventional constant-polarization seven-wire fiber having a stress applying layer due to a difference in coefficient of thermal expansion.

Claims (1)

【特許請求の範囲】[Claims] コアとクラッドからなる光ファイバにおいて、コアが屈
折率n_1で軟化点温度T_1のガラスおよび屈折率n
_2と軟化点温度T_2のガラスの2種のガラスからな
り、クラッドが屈折率n_3で軟化点温度T_3のガラ
スからなり、それぞれのガラスの屈折率および軟化点温
度の間に、n_1>n_3、n_2>n_3、T_2>
T_1、T_2>T_3、の関係があることを特徴とす
る定偏波ファイバ。
In an optical fiber consisting of a core and a cladding, the core is made of glass with a refractive index n_1 and a softening point temperature T_1, and a refractive index n_1.
The cladding is made of glass with a refractive index n_3 and a softening point temperature T_3, and between the refractive index and softening point temperature of each glass, n_1>n_3, n_2 >n_3, T_2>
A constant polarization fiber characterized by having a relationship of T_1, T_2>T_3.
JP60222800A 1985-10-08 1985-10-08 Constant polarization optical fiber Pending JPS6283706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60222800A JPS6283706A (en) 1985-10-08 1985-10-08 Constant polarization optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60222800A JPS6283706A (en) 1985-10-08 1985-10-08 Constant polarization optical fiber

Publications (1)

Publication Number Publication Date
JPS6283706A true JPS6283706A (en) 1987-04-17

Family

ID=16788094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60222800A Pending JPS6283706A (en) 1985-10-08 1985-10-08 Constant polarization optical fiber

Country Status (1)

Country Link
JP (1) JPS6283706A (en)

Similar Documents

Publication Publication Date Title
JPH0581543B2 (en)
JPS631252B2 (en)
JPH04238305A (en) Polymer-coated glass core optical waveguide
JPS6283706A (en) Constant polarization optical fiber
JPS6283708A (en) Constant polarization optical fiber
JPS59164505A (en) Single-polarization single-mode optical fiber
JPS61215225A (en) Production of optical fiber preserving plane of polarization
JPS6283707A (en) Constant polarization optical fiber
JPS63200106A (en) Constant polarization optical fiber
JPS61228404A (en) Optical fiber for constant polarized wave
JPS58135141A (en) Preparation of single polarized optical fiber
JPH0623805B2 (en) Polarization-maintaining optical fiber
JPS6367168B2 (en)
JPS6150887B2 (en)
JP2828251B2 (en) Optical fiber coupler
JP2805533B2 (en) Fiber fusion type optical branch coupler
JPS59197001A (en) Stress applying base material for optical fiber maintaining polarization
JPS60237406A (en) Optical fiber
JPS638706A (en) Polarization maintaining optical fiber
JPH02113205A (en) Optical fiber
JPS63306403A (en) Polarization maintaining fiber
JPS60260442A (en) Preparation of fixed polarisation fiber
JPS59162502A (en) Single-mode optical fiber of circular polarization maintainability and its manufacture
JPH01148724A (en) Production of polarization retaining fiber
JPS59160101A (en) Single mode optical fiber having circular polarization maintainability and its manufacture