JPS632000B2 - - Google Patents

Info

Publication number
JPS632000B2
JPS632000B2 JP20170981A JP20170981A JPS632000B2 JP S632000 B2 JPS632000 B2 JP S632000B2 JP 20170981 A JP20170981 A JP 20170981A JP 20170981 A JP20170981 A JP 20170981A JP S632000 B2 JPS632000 B2 JP S632000B2
Authority
JP
Japan
Prior art keywords
soda
soapstock
fatty acids
saponified
crude fatty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20170981A
Other languages
Japanese (ja)
Other versions
JPS58103597A (en
Inventor
Tosha Kataoka
Tooru Hanzawa
Kazunari Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Oillio Group Ltd
Original Assignee
Nisshin Oil Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Oil Mills Ltd filed Critical Nisshin Oil Mills Ltd
Priority to JP56201709A priority Critical patent/JPS58103597A/en
Publication of JPS58103597A publication Critical patent/JPS58103597A/en
Publication of JPS632000B2 publication Critical patent/JPS632000B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/74Recovery of fats, fatty oils, fatty acids or other fatty substances, e.g. lanolin or waxes

Landscapes

  • Fats And Perfumes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は油脂精製時の脱酸工程で分離されるソ
ーダ油滓から連続的に粗脂肪酸を製造する方法に
係る。 油脂原油中に含まれる遊離脂肪酸は苛性ソーダ
水溶液を用いる脱酸工程によつて除かれるが、こ
の際、上記遊離脂肪酸から生成する石鹸、中性油
脂、ガム質等からなるソーダ油滓が副生する。こ
のソーダ油滓は通常分解して脂肪酸の原料とされ
ており、かかる方法のひとつとしてソーダ油滓を
高温高圧下でアルカリにより鹸化したのち、硫酸
で酸分解して粗脂肪酸を分離する方法が知られて
いる。しかしこの方法は、従来はバツチ方式で実
施されているため作業性が悪く、工程管理が難し
い、脂肪酸の収率が低い、熱量損失が大きい、処
理タンク等が大規模になる、人員を多く要する、
排水の汚濁が大きい等の欠点がある。 本発明の目的は、従来のバツチ方式を連続化
し、以つて上記の様な欠点を伴わないでソーダ油
滓から粗脂肪酸を製造することにある。 本発明者らは種々検討の結果、ソーダ油滓の鹸
化をチユーブ内で行うこと及び鹸化されたソーダ
油滓の酸分解を特定の方法で行うことによつて上
記の目的が達成されることを見い出した。 本発明はかかる知見に基づいて完成されたもの
で、油脂脱酸工程で生成するソーダ油滓を、アル
カリ及び高圧水蒸気と共にチユーブ内に圧送して
高温高圧下に鹸化する工程、鹸化されたソーダ油
滓にライン中で鉱酸を添加しインラインミキサー
により鉱酸を混合する工程、鹸化されたソーダ油
滓を混合された鉱酸によりタンク内で分解する工
程、分解されたソーダ油滓を分離機で粗脂肪酸と
甘水等とに分離する工程及び分離した粗脂肪酸を
採取する工程を順次結合してなる、ソーダ油滓か
ら粗脂肪酸を連続的に製造する方法である。 ソーダ油滓に加えるアルカリとしては苛性ソー
ダが好ましく、ソーダ油滓の鹸化当量以上を必要
とする。アルカリは通常水溶液として用いる。そ
の濃度は30〜48%が適当である。 ソーダ油滓はギアポンプ等の押込ポンプにより
プランジヤーポンプ等の加圧ポンプに押し込んで
昇圧され、上記のアルカリが定量ポンプにより添
加され、インラインヒーターにより高圧水蒸気が
吹き込まれる。 次いでチユーブ内に圧送され、5Kg/cm2(ゲー
ジ圧。以下同様)以上好ましくは6〜7Kg/cm2
加圧下に110℃以上好ましくは140〜150℃の高温
高圧処理を受ける。 チユーブは例えば内径5〜40cm、長さ5〜40m
程度の金属製パイプを使用し、ソーダ油滓がアル
カリ及び高圧水蒸気と共にこの中を通過する間に
ソーダ油滓中の中性油脂が連続的に鹸化される。
チユーブ内の滞留時間は5〜30分であり、従来法
に比し短時間で鹸化が完了する。この様にチユー
ブを用いるとソーダ油滓の鹸化操作を連続化でき
処理効果を高めることができると共に設備が廉価
でスペースをとらず、運転及び保存が容易である
という利点がある。 なお鹸化チユーブの出口に熱交換器を設け、チ
ユーブから出るソーダ油滓とチユーブに送入され
るソーダ油滓との間で熱交換を行うと熱経済上有
利である。 鹸化を受けたソーダ油滓に対しライン中で鉱酸
が添加され、スタテイクミキサー等のインライン
ミキサーで混合される。鉱酸としては濃硫酸が好
ましい。鉱酸が混合された鹸化ソーダ油滓は連続
的に分解タンク中へ送入され、酸分解を行う。次
に分解物を連続的に抜き出しフラムアーカースセ
パレータ等の油水分離機へ送入して粗脂肪酸と甘
水等とに分離し、前者を採取する。 従来、この酸分解工程は、かなり面倒な操作を
必要とするバツチ式で実施されていた。即ち鹸化
されたソーダ油滓を分解タンクに直接仕込み撹拌
しながら鉱酸を添加してまずPHを5〜7となし静
置して下層に分離した水層を除去し、次に100〜
120℃に昇温して撹拌しながら再び鉱酸を添加し
てPH1〜2となし静置して上層の粗脂肪酸と下層
の甘水に分離するという方法である。これは、酸
分解を連続的に行う適当な方法が知られていない
こと、濃硫酸の様な鉱酸で、一度にPHを1〜2に
下げると脂肪酸の二重結合部に硫酸化の起こるお
それがあること等のためであるが、この様なバツ
チ式では分解効果が必ずしも高くないので、粗脂
肪酸と甘水との間に中間層の生成が多く、粗脂肪
酸の収率の低下や排水の汚濁を高める、分解タン
クの容量を大きくしなければならない、またその
ため鹸化ソーダ油滓の温度が低下するので、昇温
の必要があり熱量損失が大きい等の欠点がある。 これに対し本発明では前記の様な手段を採用し
ているため、鹸化ソーダ油滓と鉱酸の混合が短時
間で十分行われ、またインラインミキサー中で分
解反応が開始進行するので分解時間が短縮でき、
また分解効率が高いので中間層の発生量が少な
く、粗脂肪酸の収率が高く、排水の性状も良好で
ある。更に連続化されているからタンク容量が小
さくてすみ、熱量損失も少ない。 本発明は以上の様にして実施されるものであ
り、全体が連続的に操作されるから工程管理が容
易であり省力化が可能となる。従来のバツチ方式
ではアルカリ、鉱酸等の使用量や操作温度をコン
トロールすることが実際上難しく、これらの薬品
を過剰に用いたり、必要以上に昇温することが多
いため、単に薬品や水蒸気が不経済であるばかり
でなく、粗脂肪酸中に重合物が増加し、後の蒸留
工程でピツチの生成量が多いという欠点がある
が、本発明の方法では計算量の薬品の添加と適正
な温度管理が容易に行えるから上記の様な欠点は
払拭され経済的であると共に、蒸留時のピツチの
発生が少ないという利点がある。 以下実施例を示す。 実施例 1 菜種油の脱酸工程で生じたソーダ油滓〔油分31
