JPH02137313A - Method for forming pattern on silicon solid surface - Google Patents

Method for forming pattern on silicon solid surface

Info

Publication number
JPH02137313A
JPH02137313A JP29206988A JP29206988A JPH02137313A JP H02137313 A JPH02137313 A JP H02137313A JP 29206988 A JP29206988 A JP 29206988A JP 29206988 A JP29206988 A JP 29206988A JP H02137313 A JPH02137313 A JP H02137313A
Authority
JP
Japan
Prior art keywords
pattern
silicon solid
solid surface
silicon
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29206988A
Other languages
Japanese (ja)
Other versions
JPH0712015B2 (en
Inventor
Takayuki Takahagi
隆行 高萩
Hikari Ishitani
石谷 炯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP63292069A priority Critical patent/JPH0712015B2/en
Publication of JPH02137313A publication Critical patent/JPH02137313A/en
Publication of JPH0712015B2 publication Critical patent/JPH0712015B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To simply form a pattern having no contaminant, a defect due to resist on a silicon solid surface by inactivating the silicon solid surface by hydrogenating, and then irradiating it with an electron beam of electromagnetic wave to chemically activate it. CONSTITUTION:After the surface of a silicon solid 1 is heated to a high temperature in ultrahigh vacuum or ion etched in ultrahigh vacuum to be cleaned, it is vapor hydrogenated and inactivated. A specific position to be formed with a pattern is irradiated with an electron beam or electromagnetic wave A, hydrogen atoms are selectively removed, and a chemically activated surface 1a is formed thereon. Then, a predetermined chemical seed is selectively chemically reacted with the surface 1a to form a pattern 1b. Thus, a pattern having no contaminant and defect due to resist, high resolution and substantial smoothness can be simply formed on the silicon solid surface.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、シリコン固体表面へのパターン形成法に関
するものである。さらに詳しくは、この発明は、半導体
素子製造行程における電子回路パターンの形成に好適な
シリコン固体表面へのパターン形成法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for forming a pattern on a silicon solid surface. More specifically, the present invention relates to a method for forming a pattern on a silicon solid surface suitable for forming an electronic circuit pattern in a semiconductor device manufacturing process.

(従来の技術とその課題) 半導体素子製造工程において、シリコン固体表面へのパ
ターン形成は極めて重要な技術となっている。
(Prior art and its problems) In the semiconductor device manufacturing process, pattern formation on the surface of a silicon solid has become an extremely important technology.

シリコン固体表面に酸化膜等のパターンを形成する方法
としては、従来より、その表面に高分子化合物を主体と
するレジストを薄く塗布し、その上にパターン原版であ
るマスクを被せ、紫外線やX線等で露光してレジストパ
ターンを形成し、その後このレジストパターンを保護膜
としてエツチング処理を行うという方法がとられている
。また、近年ではレジストパターンを形成する際に、マ
スクを使用せず、電子線によって直接にレジストにパタ
ーンを描く画描技術も開発されている。
The conventional method for forming a pattern such as an oxide film on the surface of a silicon solid is to apply a thin layer of resist mainly composed of a polymer compound to the surface, cover it with a mask serving as a pattern master, and then expose it to ultraviolet rays or X-rays. A method is used in which a resist pattern is formed by exposure using a method such as the like, and then an etching process is performed using this resist pattern as a protective film. Furthermore, in recent years, a drawing technique has been developed in which when forming a resist pattern, a pattern is directly drawn on the resist using an electron beam without using a mask.

しかしながら、このような方法においては、■シリコン
固体表面へのレジストの塗布が必要であり、■レジスト
の塗布によりシリコン固体表面が汚染され、しかも■パ
ターンの分解能がレジストの分解能に依存するので高分
解能パターンを形成することが困難であり、また、■パ
ターン部分がシリコン固体表面に堆積するのでそのパタ
ーン部分が表面から突出する等、不都合な点が多く、シ
リコン固体表面へのパターン形成は、半導体製造工程上
解決すべき問題が多いのが実状である。
However, in this method, ■ it is necessary to apply a resist to the silicon solid surface, ■ the silicon solid surface is contaminated by the resist application, and ■ high resolution is required because the pattern resolution depends on the resist resolution. It is difficult to form a pattern, and there are many inconveniences, such as (1) the pattern portion is deposited on the silicon solid surface, so the pattern portion protrudes from the surface, and pattern formation on the silicon solid surface is difficult for semiconductor manufacturing. The reality is that there are many problems that need to be resolved in the process.

