JPS6319999B2 - - Google Patents

Info

Publication number
JPS6319999B2
JPS6319999B2 JP60286243A JP28624385A JPS6319999B2 JP S6319999 B2 JPS6319999 B2 JP S6319999B2 JP 60286243 A JP60286243 A JP 60286243A JP 28624385 A JP28624385 A JP 28624385A JP S6319999 B2 JPS6319999 B2 JP S6319999B2
Authority
JP
Japan
Prior art keywords
glass
alkali
volume resistivity
thin film
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60286243A
Other languages
Japanese (ja)
Other versions
JPS62143394A (en
Inventor
Noriaki Nakamura
Kinichi Isaka
Jun Kawaguchi
Hiroshi Kishishita
Hisashi Kamiide
Yoshihiro Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60286243A priority Critical patent/JPS62143394A/en
Publication of JPS62143394A publication Critical patent/JPS62143394A/en
Publication of JPS6319999B2 publication Critical patent/JPS6319999B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 本発明は、交流電界の印加によつてEL発光を
呈する薄膜EL素子に関し、特に薄膜EL素子の基
板ガラスの材料組成を限定する事により、信頼性
の高い薄膜EL素子を実現せしめた素子構造に関
するものである。 〈発明の概要〉 ガラス基板として、体積抵抗率が350℃で109
Ω・cm以上、600℃で106Ω・cm以上であり、かつ
歪点温度が600℃以上であり、かつアルカリ成分
の含有量が0.5重量%以下のノン・アルカリ・タ
イプのガラスを用い、信頼性の高い薄膜EL素子
を得る。 〈従来の技術〉 薄膜EL素子の製造工程には、いくつかの高温
蒸着、スパツタリングプロセス及び高温熱処理プ
ロセスがあり、EL素子が完成するまでにガラス
基板は高温に数回さらされる。 EL素子のガラス基板として、高純度溶融シリ
カ(石英ガラス)が高温下でもきわめて安定であ
るので最適であるが、製造コストが非常に高い為
に採用できない。そこで、通常は低アルカリ硼珪
酸ガラスが使用される。 〈発明が解決しようとする問題点〉 しかし、ガラスに含まれるアルカリイオン
(Li+,Na+,K+)が、ガラスの体積抵抗率(体
積電気伝導度)の程度によつて、EL素子製造工
程の高温プロセス下で、基板表面に析出し、EL
素子の特性を著しく悪くする。特に、絶縁膜スパ
ツタリング中に上昇する基板温度により、前記ア
ルカリイオンが基板表面に析出し、プラズマより
基板に入射した電荷による透明電極(ITO)スト
ライプを流れる電流と前記アルカリイオンとの相
互作用により、前記ITO組成を変質させ、電極抵
抗が非常に高くなり、EL素子の特性が極端に低
下する。 本発明は上記問題点に鑑みて成されたものであ
り、その目的とするところは、基板ガラスのアル
カリ成分の含有量及び体積抵抗率を限定すること
により、信頼性の高いEL素子を得んとするもの
である。 〈問題点を解決するための手段〉 本発明の薄膜EL素子は、ガラス基板上に形成
した一対の電極層と、これら電極層間にサンドイ
ツチ状にはさまれた電界発光層とからなる薄膜
EL素子において、前記ガラス基板として、体積
抵抗率が350℃で109Ω・cm以上、600℃で106Ω・
cm以上であり、かつ歪点温度が600℃以上であり、
かつアルカリ成分の含有量が0.5重量%以下のノ
ン・アルカリ・タイプのガラスを用いることを特
徴とする。 〈作用〉 上記により、600℃でのITOの抵抗変化率が小
さくITO組成を変質させないで形成でき、また対
ガラスのアルカリ成分による抵抗変化率も小さく
できる。さらに、歪点温度が600℃以上であるこ
とによつて、さらに諸特性の優れた薄膜EL素子
を得ることができる。 〈実施例〉 第1図は、EL素子のガラス基板として使用し
ている硼珪酸系ガラスの、その含有するアルカリ
の量(重量パーセント)と、体積抵抗率との各温
度での関係を示すものである。第1図では概ねア
ルカリ含有量の少ないガラスの方が体積抵抗率が
高くなつているが、含有量0%と0.2%とで、ま
た、1.5%と3%とで、それぞれ、この関係が逆
転している。これは、ガラス母体(B2O,
Al2O3,SiO2)の成分比と、添加されるアルカリ
(Na2O,K2O)の混合比(混合アルカリ効果)
に起因するものである。含有量0.5%以下で、350
℃での体積抵抗率が109Ω・cm以上、かつ600℃で
の体積抵抗率が106Ω・cm以上のものが得られる。 第2図は、ガラスの体積抵抗率とITOの抵抗変
化率との関係を示すものである(基板温度600
℃)。第2図のごとく、600℃での体積抵抗率106
Ω・cm以下のガラスは、600℃でのITOの抵抗変
化率が極端に大きくなる。 また、第3図は、ガラスのアルカリ成分
(Na2O,K2O)含有量とITOの抵抗変化率との関
係を示すものである。アルカリ含有量0.5重量パ
ーセント以上で抵抗変化率が大きくなる。 さらに、ガラス基板の歪点温度は600℃以上で
あることが必要である。前述したように、薄膜
EL素子の製造工程には、いくつかの高温蒸着、
スパツタリングプロセス及び高温熱処理プロセス
があり、ガラス基板はこれらの高温に耐えられる
ことが必要である。そして、ガラス基板が600℃
以上の高温で使用できる利点として、次のような
点を挙げることができる。透明電極(ITO)のア
ニール温度を上げられるので、ITOの膜の結晶性
を向上させることができ、比抵抗を下げられる。
またEL素子の絶縁耐圧も向上する。さらに発光
層のアニール温度を上げることができるので、
ZnS等の薄膜多結晶粒子の結晶性を向上させるこ
とができ、かつ発光センターとしての例えばMn
(活性不純物元素)を、適正濃度に結晶格子に拡
散させることができ、EL発光特性を向上する。 上記のことより、体積抵抗率が350℃で109Ω・
cm以上、600℃で106Ω・cm以上であり、かつ歪点
温度が600℃以上であり、かつアルカリ成分含有
量が0.5重量パーセント以下のノン・アルカリ・
タイプのガラスを基板ガラスとして採用すること
により、表示品位、信頼性共に高いEL素子を得