%(重量。以下同様)、酸価116〕をギアポンプに
より2000Kg/時でプランジヤーポンプに押し込ん
で7Kg/cm2に昇圧したのち鹸化チユーブ出口に設
けられた熱交換器により100℃に昇温し、ライン
中で48%苛性ソーダ水溶液を116Kg/時で添加し、
温度179℃、圧力9Kg/cm2の高圧水蒸気を151Kg/
時で吹き込んだ。次にステンレス製鹸化チユーブ
(内径20cm、長さ19mへ入口温度155℃で圧送しチ
ユーブ内を通過する間に鹸化を行つた。チユーブ
出口温度150℃、圧力5.5Kg/cm2、チユーブ内滞留
時間15分であつた。次いでライン中で98%濃硫酸
を141Kg/時で添加したのちスタテイクミキサー
で混合し1.2m3の分解タンクに送入した。タンク
内温度100℃、PH3.0の条件下に2408Kg/時で分解
を行い分解物は連続的にフラムアーカースセパレ
ータに送り788/時で粗脂肪酸94%、甘水4%、
中間層2%に分離した。粗脂肪酸層を遠心分離機
にかけ、更に甘水等を除いた。排水の組成は粗脂
肪酸0%、中間層37%、甘水63%であつた。 比較例 1 実施例1に於てチユーブで鹸化されたソーダ油
滓を従来法により酸分解した。即ち鹸化ソーダ油
滓を20m3の分解タンクに送入し撹拌しながら98%
濃硫酸を添加してPH6とした。30分間静置後下層
の水を除去し、次に30分かけて100℃に昇温し撹
拌しながら濃硫酸を添加してPH1.5で分解を行つ
た。分解終了までに3時間を要した。2時間静置
して粗脂肪酸28.8%、中間層11%、甘水60.2%に
分離し、粗脂肪酸層は24時間静置して甘水等を除
いた。 比較例 2 実施例1及び比較例1で得られた粗脂肪酸につ
いて夫々蒸留温度195〜205℃、真空度3Torrで蒸
留を行つた。得られた蒸留脂肪酸の収率及びピツ
チの生成量等を表−1に示す。
The present invention relates to a method for continuously producing crude fatty acids from soda soapstock separated in the deacidification step during oil and fat refining. The free fatty acids contained in oil and fat crude oil are removed by a deacidification process using an aqueous caustic soda solution, but at this time, soda soap consisting of soap, neutral oil, gum, etc. produced from the free fatty acids is produced as a by-product. . This soda soapstock is usually decomposed and used as a raw material for fatty acids, and one known method is to saponify the soda soapstock with an alkali at high temperature and pressure, and then acidly decompose it with sulfuric acid to separate crude fatty acids. It is being However, this method has traditionally been carried out in batches, resulting in poor workability and difficult process control, low fatty acid yield, large heat loss, large processing tanks, etc., and the need for a large number of personnel. ,
There are disadvantages such as large pollution of wastewater. The object of the present invention is to make the conventional batch process continuous and to produce crude fatty acids from soda soap without the above-mentioned drawbacks. As a result of various studies, the present inventors have found that the above object can be achieved by saponifying the soda soapstock in a tube and by performing acid decomposition of the saponified soda soapstock using a specific method. I found it. The present invention was completed based on this knowledge, and includes a process of saponifying soda oil slag produced in an oil and fat deoxidizing process by pumping it into a tube together with alkali and high-pressure steam under high temperature and high pressure, and a process of saponifying soda oil A process of adding mineral acid to the slag in a line and mixing it with an in-line mixer, a process of decomposing the saponified soda slag in a tank with mixed mineral acid, and a process of decomposing the decomposed soda slag in a separator. This is a method for continuously producing crude fatty acids from soapstock by sequentially combining the steps of separating crude fatty acids and sweet water, etc., and collecting the separated crude fatty acids. The alkali to be added to the soapstock is preferably caustic soda, and the alkali needs to be at least the saponification equivalent of the soda soapstock. Alkali is usually used as an aqueous solution. A suitable concentration is 30-48%. The soap soda is pressurized by being pushed into a pressurizing pump such as a plunger pump by a force pump such as a gear pump, the above-mentioned alkali is added by a metering pump, and high-pressure steam is blown in by an in-line heater. It is then fed under pressure into a tube and subjected to high-temperature and high-pressure treatment at 110° C. or higher, preferably 140-150° C., under a pressure of 5 kg/cm 2 (gauge pressure; the same applies hereinafter) or higher, preferably 6 to 7 kg/cm 2 . For example, the tube has an inner diameter of 5 to 40 cm and a length of 5 to 40 m.
