JPS63200058A - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector

Info

Publication number
JPS63200058A
JPS63200058A JP62032394A JP3239487A JPS63200058A JP S63200058 A JPS63200058 A JP S63200058A JP 62032394 A JP62032394 A JP 62032394A JP 3239487 A JP3239487 A JP 3239487A JP S63200058 A JPS63200058 A JP S63200058A
Authority
JP
Japan
Prior art keywords
frequency
receiver
flaw detection
probe
frequency component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62032394A
Other languages
Japanese (ja)
Inventor
Shoji Yamaguchi
祥司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP62032394A priority Critical patent/JPS63200058A/en
Publication of JPS63200058A publication Critical patent/JPS63200058A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a flaw detection image having high resolving power, by providing BPF capable of extracting the arbitrary frequency component of the frequency outputted from a receiver to the circuit between a pulser and a peak detector. CONSTITUTION:In an apparatus consisting of a pulser 5 transmitting an ultrasonic pulse to a probe 4, a receiver 6 receiving the reflected wave from an object to be inspected to amplify the same, a peak detector 7 outputting the DC voltage proportional to the peak value of the reflected wave amplified by the receiver 6 and an operational processing part 9, a band-pass filter (BPF)14 extracting the arbitrary frequency component of the frequency band outputted from the receiver 6 is provided to the circuit between the pulser 5 and the peak detector 7. By this constitution, since the setting of the frequency component allowed to pass through BPF14 is arbitrarily changed and the amplitude of the frequency component after passing through BPF14 becomes max. in the region thereof, the flaw detection in the region of the high frequency component or that in the region of a low frequency component can be freely selected and a flaw detection image having high resolving power is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超音波探傷装置に係わり、特に高周波数の探触
子を使用する自動超音波探傷装置に好適なものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ultrasonic flaw detection device, and is particularly suitable for an automatic ultrasonic flaw detection device that uses a high frequency probe.

〔従来の技術〕[Conventional technology]

超音波探傷は被検体における超音波の減衰状況。 Ultrasonic flaw detection measures the attenuation of ultrasonic waves in the object.

欠陥の位置や欠陥の大きさなどの検出能力である分解能
等により探傷周波数が選定され使用されており、一般に
は結晶粒子があらく減衰の大きい材質の被検体や、探傷
面より離れた遠距離にある欠陥を探傷する場合などには
低い周波数が使用され、表面に近い欠陥や微小欠陥を探
傷する場合などには高い周波数が使用されている。この
場合使用する探触子は複数の異なる探傷周波数のものが
使い分けられるが、特に高周波数の探触子を使用する場
合には、被検体からの反射波を受信するレシーバから出
力する周波数帯域が広く、その探触子の探傷周波数で振
幅が最大にならず、それよりかなり低い周波数で最大に
なる場合がある。
The flaw detection frequency is selected and used depending on the resolution, which is the ability to detect the position and size of the flaw, and is generally used for testing objects made of materials with coarse crystal grains and high attenuation, or at long distances away from the flaw detection surface. A low frequency is used when detecting a certain defect, and a high frequency is used when detecting a defect close to the surface or a minute defect. In this case, the probes used have multiple different flaw detection frequencies, but especially when using a high-frequency probe, the frequency band output from the receiver that receives the reflected waves from the object is limited. Broadly speaking, the amplitude may not reach its maximum at the flaw detection frequency of the probe, but may reach its maximum at a much lower frequency.

