JPS63198327A - Forming method for ultrafine pattern of adsorption layer due to electron beam separation - Google Patents

Forming method for ultrafine pattern of adsorption layer due to electron beam separation

Info

Publication number
JPS63198327A
JPS63198327A JP2965487A JP2965487A JPS63198327A JP S63198327 A JPS63198327 A JP S63198327A JP 2965487 A JP2965487 A JP 2965487A JP 2965487 A JP2965487 A JP 2965487A JP S63198327 A JPS63198327 A JP S63198327A
Authority
JP
Japan
Prior art keywords
electron beam
substrate
adsorption layer
adsorption
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2965487A
Other languages
Japanese (ja)
Inventor
Shinji Matsui
真二 松井
Katsumi Mori
克己 森
Yukinori Ochiai
幸徳 落合
Yoshikatsu Kojima
小島 義克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2965487A priority Critical patent/JPS63198327A/en
Publication of JPS63198327A publication Critical patent/JPS63198327A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form the accurate ultrafine pattern of an adsorption layer by forming the layer of an adsorption substance on a substrate, irradiating a desired part with an electron beam to separate the substance, and forming a desired pattern while analyzing the layer by means of an Auger analysis. CONSTITUTION:A substrate 12 is mounted in a high vacuum chamber, adsorption gas is introduced, adsorption molecules 11 are adsorbed to the whole substrate 12, a focused electron beam is then irradiated to the layer of the molecules 11 to separate the molecules 11, thereby exhausting the separated molecules 13 out of the chamber. In this case, a pattern is formed while the separation of the layer caused by irradiating it with the electron beam is analyzed by means of an Auger analysis. Thus, the ultrafine pattern of the layer can be formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は基板上の吸着層に電子ビームを照射して所望の
パターンを形成するパターン形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pattern forming method for forming a desired pattern by irradiating an adsorption layer on a substrate with an electron beam.

[従来の技術とその問題点] 従来、基板上に吸着層のパターンを形成する方法として
は、レーザーを用いた光脱離の方法が用いられているが
、レーザーでは、その分解能はレーザーの波長で制限さ
れ、約1趨程度が限度であり、超微細パターン形成は困
難であった。
[Conventional technology and its problems] Conventionally, a method of optical desorption using a laser has been used to form an adsorption layer pattern on a substrate. The limit is about one line, making it difficult to form ultra-fine patterns.

本発明は以上のような従来の事情に対処してなされたも
ので、従来方法では不可能であった吸着層上の超微細パ
ターン形成を可能とし、かつ電子ビーム照射によって引
き起こされる吸着層の脱離を“′その場(in 5it
u)観察″オージェ分析により分析しつつパターン形成
を行う吸着層の超微細パターン形成方法を提供すること
を目的とする。
The present invention has been made in response to the above-mentioned conventional circumstances, and enables ultra-fine pattern formation on an adsorption layer, which was impossible with conventional methods, and eliminates desorption of the adsorption layer caused by electron beam irradiation. in 5it
u) Observation The object of the present invention is to provide a method for forming an ultra-fine pattern on an adsorption layer in which the pattern is formed while being analyzed by Auger analysis.

[問題点を解決するための手段] 本発明は吸着させるべき物質を被吸着基板上に供給して
基板上に吸着物質よりなる吸着層を形成する工程と、こ
の吸着層の所望の部分に電子ビームを照射して前記吸着
物質を脱離させると共に、オージェ分析により前記吸着
層を分析しつつ前記吸着層に所望のパターンを形成させ
る工程とを有することを特徴とする電子ビーム脱離によ
る吸着層の超微細パターン形成方法である。
[Means for Solving the Problems] The present invention comprises a step of supplying a substance to be adsorbed onto a substrate to be adsorbed to form an adsorption layer made of the adsorption substance on the substrate, and a step of supplying a substance to be adsorbed onto a substrate to form an adsorption layer made of the adsorption substance, and applying electrons to a desired portion of this adsorption layer. An adsorption layer formed by electron beam desorption, comprising the steps of irradiating a beam to desorb the adsorbed substance, and forming a desired pattern on the adsorption layer while analyzing the adsorption layer by Auger analysis. This is a method for forming ultra-fine patterns.