The neutral fats and oils in the soda soap are continuously saponified while the soda soap is passed through the pipe along with alkali and high-pressure steam using a metal pipe of about 100 yen.
The residence time in the tube is 5 to 30 minutes, and saponification is completed in a shorter time than in conventional methods. The use of tubes in this manner has the advantage that the saponification operation of soda oil soapstock can be made continuous and the treatment effect can be enhanced, and that the equipment is inexpensive, does not take up much space, and is easy to operate and store. Note that it is advantageous from a thermoeconomic standpoint to provide a heat exchanger at the outlet of the saponification tube to exchange heat between the soapstock coming out of the tube and the soda soap fed into the tube. Mineral acid is added to the saponified soda soap in-line and mixed using an in-line mixer such as a static mixer. Concentrated sulfuric acid is preferred as the mineral acid. The saponified soda soap mixed with mineral acid is continuously fed into a decomposition tank and subjected to acid decomposition. Next, the decomposed product is continuously extracted and sent to an oil-water separator such as a Frame Arkers separator to separate it into crude fatty acids and sweet water, and the former is collected. Conventionally, this acid decomposition step has been carried out in batches, which requires a fairly laborious operation. That is, the saponified soda oil soapstock is directly charged into a decomposition tank, and mineral acid is added while stirring to bring the pH to 5-7.The pH is then left to stand to remove the water layer that has separated into the lower layer.
In this method, the temperature is raised to 120°C, and while stirring, mineral acid is added again to bring the pH to 1-2, and the mixture is left to stand to separate into the upper layer of crude fatty acids and the lower layer of sweet water. This is because there is no known suitable method for continuous acid decomposition, and if the pH is lowered to 1 to 2 at once using a mineral acid such as concentrated sulfuric acid, sulfation occurs at the double bonds of fatty acids. This is because such a batch method does not necessarily have a high decomposition effect, so an intermediate layer is often formed between the crude fatty acids and sweet water, resulting in a decrease in the yield of crude fatty acids and waste water. There are drawbacks such as increased pollution of the water, the need to increase the capacity of the decomposition tank, and the temperature of the saponified sodium slag decreases, making it necessary to raise the temperature, resulting in a large loss of heat. In contrast, in the present invention, since the above-mentioned means are adopted, the saponified soda soapstock and mineral acid are sufficiently mixed in a short time, and the decomposition reaction starts and progresses in the in-line mixer, so the decomposition time is reduced. Can be shortened,