従来の自動超音波探傷装置の一例を第4図および第5図
により説明する。第4図は装置の全体説明図、第5図は
レシーバの出力信号の周波数分析を示す図である。図に
おいて1は水槽、2は水槽1に満たされた水、3は水槽
1の底部に置かれている被検体、4は水2に浸漬され被
検体3に相対する位置に、図に示すX、Y、Zの各方向
に移動可能に図示しないスキャナにより保持されている
焦点形の探触子、5はパルサーで、探触子4と高周波ケ
ーブルで接続され探触子4に被検体3に向けて超音波パ
ルスを発信させる。6は探触子4およびパルサー5に接
続され、被検体3から反射する反射波を探触子4を介し
て受信し、かつ増幅するレシーバ、7はピークディテク
タで、パルサー5およびレシーバ6に接続されレシーバ
6で増幅された被検体3からの反射波のピーク値に比例
するDC電圧を出力する。8は波形モニタ装置で、ピー
クディテクタの出力波形値をモニタリングする。9は演
算処理部で、ピークディテクタに接続されその出力値が
入力されるAD変換器10.前記スキャナに動作指令を
出すとともにレシーバ6の出力信号の周波数分析を行う
CPUII、画像処理装置12.被検体3の探傷画像を
モニタリングするモニタTV13を有している。
An example of a conventional automatic ultrasonic flaw detection device will be explained with reference to FIGS. 4 and 5. FIG. 4 is an overall explanatory diagram of the apparatus, and FIG. 5 is a diagram showing frequency analysis of the output signal of the receiver. In the figure, 1 is a water tank, 2 is water filled in the water tank 1, 3 is a subject placed at the bottom of the water tank 1, 4 is immersed in water 2 and is located at a position opposite to the subject 3. , Y, and Z directions, and is held by a scanner (not shown). 5 is a pulser, which is connected to the probe 4 by a high-frequency cable and is connected to the object 3 by the probe 4. Send ultrasonic pulses towards the target. A receiver 6 is connected to the probe 4 and the pulser 5, and receives and amplifies the reflected wave reflected from the object 3 via the probe 4. A peak detector 7 is connected to the pulser 5 and the receiver 6. A DC voltage proportional to the peak value of the reflected wave from the subject 3 amplified by the receiver 6 is output. 8 is a waveform monitor device that monitors the output waveform value of the peak detector. Reference numeral 9 denotes an arithmetic processing section, and an AD converter 10 connected to the peak detector and inputting its output value. CPU II, which issues an operation command to the scanner and analyzes the frequency of the output signal of the receiver 6, and an image processing device 12. It has a monitor TV 13 for monitoring flaw detection images of the object 3.

前記構成の超音波探傷装置において、比較的高周波数(
たとえば30MH2以上)の探触子4を使用して探傷す
る場合は、レシーバ6の出力する周波数JF域は広く第
5図に示すような周波数分析となる。横軸は周波数(M
H2)、縦軸は振幅を示す。
In the ultrasonic flaw detection device having the above configuration, relatively high frequency (
When performing flaw detection using the probe 4 (for example, 30 MH2 or higher), the frequency JF range output from the receiver 6 is wide and the frequency analysis as shown in FIG. 5 is performed. The horizontal axis is the frequency (M
H2), the vertical axis shows the amplitude.

図においてたとえば周波数f+が50MH2の探触子4
を使用した場合には1周波数f1における振幅は周波数
の低いfo(たとえば25 M Hz )の振幅よりか
なり小さく、このため周波数f1より振幅の大きい低周
波数側成分の影響を受けて周波数f。
In the figure, for example, a probe 4 with a frequency f+ of 50 MH2
When using one frequency f1, the amplitude at one frequency f1 is considerably smaller than the amplitude of a low frequency fo (for example, 25 MHz), and therefore, the frequency f is influenced by the low frequency side component whose amplitude is larger than the frequency f1.

に対応する分解能が得られず、高分解能による画像を得
る目的で使用した高周波数の探触子4の特性を十分に発
揮し得ず精度の低い探傷結果になる。
Therefore, the characteristics of the high-frequency probe 4 used for the purpose of obtaining high-resolution images cannot be fully demonstrated, resulting in flaw detection results with low accuracy.