[作 用] 次に本発明の作用について、第1図を用いて説明する。[Work] Next, the operation of the present invention will be explained using FIG.

第1図は本発明の方法に用いる電子ビーム脱離の原理を
説明するための基板の模式的断面図である。基板12を
高真空チェンバー内に設置し、吸着ガスを導入し、吸着
分子11を基板12に全面吸着させる(第1図(a))
。次に、集束した電子ビームを吸着分子11の層に照射
することにより、吸着分子11を脱離させ、脱離分子1
3はチェンバー外へ排出される(第1図(b))。この
ようにして、電子ビーム照射した吸着分子のみを選択脱
離させることができる。
FIG. 1 is a schematic cross-sectional view of a substrate for explaining the principle of electron beam desorption used in the method of the present invention. The substrate 12 is placed in a high vacuum chamber, an adsorption gas is introduced, and the adsorption molecules 11 are completely adsorbed onto the substrate 12 (FIG. 1(a)).
. Next, by irradiating the layer of adsorbed molecules 11 with a focused electron beam, the adsorbed molecules 11 are desorbed, and the desorbed molecules 1
3 is discharged out of the chamber (FIG. 1(b)). In this way, only the adsorbed molecules irradiated with the electron beam can be selectively desorbed.

[実施例] 以下に、本発明の実施例について図面を参照して説明す
る。
[Examples] Examples of the present invention will be described below with reference to the drawings.

第2図は本発明の方法に用いる装置の一例を示す構成図
である。本装置は電子ビーム照射系209、試料室20
7、オージェ分析器212および吸着ガス材料収納室2
01とから主として構成されている。
FIG. 2 is a block diagram showing an example of an apparatus used in the method of the present invention. This device includes an electron beam irradiation system 209, a sample chamber 20
7. Auger analyzer 212 and adsorbed gas material storage chamber 2
It is mainly composed of 01.

電子ビーム照射系209では電子ビームガン210より
発した電子ビーム211が集束レンズ208で集束され
て、試料室207内の試料台205上に設置された基板
20Gに照射される。
In the electron beam irradiation system 209, an electron beam 211 emitted from an electron beam gun 210 is focused by a focusing lens 208, and is irradiated onto a substrate 20G placed on a sample stage 205 in a sample chamber 207.

一方、吸着ガス材料収納室201に収納されている吸着
材料202は真空排気されることによりガス化して配管
203を通り、マスフローコントローラ204を介して
試料室207に導入される。基板206上には試料表面
から放出されるオージェ電子を検出するオージェ分析器
212が配設されている。
On the other hand, the adsorbent material 202 stored in the adsorbent gas material storage chamber 201 is gasified by being evacuated, passes through the pipe 203 , and is introduced into the sample chamber 207 via the mass flow controller 204 . An Auger analyzer 212 is disposed on the substrate 206 to detect Auger electrons emitted from the sample surface.