ることができる。 本実施例によるガラスの特性を表1に示す。
<Industrial Application Field> The present invention relates to a thin film EL device that emits EL light upon application of an alternating current electric field, and in particular, by limiting the material composition of the substrate glass of the thin film EL device, it is possible to create a highly reliable thin film EL device. This relates to the element structure that has made this possible. <Summary of the invention> As a glass substrate, the volume resistivity is 10 9 at 350°C.
Ω・cm or more, 10 6 Ω・cm or more at 600°C, and a strain point temperature of 600°C or more, and a non-alkali type glass with an alkali component content of 0.5% by weight or less, Obtain a highly reliable thin film EL element. <Prior Art> The manufacturing process of thin film EL devices includes several high-temperature deposition, sputtering processes and high-temperature heat treatment processes, and the glass substrate is exposed to high temperatures several times before the EL device is completed. High-purity fused silica (quartz glass) is ideal as a glass substrate for EL elements because it is extremely stable even at high temperatures, but cannot be used because the manufacturing cost is extremely high. Therefore, low-alkali borosilicate glass is usually used. <Problems to be Solved by the Invention> However, alkali ions (Li + , Na + , K + ) contained in glass may be difficult to manufacture in EL devices depending on the volume resistivity (volume electrical conductivity) of the glass. Under the high temperature process of the process, it precipitates on the substrate surface and EL
Significantly deteriorates the characteristics of the element. In particular, as the substrate temperature rises during insulating film sputtering, the alkali ions precipitate on the substrate surface, and due to the interaction between the alkali ions and the current flowing through the transparent electrode (ITO) stripes due to charges incident on the substrate from the plasma, The ITO composition is altered, the electrode resistance becomes extremely high, and the characteristics of the EL device are extremely degraded. The present invention was made in view of the above problems, and its purpose is to obtain a highly reliable EL element by limiting the alkaline component content and volume resistivity of the substrate glass. That is. <Means for Solving the Problems> The thin film EL device of the present invention is a thin film consisting of a pair of electrode layers formed on a glass substrate and an electroluminescent layer sandwiched between these electrode layers in a sandwich pattern.
In the EL element, the glass substrate has a volume resistivity of 10 9 Ω·cm or more at 350°C and 10 6 Ω·cm at 600°C.
cm or more, and the strain point temperature is 600℃ or more,