この発明は、以上の通りの事情を1liJまえてなされ
たものであり、シリコン固体表面に、レジストによる汚
染や欠陥のない、高分解能で、かつ実質的に平滑なパタ
ーンを、簡便に形成できるようにすることを目的として
いる。
This invention was made in consideration of the above-mentioned circumstances, and provides a method for easily forming a high-resolution, substantially smooth pattern on a silicon solid surface without resist contamination or defects. It is intended to be.

(課題を解決するための手段) こめ発明は、上記の課題を解決するために、シリコン固
体表面を表面水素化により不活性化し、電子ビームまた
は電磁波を照射して化学的に活性化し、パターン形成す
ることを特徴とするシリコン固体表面へのパターン形成
法を提供する。
(Means for Solving the Problems) In order to solve the above problems, the Kome invention inactivates the silicon solid surface by surface hydrogenation, chemically activates it by irradiating it with an electron beam or electromagnetic waves, and forms a pattern. A method for forming a pattern on a silicon solid surface is provided.

第1図はこの発明の方法を模式的に示した工程図であり
、以下この図面に沿ってこの発明を説明する。
FIG. 1 is a process diagram schematically showing the method of the present invention, and the present invention will be explained below with reference to this drawing.

同図に示したように、この発明の方法においては、まず
、シリコン固体(シリコンウェハ)(1)の表面を水素
化して不活性化する(工程(a))。
As shown in the figure, in the method of the present invention, first, the surface of a silicon solid (silicon wafer) (1) is hydrogenated to inactivate it (step (a)).

この水素化は、シリコン固体表面を超高真空中で700
℃程度以上に高温加熱するか、または超高真空中でイオ
ンエツチングすることにより清浄化した後、気相水素化
処理を施すことにより行うことができる。この場合、気
相水素化処理としては、たとえば、第2図に示したよう
な、シリコンウェハ(1)とともに、これを載せる試料
ホルダー(2)、ホルダー受け(3)、外部から導入す
る水素ガス(4)を加熱して原子状水素とするタングス
テン製フィラメント(5)、イオンポンプ(6)、ター
ボモレキュラーポンプ(7)を有する水素化用真空容器
ににおいて、フィラメント(5)を1900に以上に加
熱すると共に外部から水素ガス(4)を水素圧力5 x
lo−’ 〜2xlO−’Torrとなるように導入し
、原子状水素を発生させることにより行うことができる
This hydrogenation is carried out on the silicon solid surface at 700°C in an ultra-high vacuum.
This can be carried out by heating at a high temperature of about .degree. C. or higher or by ion etching in an ultra-high vacuum, followed by gas phase hydrogenation. In this case, the gas phase hydrogenation treatment includes, for example, a silicon wafer (1) as shown in Fig. 2, a sample holder (2) on which it is placed, a holder receiver (3), and hydrogen gas introduced from the outside. The filament (5) is heated to atomic hydrogen in a hydrogenation vacuum vessel having a tungsten filament (5), an ion pump (6), and a turbomolecular pump (7). While heating, hydrogen gas (4) is supplied from the outside at a hydrogen pressure of 5 x
This can be carried out by introducing atomic hydrogen such that the temperature is lo-' to 2xlO-'Torr and generating atomic hydrogen.