また前記第5図の周波数fOで探傷する必要がある場合
は、当然のことながら周波数f、の探触子を準備しなけ
ればならないが、この場合においても前記と同様に周波
数f、より振幅の大きい低周波数側成分の影響を受ける
ことになり、前記と同じ問題点を有することになる。
Furthermore, if it is necessary to perform flaw detection at the frequency fO shown in Fig. 5, it is necessary to prepare a probe with a frequency f, but in this case as well, a probe with a frequency f and an amplitude higher than that shown in Fig. 5 must be prepared. This will be affected by large low frequency side components, and will have the same problem as above.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記した如〈従来の超音波探傷装置においては、分解能
を高めるべくできるだけ高周波数の探触子を使用しても
、レシーバ出力の周波数帯域が広く。
As mentioned above, in conventional ultrasonic flaw detection equipment, even if a probe with as high a frequency as possible is used to improve resolution, the frequency band of the receiver output is wide.

その探触子の探傷周波数で超音波の振幅が最大とならず
かなり低い側の周波数で振幅が最大となり、この影響を
受けて探触子の周波数に見合う分解能が得られず精度の
よい欠陥評価ができない問題点を有していた。
The amplitude of the ultrasonic wave does not reach its maximum at the flaw detection frequency of the probe, but reaches its maximum at a considerably lower frequency. Due to this influence, the resolution commensurate with the frequency of the probe cannot be obtained, resulting in accurate defect evaluation. The problem was that it was not possible to do so.

本発明は前記従来技術の問題点を解消するものであって
、使用する探触子の周波数帯域より任意の周波数成分を
抽出でき、特に高周波数の探触子を使用する場合に、高
周波数成分を抽出し低周波数成分を除去して低周波数成
分の影響を受けないようにし、分解能の高い被検体の探
傷画像を得ることのできる超音波探傷装置を提供するこ
とを目的とする。
The present invention solves the problems of the prior art, and is capable of extracting any frequency component from the frequency band of the probe used. Especially when using a high frequency probe, high frequency components can be extracted. An object of the present invention is to provide an ultrasonic flaw detection device that can obtain a high-resolution flaw detection image of a test object by extracting the low-frequency components and removing the low-frequency components so as not to be affected by the low-frequency components.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、探触子に超音波パルスを発信させるパルサー
と、前記探触子およびパルサーに接続され、被検体から
の反射波を探触子を介して受信し増幅するレシーバと、
前記パルサーおよびレシーバに接続され、レシーバで増
幅した反射波のピーク値に比例するDC電圧を出力する
ピークディテクタと、該ピークディテクタの出力値を演
算処理する演算処理部とを有する超音波探傷装置におい
て、前記パルサーとピークディテクタとの間の回路に、
前記レシーバの出力する周波数帯域のうち任意の周波数
成分を抽出するバンドパスフィルタを設けたことにより
、使用する探触子の周波数帯域より任意の周波数成分を
抽出することができ、分解能が高く精度のよい欠陥評価
ができる探傷画像を得ることができるようにしたもので
ある。
The present invention includes: a pulser that causes a probe to emit ultrasonic pulses; a receiver that is connected to the probe and the pulser and receives and amplifies reflected waves from a subject via the probe;
In an ultrasonic flaw detection apparatus having a peak detector connected to the pulser and the receiver and outputting a DC voltage proportional to the peak value of the reflected wave amplified by the receiver, and an arithmetic processing section that performs arithmetic processing on the output value of the peak detector. , in the circuit between the pulser and the peak detector,
By providing a bandpass filter that extracts any frequency component from the frequency band output by the receiver, it is possible to extract any frequency component from the frequency band of the probe used, resulting in high resolution and precision. This makes it possible to obtain flaw detection images that allow good defect evaluation.