It is also characterized by using non-alkali type glass with an alkali component content of 0.5% by weight or less. <Function> As described above, the rate of change in resistance of ITO at 600° C. is small and can be formed without altering the ITO composition, and the rate of change in resistance due to the alkali component of the glass can also be made small. Furthermore, by having a strain point temperature of 600° C. or higher, a thin film EL element with even better characteristics can be obtained. <Example> Figure 1 shows the relationship between the amount of alkali contained (weight percent) and the volume resistivity of the borosilicate glass used as the glass substrate of the EL element at each temperature. It is. In Figure 1, glass with a lower alkali content generally has a higher volume resistivity, but this relationship is reversed when the alkali content is 0% and 0.2%, and when it is 1.5% and 3%. are doing. This is a glass matrix (B 2 O,
Component ratio of Al 2 O 3 , SiO 2 ) and mixing ratio of added alkali (Na 2 O, K 2 O) (mixed alkali effect)
This is due to 350 with a content of 0.5% or less
A volume resistivity of 10 9 Ω·cm or more at ℃ and a volume resistivity of 10 6 Ω·cm or more at 600 ℃ can be obtained. Figure 2 shows the relationship between the volume resistivity of glass and the resistance change rate of ITO (substrate temperature 600
℃). As shown in Figure 2, the volume resistivity at 600℃ is 10 6
For glasses with a resistance of Ω・cm or less, the rate of change in resistance of ITO at 600°C becomes extremely large. Moreover, FIG. 3 shows the relationship between the alkali component (Na 2 O, K 2 O) content of glass and the resistance change rate of ITO. The resistance change rate increases when the alkali content is 0.5% by weight or more. Furthermore, the strain point temperature of the glass substrate needs to be 600°C or higher. As mentioned above, thin film
The manufacturing process of EL devices includes several high-temperature deposition,
There are sputtering processes and high temperature heat treatment processes, and the glass substrate needs to be able to withstand these high temperatures. And the glass substrate is heated to 600℃.
The advantages of being able to use the product at higher temperatures include the following. Since the annealing temperature of the transparent electrode (ITO) can be raised, the crystallinity of the ITO film can be improved and the specific resistance can be lowered.
Also, the dielectric strength of the EL element is improved. Furthermore, it is possible to increase the annealing temperature of the light emitting layer.
It is possible to improve the crystallinity of thin film polycrystalline particles such as ZnS, and to use e.g. Mn as a luminescent center.
(active impurity element) can be diffused into the crystal lattice at an appropriate concentration, improving EL light emission characteristics. From the above, the volume resistivity is 10 9 Ω at 350°C.
cm or more, 10 6 Ω・cm or more at 600°C, and a strain point temperature of 600°C or more, and an alkali content of 0.5% by weight or less.
By using this type of glass as the substrate glass, it is possible to obtain an EL element with high display quality and reliability. Table 1 shows the properties of the glass according to this example.