また、シリコン固体の表面の水素化は、その表面に弗化
水素酸処理を施すことにより行ってもよい。弗化水素酸
処理としては、シリコンウェハの表面を、全有機炭素量
が50ppb以下の極めて清浄な水で希釈した弗化水素
酸水溶液で処理することが好ましい、この場合、弗化水
素酸は0.3〜10%とすることが好ましい、また処理
方法としては浸漬、スプレー洗浄、流下洗浄等を適宜採
用することができる。また必要により、このような弗化
水素酸処理に先立って、シリコン固体の表面に酸化性雰
囲気内で紫外線を照射し、その表面の有機汚染物を除去
してもよい。
Further, the surface of the silicon solid may be hydrogenated by subjecting the surface to hydrofluoric acid treatment. As for the hydrofluoric acid treatment, it is preferable to treat the surface of the silicon wafer with a hydrofluoric acid aqueous solution diluted with extremely clean water with a total organic carbon content of 50 ppb or less. In this case, the hydrofluoric acid is 0. The content is preferably 3 to 10%, and as a treatment method, dipping, spray cleaning, downstream cleaning, etc. can be used as appropriate. Furthermore, if necessary, prior to such hydrofluoric acid treatment, the surface of the silicon solid may be irradiated with ultraviolet rays in an oxidizing atmosphere to remove organic contaminants on the surface.

この発明の方法においては、このようにシリコン固体の
表面を水素化し、その表面のシリコン原子の結合の手を
水素により終端させ、活性なダングリングボンドをなく
すことにより不活性化した後、第1図の工程Tb)に示
したように、パターンを形成すべき特定箇所に電子ビー
ムまたは電磁波(A)を照射する。これにより照射した
箇所の水素原子を選択的に脱離させ、同図工程(C)に
示したように、その部分に化学的に活性化した活性化表
面(1a)を形成することができる。この場合、照射す
る電子ビームまたは電磁波としては、シリコン固体表面
の水素を脱離させるのに十分なエネルギーを有するもの
とし、例えば電磁波としては、5i−H結合の解離エネ
ルギーの大きさから波長4000A以下のものとするの
が好ましい。
In the method of the present invention, the surface of the silicon solid is thus hydrogenated, the bonds of silicon atoms on the surface are terminated with hydrogen, and active dangling bonds are eliminated to make the silicon solid inactive. As shown in step Tb) in the figure, a specific location where a pattern is to be formed is irradiated with an electron beam or electromagnetic waves (A). As a result, hydrogen atoms at the irradiated area are selectively desorbed, and a chemically activated activated surface (1a) can be formed at that area, as shown in step (C) of the figure. In this case, the electron beam or electromagnetic wave to be irradiated shall have sufficient energy to desorb hydrogen from the silicon solid surface. For example, the electromagnetic wave may have a wavelength of 4000 A or less due to the dissociation energy of the 5i-H bond. It is preferable that the

このように電子ビームまたは電磁波を照射した後は、同
図行程(b)に示したように、所定の化学種を活性化表
面(1a)に対して選択的に化学反応するように作用さ
せてパターン(1b)を形成する。この場合、その化学
種としては種々のものを使用できるが、例えば酸素を使
用すれば酸化膜のパターンを形成することができ、アン
モニアを使用すれば窒化膜のパターンを形成することが
できる。
After irradiating the electron beam or electromagnetic waves in this way, as shown in step (b) in the figure, a predetermined chemical species is caused to act on the activated surface (1a) so as to cause a selective chemical reaction. A pattern (1b) is formed. In this case, various chemical species can be used; for example, oxygen can be used to form an oxide film pattern, and ammonia can be used to form a nitride film pattern.

このようにして得られるパターンは、従来法と異なりレ
ジストを使用することなく形成されるので、シリコン固
体表面がレジスト残存物などの有機物で汚染されたもの
とはならない、また、表面水素化したシリコン固体表面
に対し電子ビームまたは電磁波を照射することにより形
成されるので、血便にかつ高分解能に形成でき、o、o
iμm以下の分解能を達成することも可能となる。さら
に、得られるパターンはシリコン固体表面と直接化学結
合したものとなるため、パターン面とその基板たるシリ
コン固体表面との界面における欠陥が極めて少なく、密
着性も著しく高いものとなる。また、パターンとして酸
化膜や窒化膜を形成する場合には、そのパターンはシリ
コン固体表面自体の酸化や窒化により形成されることと
なるので、パターン部分の表面からの突出がその半反応
によるシリコン固体の体積膨張程度で極めて僅かなもの
となり、実質的に平滑なパターンとなる。
The pattern obtained in this way is formed without using a resist, unlike conventional methods, so the silicon solid surface is not contaminated with organic matter such as resist residue, and the silicon solid surface is not contaminated with organic matter such as resist residue. Since it is formed by irradiating the solid surface with an electron beam or electromagnetic waves, it can be formed in a bloody manner with high resolution.
It is also possible to achieve a resolution of iμm or less. Furthermore, since the resulting pattern is directly chemically bonded to the silicon solid surface, there are extremely few defects at the interface between the pattern surface and the silicon solid surface that is the substrate, and the adhesion is extremely high. In addition, when forming an oxide film or nitride film as a pattern, the pattern is formed by oxidation or nitridation of the silicon solid surface itself, so the protrusion from the surface of the pattern part is due to the half reaction of the silicon solid. The volumetric expansion is extremely small, resulting in a substantially smooth pattern.