〔作用〕 パルサーとピークディテクタとの間の回路、たとえばレ
シーバとピークディテクタ間の回路にバンドパスフィル
タを介設すると、レシーバの出力する周波数帯域のうち
、バンドパスフィルタに設定された所望の任意の領域の
周波数成分だけがバンドパスフィルタを通過してピーク
ディテクタに送られ、その送られた周波数成分により探
傷が行われる。バンドパスフィルタを通過させる周波数
成分の設定は任意に変えられ、バンドパスフィルタ通過
後の周波数成分はその領域で振幅が最大になるから、高
周波数の探触子を使用する場合には、高周波数成分の領
域での探傷や低周波数成分の領域での探傷を自由に選択
することができ、分解能の高い探傷画像が得られるとと
もに、同一の探触子で異なる周波数帯域の探傷を可能に
する。
[Operation] When a bandpass filter is inserted in the circuit between the pulser and the peak detector, for example, in the circuit between the receiver and the peak detector, any desired frequency band set in the bandpass filter can be filtered out of the frequency band output by the receiver. Only the frequency components in the region pass through the bandpass filter and are sent to the peak detector, and flaw detection is performed using the sent frequency components. The setting of the frequency components to be passed through the band-pass filter can be changed arbitrarily, and the frequency components after passing through the band-pass filter have the maximum amplitude in that region, so when using a high-frequency probe, You can freely select flaw detection in the component region or low frequency component region, and not only can you obtain a high-resolution flaw detection image, but also enable flaw detection in different frequency bands with the same probe.

〔実施例〕〔Example〕

本発明の実施例を第1図ないし第3図を参照して説明す
る。第1図は第4図に対応する装置の全体説明図、第2
図はレシーバの出力がバンドパスフィルタを通過した場
合の周波数分析を示す図。
Embodiments of the present invention will be described with reference to FIGS. 1 to 3. Figure 1 is an overall explanatory diagram of the device corresponding to Figure 4;
The figure shows frequency analysis when the output of the receiver passes through a bandpass filter.

第3図は近接した2つの欠陥画像の従来と本発明との対
比図である。図において第4図および第5図と同一符号
は同じものを示す。14はレシーバ6とピークディテク
タ7間の回路に介設されたバンドパスフィルタで、レシ
ーバ6の出力する周波数帯域のうち設定した所望の任意
の領域の周波数成分だけを抽出して通過させ、ピークデ
ィテクタに入力させることができる。バンドパスフィル
タ14を通過させる周波数成分の設定は任意に変えて行
うことができ、その通過させた周波数成分はその領域に
おいて振幅が最大になる。
FIG. 3 is a comparison diagram of two adjacent defect images between the conventional method and the present invention. In the figure, the same reference numerals as in FIGS. 4 and 5 indicate the same parts. Reference numeral 14 denotes a bandpass filter interposed in the circuit between the receiver 6 and the peak detector 7, which extracts and passes only the frequency components in a desired arbitrary range set out of the frequency band output by the receiver 6, and passes the filter to the peak detector. can be entered. The setting of the frequency components to be passed through the band-pass filter 14 can be changed arbitrarily, and the amplitude of the frequency components to be passed has a maximum in that region.

バンドパスフィルタ14を設けた前記装置で探傷する場
合、レシーバ6の出力周波数はバンドパスフィルタ14
を通過することにより第2図に示すような周波数分析と
なる。第2図は前記第5図に対応させた図で、第5図に
おける最大振幅の周波数f、の成分が大幅に除去され、
高周波数のf、の領域の成分だけが抽出され、flにお
ける振幅が最大であることを示している。第2図に示す
周波数f+で探傷した結果が第3図(b)で、モニタT
V13に近接した2つの欠陥Fl+F2が明確に分離し
て表示されるのに比し、従来の第5図に示す周波数f、
で探傷した結果の第3図(a)は、振幅の大きい低周波
数f、の領域の成分の影響を受けるため分解能が悪く、
分離した2欠陥FItF2を1欠陥Fとして大きく評価
される。このように比較的高周波数の探触子を使用する
場合は、高周波成分を抽出することにより分解能の高い
探傷画像を得られるだけでなく、バンドパスフィルタ1
4を通過させる周波数の設定を変えることにより、同一
の探触子で低周波数成分での探傷も可能にし、低周波数
の探触子を使用して探傷したのと同一の作用・効果が得
られる。これは異なる周波数の探触子を複数備えたのと
同じ効果であり、探傷の操作が容易になることは勿論コ
スト的な効果も有する。
When performing flaw detection using the device provided with the band-pass filter 14, the output frequency of the receiver 6 is determined by the band-pass filter 14.
By passing through, frequency analysis as shown in FIG. 2 is obtained. FIG. 2 is a diagram corresponding to the above-mentioned FIG. 5, in which the component of the maximum amplitude frequency f in FIG. 5 has been largely removed,
Only the components in the high frequency region of f are extracted, indicating that the amplitude at fl is maximum. The results of flaw detection at the frequency f+ shown in Figure 2 are shown in Figure 3 (b).
The two defects Fl+F2 near V13 are clearly separated and displayed, whereas the conventional frequency f shown in FIG.
The result of flaw detection in Figure 3(a) is that the resolution is poor because it is affected by components in the low frequency region f, which has a large amplitude.
The separated two defects FItF2 are evaluated as one defect F. When using a relatively high-frequency probe like this, it is not only possible to obtain a high-resolution flaw detection image by extracting the high-frequency components, but also to use a bandpass filter 1.
By changing the setting of the frequency that passes through 4, it is possible to detect flaws in low frequency components using the same probe, and the same effects and effects as those obtained by detecting flaws using a low frequency probe can be obtained. . This is the same effect as having a plurality of probes with different frequencies, and not only facilitates the flaw detection operation but also has cost benefits.