本実施例においては、上記のように構成されたパターン
形成装置を用い、塩素(Cg)を構成元素として含むジ
クロルシラン(SiH2C,IJ2)を吸着材料202
として用い、集束した電子ビーム211によりGe基板
206上の012分子を脱離させた。吸着材料としてS
 i H2’CN 2 202を吸着ガス材料収納室2
01に入れ、Ge基板206を試料台205に設置した
。試料W 207を1O−10Torr程度以上の高真
空に排気した。吸着材料で必る5iH2Cρ2202は
大気中では液体でおるが、真空にひくことにより、容易
にガス化する。このS!l−120,l!2は、配管2
03を通り、マスフローコントローラ204により流量
制御され、試料室207内へ導入される。試料室207
に供給された5iH2CΩ2ガスは試料で必るGe基板
206に接し、Ge基板206上に5IH2Cf12分
子よりなる吸着層を形成する。一方、電子ビームガン2
10より発した電子ビーム211を集束レンズ208で
集束してGe基板206上の所望の部分に照射すること
により、(3e基板206の表面上に吸着されたCfl
を脱離することができる。第3図は、電子ビーム照射に
よるCJIの選択脱離の実験結果を示している。第3図
(a)は、Ge基板206上に吸着したS i H2O
N 2吸着層のオージェスペクトルを示す。ここで、C
gのオージェ信号が検出されている。第3図(b)は第
3図(a)と同一点を電子ビームで12分照射した後の
オージェスペクトルを示している。ここでCgのオージ
ェピークは見られず、CF2分子か電子ビーム照射によ
り脱離したことを示している。第3図(C)は、さらに
、電子ビーム照射位置を第3図(a)、 (b)の照射
点より0、5mm離れた位置のオージェスペクトルを示
している。第3図(a)と同様にC9オージェピークが
検出されている。以上のことから、電子ビーム照射によ
るCρ吸着層の選択脱離か可能でおることが示された。
In this example, using the pattern forming apparatus configured as described above, dichlorosilane (SiH2C, IJ2) containing chlorine (Cg) as a constituent element was used as the adsorbent material 202.
The 012 molecules on the Ge substrate 206 were desorbed by the focused electron beam 211. S as an adsorption material
i H2'CN 2 202 adsorbed gas material storage chamber 2
01, and the Ge substrate 206 was placed on the sample stage 205. Sample W 207 was evacuated to a high vacuum of approximately 10-10 Torr or higher. 5iH2Cρ2202, which is necessary as an adsorption material, remains in a liquid state in the atmosphere, but is easily gasified by applying a vacuum. This S! l-120, l! 2 is piping 2
03, the flow rate is controlled by the mass flow controller 204, and the sample is introduced into the sample chamber 207. Sample room 207
The 5iH2CΩ2 gas supplied to the sample comes into contact with the Ge substrate 206, which is a sample, and forms an adsorption layer of 5IH2Cf12 molecules on the Ge substrate 206. On the other hand, electron beam gun 2
By focusing the electron beam 211 emitted from the Ge substrate 206 by the focusing lens 208 and irradiating it onto a desired part of the Ge substrate 206, (Cfl adsorbed on the surface of the Ge substrate 206)
can be detached. FIG. 3 shows the experimental results of selective desorption of CJI by electron beam irradiation. FIG. 3(a) shows Si H2O adsorbed on the Ge substrate 206.
Fig. 3 shows the Auger spectrum of the N2 adsorption layer. Here, C
An Auger signal of g is detected. FIG. 3(b) shows an Auger spectrum after irradiating the same point with an electron beam for 12 minutes as in FIG. 3(a). Here, no Auger peak of Cg was observed, indicating that CF2 molecules were desorbed by electron beam irradiation. FIG. 3(C) further shows the Auger spectrum at a position where the electron beam irradiation position is 0.5 mm away from the irradiation point in FIGS. 3(a) and 3(b). Similar to FIG. 3(a), a C9 Auger peak is detected. From the above, it was shown that selective desorption of the Cρ adsorption layer by electron beam irradiation is possible.

第4図はCgの電子ビームの照q4選択脱離の様子をC
,Qのオージェピークを測定することによりin 5i
tuに観測したものであり、約7分の電子ビーム照射で
完全脱離していることかわかる。
Figure 4 shows the selective desorption of q4 by the electron beam of Cg.
, Q in 5i by measuring the Auger peaks of
tu, and it can be seen that it was completely desorbed after about 7 minutes of electron beam irradiation.