Furthermore, since the decomposition efficiency is high, the amount of intermediate layer produced is small, the yield of crude fatty acids is high, and the properties of the wastewater are good. Furthermore, since it is continuous, the tank capacity is small and there is less heat loss. The present invention is carried out as described above, and since the entire system is operated continuously, process control is easy and labor saving is possible. In the conventional batch method, it is practically difficult to control the amount of alkali, mineral acid, etc. used and the operating temperature, and these chemicals are often used in excess or the temperature is raised more than necessary. Not only is it uneconomical, but it also has the drawbacks of increasing polymers in the crude fatty acids and producing a large amount of pitts in the subsequent distillation process.However, the method of the present invention requires addition of calculated amounts of chemicals and appropriate temperature Since it can be easily managed, the above-mentioned disadvantages are eliminated and it is economical, and it also has the advantage that it generates less pitch during distillation. Examples are shown below. Example 1 Soda oil slag produced in the deoxidation process of rapeseed oil [oil content 31
% (weight, acid value 116) was pushed into a plunger pump at 2000 kg/hour using a gear pump to increase the pressure to 7 kg/cm 2 , and then the temperature was raised to 100°C using a heat exchanger installed at the outlet of the saponification tube. , adding 48% caustic soda aqueous solution at 116 kg/hour in the line,
151 kg/ cm2 of high-pressure steam at a temperature of 179°C and a pressure of 9 kg/cm2
It was blown away by time. Next, it was pumped into a stainless steel saponification tube (inner diameter 20cm, length 19m) at an inlet temperature of 155℃, and saponification was performed while passing through the tube.Tube outlet temperature 150℃, pressure 5.5Kg/cm 2 , residence time in the tube. 15 minutes. Next, 98% concentrated sulfuric acid was added in the line at 141 kg/hour, mixed with a static mixer, and sent to a 1.2 m 3 decomposition tank. Tank temperature 100°C, pH 3.0 conditions. Decomposition is carried out at a rate of 2,408 kg/hour, and the decomposed products are continuously sent to the Flam Arkers separator at a rate of 788 kg/hour to produce 94% crude fatty acids, 4% sweet water,
It was separated into an intermediate layer of 2%. The crude fatty acid layer was centrifuged to remove sweet water and the like. The composition of the wastewater was 0% crude fatty acids, 37% intermediate layer, and 63% sweet water. Comparative Example 1 The soda soap saponified in the tube in Example 1 was acid-decomposed by a conventional method. In other words, the saponified soda soapstock was sent to a 20m3 decomposition tank and was reduced to 98% while stirring.
Concentrated sulfuric acid was added to adjust the pH to 6. After standing still for 30 minutes, the water in the lower layer was removed, and then the temperature was raised to 100°C over 30 minutes, and while stirring, concentrated sulfuric acid was added to perform decomposition at pH 1.5. It took 3 hours to complete the decomposition. The mixture was left to stand for 2 hours and separated into 28.8% crude fatty acids, 11% intermediate layer, and 60.2% sweet water. The crude fatty acid layer was left to stand for 24 hours to remove sweet water and the like. Comparative Example 2 The crude fatty acids obtained in Example 1 and Comparative Example 1 were each distilled at a distillation temperature of 195 to 205°C and a vacuum degree of 3 Torr. The yield of the distilled fatty acids obtained, the amount of pitch produced, etc. are shown in Table 1.