なお前記実施例においては、バンドパスフィルタ14の
介設位置をレシーバ6とピークディテクタ7との間とし
たが、これをパルサー5とレシーバ6との間にしてもよ
い。また探触子4は焦点形とし水浸法の場合について説
明したが、焦点形ではなく一般の探触子を使用し直接接
触法により探傷する場合でも同じであり、さらに周波数
は高周波数(たとえば30MH2以上)を使用する場合
について説明したが、数MH2,の場合でも同様な作用
・効果を奏する。
In the embodiment described above, the bandpass filter 14 was placed between the receiver 6 and the peak detector 7, but it may be placed between the pulser 5 and the receiver 6. In addition, although the description has been made for the case where the probe 4 is a focused type and the water immersion method is used, the flaw detection is the same even when a general probe is used instead of a focused type and a direct contact method is used for flaw detection, and the frequency is high (e.g. 30 MH2 or more), but similar actions and effects can be obtained even in the case of several MH2.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明に係わる超音波探傷装置は、パ
ルサーとピークディテクタとの間の回路に、レシーバの
出力する周波数帯域のうち任意の周波数成分を抽出可能
なバンドパスフィルタを設けるようにしたから、使用す
る探触子の任意の周波数成分を抽出でき、特に高周波数
の探触子を使用する場合に、低周波数成分を除去して所
望の高周波数成分を抽出し、低周波数成分の影響を受け
ることなく分解能の高い探傷画像を得られるようにし、
精度のよい欠陥評価ができる実用上顕著な効果を有する
As explained above, the ultrasonic flaw detection device according to the present invention includes a bandpass filter that can extract any frequency component from the frequency band output from the receiver in the circuit between the pulser and the peak detector. , it is possible to extract any frequency component of the probe used, and especially when using a high frequency probe, it is possible to remove the low frequency component and extract the desired high frequency component, thereby eliminating the influence of the low frequency component. It is possible to obtain high-resolution flaw detection images without being exposed to
This has a significant practical effect in enabling highly accurate defect evaluation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる超音波探傷装置の実施例の全体
説明図、第2図はバンドパスフィルタ出力信号の周波数
分析を示す図、第3図は近接した2つの欠陥画像の従来
例との対比図である。 第4図は従来の装置例の全体説明図、第・5図は第4図
のレシーバの出力信号の周波数分析を示す図である。 第2図 第3図 (a)                  (b)第
5図
Fig. 1 is an overall explanatory diagram of an embodiment of the ultrasonic flaw detection device according to the present invention, Fig. 2 is a diagram showing frequency analysis of a bandpass filter output signal, and Fig. 3 is a diagram showing a conventional example of two adjacent defect images. This is a comparison diagram. FIG. 4 is an overall explanatory diagram of an example of a conventional device, and FIG. 5 is a diagram showing frequency analysis of the output signal of the receiver of FIG. 4. Figure 2 Figure 3 (a) (b) Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1、探触子に超音波パルスを発信させるパルサーと、前
記探触子およびパルサーに接続され、被検体からの反射
波を探触子を介して受信し増幅するレシーバと、前記パ
ルサーおよびレシーバに接続され、レシーバで増巾した
反射波のピーク値に比例するDC電圧を出力するピーク
ディテクタと、該ピークディテクタの出力値を演算処理
する演算処理部とを有する超音波探傷装置において、前
記パルサーとピークディテクタとの間の回路に、前記レ
シーバの出力する周波数帯域のうち任意の周波数成分を
抽出するバンドパスフィルタを設けたことを特徴とする
超音波探傷装置。
1. A pulser that causes the probe to emit ultrasonic pulses; a receiver that is connected to the probe and the pulser and receives and amplifies reflected waves from the object via the probe; In an ultrasonic flaw detection device, the pulser and An ultrasonic flaw detection device characterized in that a bandpass filter for extracting an arbitrary frequency component from a frequency band output from the receiver is provided in a circuit between the peak detector and the receiver.
JP62032394A 1987-02-17 1987-02-17 Ultrasonic flaw detector Pending JPS63200058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62032394A JPS63200058A (en) 1987-02-17 1987-02-17 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62032394A JPS63200058A (en) 1987-02-17 1987-02-17 Ultrasonic flaw detector