本実施例では以上のようにして0,1珈の超微細パター
ンを形成することができた。また、本実施例では吸着ガ
スとして、Cl3を含むS i H2Cρ2を雰囲気ガ
スとして用いたが、このほかC,[! 2 、F2 、
Br2などのハロゲンガスを用いてもよい。
In this example, an ultra-fine pattern of 0.1 C was able to be formed in the manner described above. Furthermore, in this example, S i H2Cρ2 containing Cl3 was used as the atmospheric gas as the adsorption gas, but in addition to this, C, [! 2, F2,
A halogen gas such as Br2 may also be used.

[発明の効果] 以上説明した様に、本発明によれば、電子ビーム照射に
よって基板上の吸着分子層を容易に選択脱離させること
ができ、ざらに、吸着層の脱離の様子をin 5itu
に観察できるので、容易に吸着層の高精度な超微細パタ
ーン形成が可能となる効果を有するものである。
[Effects of the Invention] As explained above, according to the present invention, the adsorbed molecule layer on the substrate can be easily selectively desorbed by electron beam irradiation, and the desorption state of the adsorbed layer can be observed in detail. 5itu
This has the effect of making it possible to easily form highly accurate ultra-fine patterns on the adsorption layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法に用いる電子ビーム脱離の原理を
説明するための基板の模式的断面図、第2図は本発明の
方法に使用する電子ビーム選択脱離装置の一例を示す構
成図、第3図は雰囲気ガスとして5iH2C,llzを
用い、Ge基板上に吸着したC、i!の電子ビーム選択
脱離をオージェ分析により示した図、第4図はC,I2
の電子ビーム脱離をin 5ituにオージェ分析によ
り観察した時の電子ビーム照射時間とオージェ信号強度
との関係を示す図である。 11・・・吸着分子    12・・・基板13・・・
脱離分子   201・・・吸着カス材料収納室202
・・・吸着材n203・・・配管204・・・マスフロ
ーコントローラ 205・・・試料台    206・・・基板207・
・・試料室    208・・・集束レンズ209・・
・電子ビーム照射系 210・・・電子ビームガン 211・・・電子ビーム  212・・・オージェ分析
器代理人弁理士  舘  野  千惠子 電子ビづ、 第1図 電子工1jしN“−(eV) 第3図
FIG. 1 is a schematic cross-sectional view of a substrate for explaining the principle of electron beam desorption used in the method of the present invention, and FIG. 2 is a configuration showing an example of an electron beam selective desorption device used in the method of the present invention. Figure 3 shows C, i! adsorbed on the Ge substrate using 5iH2C,llz as the atmospheric gas. A diagram showing the electron beam selective desorption of by Auger analysis, Figure 4 is C, I2
FIG. 3 is a diagram showing the relationship between electron beam irradiation time and Auger signal intensity when electron beam desorption of a sample is observed in 5 in situ by Auger analysis. 11... Adsorbed molecules 12... Substrate 13...
Detachable molecule 201... adsorption scum material storage chamber 202
...Adsorbent n203...Piping 204...Mass flow controller 205...Sample stage 206...Substrate 207...
...Sample chamber 208...Focusing lens 209...
・Electron beam irradiation system 210...Electron beam gun 211...Electron beam 212...Auger analyzer Patent attorney Chieko TatenoElectronic equipment Figure 1Electronic equipment 1jN"-(eV) 3rd figure

Claims (1)