【表】 上記の如く本発明によれば酸分解が適正に行わ
れるため蒸留時の加熱による重合が少ないから、
蒸留脂肪酸の収率が高く、ピツチの生成量が少な
い。
[Table] As mentioned above, according to the present invention, acid decomposition is carried out properly, so there is less polymerization due to heating during distillation.
The yield of distilled fatty acids is high, and the amount of pituti produced is small.

Claims (1)

【特許請求の範囲】[Claims] 1 油脂脱酸工程で生成するソーダ油滓を、アル
カリ及び高圧水蒸気と共にチユーブ内に圧送して
高温高圧下に鹸化する工程、鹸化されたソーダ油
滓にライン中で鉱酸を添加しインラインミキサー
により鉱酸を混合する工程、鹸化されたソーダ油
滓を混合された興産によりタンク内で分解する工
程、分解されたソーダ油滓を分離機で粗脂肪酸お
甘水等とに分離する工程及び分離した粗脂肪酸を
採取する工程を順次結合してなる、ソーダ油滓か
ら粗脂肪酸を連続的に製造する方法。
1 A process in which the soda soapstock produced in the oil and fat deoxidation process is pumped into a tube together with alkali and high-pressure steam and saponified under high temperature and high pressure.Mineral acid is added to the saponified soda soapstock in a line and the process is carried out using an in-line mixer. The process of mixing mineral acids, the process of decomposing the saponified soda soapstock in a tank using the mixed kosan, the process of separating the decomposed soda soapstock into crude fatty acid, sweet water, etc. using a separator, and the process of separating the saponified soda soapstock into crude fatty acid and sweet water. A method for continuously producing crude fatty acids from soda soapstock by sequentially combining the steps of collecting crude fatty acids.
JP56201709A 1981-12-16 1981-12-16 Crude fatty acid continuous manufacture Granted JPS58103597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56201709A JPS58103597A (en) 1981-12-16 1981-12-16 Crude fatty acid continuous manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56201709A JPS58103597A (en) 1981-12-16 1981-12-16 Crude fatty acid continuous manufacture

Publications (2)

Publication Number Publication Date
JPS58103597A JPS58103597A (en) 1983-06-20
JPS632000B2 true JPS632000B2 (en) 1988-01-14

Family

ID=16445621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56201709A Granted JPS58103597A (en) 1981-12-16 1981-12-16 Crude fatty acid continuous manufacture

Country Status (1)

Country Link
JP (1) JPS58103597A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169893A (en) * 1984-08-29 1986-04-10 ジエイグル−プ エス ギル Regnerative utilization of sewage floating scum
GB8915263D0 (en) * 1989-07-03 1989-08-23 Unilever Plc Process for soap splitting using a high temperature treatment
CA2904869C (en) * 2013-03-15 2021-02-16 Dow Global Technologies Llc Epoxidized-fatty-acid-alkyl-ester plasticizers from natural-oil soap stock and methods for making such epoxidized-fatty-acid-alkyl-ester plasticizers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49124103A (en) * 1973-03-31 1974-11-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49124103A (en) * 1973-03-31 1974-11-27

Also Published As

Publication number Publication date
JPS58103597A (en) 1983-06-20

Similar Documents

Publication Publication Date Title
US5424467A (en) Method for purifying alcohol esters
US2383632A (en) Process of treating fatty glycerides
US2751419A (en) Process for purification of polytetramethyleneether
AT504727A1 (en) METHOD AND APPARATUS FOR THE ESTABLISHMENT OF FATTY ACIDS
CN110862301A (en) Sec-butyl alcohol refining method and device
CN104388194B (en) A kind of grease hydrolysis reactor and reaction process
CN204022786U (en) A kind of high-temperature reflux hydrolysate oil is separated the device preparing lipid acid
JPS632000B2 (en)
DE1219484B (en) Process for the production of peroxycarboxylic acids
CN113789225B (en) Combined continuous production method of acidized oil
CN108164416A (en) A kind of new process that monomethyl azelate is prepared based on biodiesel
CN211035855U (en) Device for separating and recovering saponin and grease in soap grease mixed liquid
CN107445813A (en) The method that Malania Oleifera Oil prepares cyclopentadecanone
CN207537372U (en) Continuous reaction rectification production cyanoacetate compound, malonate compound device
US2495071A (en) Production of glycerin and distilled fatty acids
CN113563182B (en) Method for recovering centrifugal mother liquor generated in production process of trifluoro-permethric acid
US2506473A (en) Metod of obtaining fatty alcohols from their esters
JPS5825400A (en) Continuous saponification and system
CN220861447U (en) Propionyl chloride production system capable of improving yield of phosphorous acid
DE10310203A1 (en) Small scale production of biomethanol diesel from rapeseed oil includes washing freshly expressed oil with methanol before catalytic ester exchange
US3391191A (en) Liquid phase decarboxylation of fatty acids to ketones
CN219539465U (en) Alkaline washing device for butyl acrylate preparation
DE594551C (en) Process for the preparation of alkyl chlorides or bromides
EP1409622A1 (en) Transesterification of fats
US2452725A (en) Soapmaking process