Publications (1)

Publication Number Publication Date
JPS63200058A true JPS63200058A (en) 1988-08-18

Family

ID=12357737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62032394A Pending JPS63200058A (en) 1987-02-17 1987-02-17 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JPS63200058A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193350A (en) * 1983-02-10 1984-11-01 ドイツチエ・フオルシユングス−・ウント・フエルズ−フスアンシユタルト・フユ−ル・ルフト−・ウント・ラウムフア−ルト・エ−・フアウ Ultrasonic flaw detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193350A (en) * 1983-02-10 1984-11-01 ドイツチエ・フオルシユングス−・ウント・フエルズ−フスアンシユタルト・フユ−ル・ルフト−・ウント・ラウムフア−ルト・エ−・フアウ Ultrasonic flaw detector

Similar Documents

Publication Publication Date Title
EP0655623B1 (en) Relative resonant frequency shifts to detect cracks
US5408880A (en) Ultrasonic differential measurement
KR101723523B1 (en) The Improved Acoustic Emission Test System to Extract Pure Elastic Wave from Combined Signals
CN110231400A (en) Fine definition non-linear detection method towards automobile weld seam tiny flaw
US3453871A (en) Method and apparatus for detecting flaws in materials
KR101251204B1 (en) Ultrasonic nondestructive inspection device and ultrasonic nondestructive inspection method
JPH06294779A (en) Ultrasonic apparatus and method for image inspection
JPH05203632A (en) Ultrasonic flaw detection device
JPS63200058A (en) Ultrasonic flaw detector
US4187725A (en) Method for ultrasonic inspection of materials and device for effecting same
JPS6282350A (en) Ultrasonic flaw detecting device
JP2013217830A (en) Ultrasonic flaw detection method and ultrasonic flaw detection device
JPS6486059A (en) Ultrasonic measurement system
JPH07248317A (en) Ultrasonic flaw detecting method
JPS61138160A (en) Ultrasonic flaw detector
JPS6229023B2 (en)
US3404560A (en) Method and apparatus for suppressing noise during ultrasonic testing
KR101883987B1 (en) Imaging device using non-linear property of utrasonic wave and method for the same
KR20040099762A (en) System and its method for processing digital ultrasonic image
JPH05340924A (en) Ultrasonic flaw detector
RU2613567C1 (en) Method for ultrasonic nondestructive inspection
JPH0658917A (en) Ultrasonic inspection method and device therefor
JPS61210953A (en) Ultrasonic flaw inspector
JPH03252553A (en) Ultrasonic flaw detector
JPS6151563A (en) Ultrasonic flaw detecting device