【特許請求の範囲】[Claims] (1)吸着させるべき物質を被吸着基板上に供給して基
板上に吸着物質よりなる吸着層を形成する工程と、この
吸着層の所望の部分に電子ビームを照射して前記吸着物
質を脱離させると共に、オージエ分析により前記吸着層
を分析しつつ前記吸着層に所望のパターンを形成させる
工程とを有することを特徴とする電子ビーム脱離による
吸着層の超微細パターン形成方法。
(1) A step of supplying a substance to be adsorbed onto a substrate to form an adsorption layer made of the adsorbed substance on the substrate, and irradiating a desired portion of this adsorption layer with an electron beam to remove the adsorbed substance. A method for forming an ultra-fine pattern on an adsorption layer by electron beam desorption, comprising the steps of separating the adsorption layer and forming a desired pattern on the adsorption layer while analyzing the adsorption layer by Auger analysis.
JP2965487A 1987-02-13 1987-02-13 Forming method for ultrafine pattern of adsorption layer due to electron beam separation Pending JPS63198327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2965487A JPS63198327A (en) 1987-02-13 1987-02-13 Forming method for ultrafine pattern of adsorption layer due to electron beam separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2965487A JPS63198327A (en) 1987-02-13 1987-02-13 Forming method for ultrafine pattern of adsorption layer due to electron beam separation

Publications (1)

Publication Number Publication Date
JPS63198327A true JPS63198327A (en) 1988-08-17

Family

ID=12282096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2965487A Pending JPS63198327A (en) 1987-02-13 1987-02-13 Forming method for ultrafine pattern of adsorption layer due to electron beam separation

Country Status (1)

Country Link
JP (1) JPS63198327A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137313A (en) * 1988-11-18 1990-05-25 Res Dev Corp Of Japan Method for forming pattern on silicon solid surface

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109773A (en) * 1978-02-17 1979-08-28 Fujitsu Ltd Test method for semiconductor device
JPS56157026A (en) * 1980-05-08 1981-12-04 Nippon Telegr & Teleph Corp <Ntt> Formation of pattern
JPS61183922A (en) * 1985-02-12 1986-08-16 Nec Corp Formation of thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109773A (en) * 1978-02-17 1979-08-28 Fujitsu Ltd Test method for semiconductor device
JPS56157026A (en) * 1980-05-08 1981-12-04 Nippon Telegr & Teleph Corp <Ntt> Formation of pattern
JPS61183922A (en) * 1985-02-12 1986-08-16 Nec Corp Formation of thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137313A (en) * 1988-11-18 1990-05-25 Res Dev Corp Of Japan Method for forming pattern on silicon solid surface

Similar Documents

Publication Publication Date Title
McClellan et al. Carbon monoxide adsorption on the kinked Pt (321) surface
JP3523405B2 (en) Pattern forming method by charged beam processing and charged beam processing apparatus
TW200504355A (en) Testing apparatus using charged particles and device manufacturing method using the testing apparatus
WO2000066265A3 (en) Probes for a gas phase ion spectrometer
JP3243079B2 (en) Atmospheric pressure heated gas desorption equipment
JPH07174746A (en) Device and method for analyzing organic substance
DE50015353D1 (en) Method and device for assessing the state of organisms and natural products and for analyzing a gaseous mixture with main and secondary components
JP3506599B2 (en) Analysis method
JPS63198327A (en) Forming method for ultrafine pattern of adsorption layer due to electron beam separation
JP3944347B2 (en) Electron beam irradiation apparatus, outgas collection method, and gas analysis method
JPH11329328A (en) Electron beam inspection device
JP3195731B2 (en) Apparatus and method for analyzing amount of organic matter attached to sample surface
DE4030211C2 (en) Method for determining the concentration of a gas component in a gas mixture
JP4788924B2 (en) Atomic hydrogen adsorption removal method and apparatus
JP3595531B2 (en) Method and apparatus for measuring trace components using laser light
JPH09236582A (en) Method and device for mass spectrometry
JP4072627B2 (en) Atomic hydrogen determination method and apparatus
JPH0354824A (en) Semiconductor processing and semiconductor processing device
JPH02179469A (en) Impurity-gas measuring apparatus
JPH0754293B2 (en) Particle measuring device
JPH07106305A (en) Atom layer etching unit
JPH07318552A (en) Gas chromatograph and gas chromatographic mass spectrometer
RU1820301C (en) Method for determining parameters of particles desorbing from conducting surface
JPS614224A (en) Patterned film forming apparatus
JPH0754294B2 (en) Particle measuring device