【表】【table】

【表】 〈発明の効果〉 以上説明したように、本発明によれば、表示品
位、信頼性共に高いEL素子を得ることができる
ものである。
[Table] <Effects of the Invention> As explained above, according to the present invention, an EL element with high display quality and high reliability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、EL素子のガラス基板として使用し
ている硼珪酸系ガラスの、その含有するアルカリ
の量(重量%)と、体積抵抗率との各温度での関
係を示す図、第2図は、ガラスの体積抵抗率と
ITOの抵抗変化率との関係を示す図、第3図は、
ガラスのアルカリ成分含有量とITOの抵抗変化率
との関係を示す図である。
Figure 1 shows the relationship between the amount of alkali contained (wt%) and the volume resistivity of the borosilicate glass used as the glass substrate of the EL element, and the volume resistivity at each temperature. is the volume resistivity of the glass and
Figure 3 shows the relationship between ITO and the resistance change rate.
FIG. 3 is a diagram showing the relationship between the alkali component content of glass and the resistance change rate of ITO.

Claims (1)

【特許請求の範囲】[Claims] 1 ガラス基板上に形成した一対の電極層と、こ
れら電極層間にサンドイツチ状にはさまれた電界
発光層とからなる薄膜EL素子において、前記ガ
ラス基板として、体積抵抗率が350℃で109Ω・cm
以上,600℃で106Ω・cm以上であり、かつ歪点温
度が600℃以上であり、かつアルカリ成分の含有
量が0.5重量%以下のノン・アルカリ・タイプの
ガラスを用いることを特徴とする薄膜EL素子。
1. In a thin film EL device consisting of a pair of electrode layers formed on a glass substrate and an electroluminescent layer sandwiched between these electrode layers in a sandwich pattern, the glass substrate has a volume resistivity of 10 9 Ω at 350°C. ·cm
The above features include using non-alkali type glass having a resistance of 10 6 Ω・cm or more at 600°C, a strain point temperature of 600°C or more, and an alkali component content of 0.5% by weight or less. Thin film EL element.
JP60286243A 1985-12-17 1985-12-17 Thin film el device Granted JPS62143394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60286243A JPS62143394A (en) 1985-12-17 1985-12-17 Thin film el device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60286243A JPS62143394A (en) 1985-12-17 1985-12-17 Thin film el device

Publications (2)

Publication Number Publication Date
JPS62143394A JPS62143394A (en) 1987-06-26
JPS6319999B2 true JPS6319999B2 (en) 1988-04-26

Family

ID=17701835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60286243A Granted JPS62143394A (en) 1985-12-17 1985-12-17 Thin film el device

Country Status (1)

Country Link
JP (1) JPS62143394A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122092A (en) * 1976-04-06 1977-10-13 Sharp Corp Thin film el panel
JPS5728198A (en) * 1980-04-21 1982-02-15 Kiyoushin Kk Wasing of interior of oil tank and production of fuel using wate liquid thereof
JPS57124884A (en) * 1981-01-27 1982-08-03 Sharp Kk Method of producing thin film el element
JPS57124883A (en) * 1981-01-26 1982-08-03 Sharp Kk Thin film el element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122092A (en) * 1976-04-06 1977-10-13 Sharp Corp Thin film el panel
JPS5728198A (en) * 1980-04-21 1982-02-15 Kiyoushin Kk Wasing of interior of oil tank and production of fuel using wate liquid thereof
JPS57124883A (en) * 1981-01-26 1982-08-03 Sharp Kk Thin film el element
JPS57124884A (en) * 1981-01-27 1982-08-03 Sharp Kk Method of producing thin film el element

Also Published As

Publication number Publication date
JPS62143394A (en) 1987-06-26

Similar Documents

Publication Publication Date Title
JP4170454B2 (en) Article having transparent conductive oxide thin film and method for producing the same
KR100240432B1 (en) Fabrication methods and device structures of ac power electroluminescence devices
SU1327810A3 (en) Electroluminescent structure
JP3358893B2 (en) Transparent conductor containing gallium-indium oxide
JP3961172B2 (en) Oxide transparent conductive film, oxide transparent conductive film forming target, substrate manufacturing method, electronic apparatus, and liquid crystal display device provided with previous oxide transparent conductive film
KR0147867B1 (en) A two-terminal nonlinear device
JPH02168507A (en) Fluorine doped tin oxide film and method of reducing resistance thereof
JPS6319999B2 (en)
JP3780100B2 (en) Transparent conductive film with excellent processability
JP4389257B2 (en) Glass substrate for flat panel display
JPS6316878B2 (en)
JPH01227307A (en) Transparent electric conductor
JPH11174993A (en) Substrate with transparent conductive film and flat type display element using the same
Fehlner Thin films on glass for liquid crystal displays
JP3837903B2 (en) Transparent conductive film and manufacturing method thereof
JPH0733301Y2 (en) Photoelectric conversion device
JPH06160876A (en) Transparent electrode plate and its production
JPH06103817A (en) Conductive thin film
JPS6215961B2 (en)
TW201515228A (en) Semiconductor element, display device, method for manufacturing semiconductor element, and method for manufacturing display device
JPS5824915B2 (en) Thin film EL element
US10947152B2 (en) Electrostatic doping of a layer of a conductive or non-conductive material
EP3470913B1 (en) Multilayer substrate for electrochromic light control elements and method for producing electrochromic light control element
Natarajan et al. Development/study of thin films for electroluminescent flat panel display
JPH01272006A (en) Transparent conductive film