以下、この発明を実施例に基づいて具体的に説明する。Hereinafter, this invention will be specifically explained based on examples.

(実施例) (i)  表面に薄い酸化膜が存在するシリコンウェハ
に対し、超高真空で750℃以上に加熱することによっ
て、オージェ測定において珪素以外には炭素や酸素が検
出されない清浄表面を作製した。
(Example) (i) By heating a silicon wafer with a thin oxide film on its surface to 750°C or higher in an ultra-high vacuum, we created a clean surface on which no carbon or oxygen other than silicon was detected in Auger measurements. did.

(ii)  次に清浄表面を有するシリコンウェハを第
2図に示した水素化用真空容器に股!して、15分以上
の表面水素化を行った。この場合、タングステン製フィ
ラメント(5)の温度は1900に以上とし、また水素
圧力はバリアプルリークパルプにより5 xlo−’ 
〜2x10−’Torrとなるように調節しな。
(ii) Next, place the silicon wafer with a clean surface into a vacuum vessel for hydrogenation as shown in Figure 2! Surface hydrogenation was performed for 15 minutes or more. In this case, the temperature of the tungsten filament (5) is above 1900℃, and the hydrogen pressure is 5xlo-' due to the barrier pull leak pulp.
Adjust to ~2x10-'Torr.

(i+i)  こうして得られた表面水素化したシリコ
ンウェハの(100)面に対し、5x10−IOTor
rの真空容器中で3KVに加速した電流量1x10−’
Aの電子ビームを100μmX200μmの矩形状に3
00秒間照射してその照射部分の水素を脱離させ、その
後2時間空気中において照射部分を選択的に酸化し、酸
化膜のパターンを形成した。
(i+i) For the (100) plane of the surface-hydrogenated silicon wafer obtained in this way,
The amount of current 1x10-' accelerated to 3KV in a vacuum vessel of r
The electron beam of A is shaped into a rectangular shape of 100 μm x 200 μm.
The irradiation was performed for 00 seconds to remove hydrogen from the irradiated area, and then the irradiated area was selectively oxidized in the air for 2 hours to form an oxide film pattern.

得られたパターンのオージェスペクトルを測定したとこ
ろ、その強度イメージにおいて、電子ビーム照射を行っ
た部分は酸素濃度が高く、白く見えた。また、その珪素
と酸素のオージェスペクトル強度比より、酸化膜の厚み
はIOAであることがわかった。
When we measured the Auger spectrum of the resulting pattern, we found that in the intensity image, the area where the electron beam was irradiated had a high oxygen concentration and appeared white. Further, from the Auger spectrum intensity ratio of silicon and oxygen, it was found that the thickness of the oxide film was IOA.

〈発明の効果) この発明によれば、シリコン固体表面に、レジストによ
る汚染や欠陥のないパターンを簡便に形成でき、しかも
そのパターンを0.01ノam以下の高分解能を有する
高精度なものに、がっ実質的に平滑に形成することが可
能となる。
<Effects of the Invention> According to the present invention, a pattern without resist contamination or defects can be easily formed on a silicon solid surface, and the pattern can be made into a highly accurate pattern with a high resolution of 0.01 nm or less. , it becomes possible to form a substantially smooth surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の方法の模式的工程図である。 第2図は、シリコン固体表面を水素化するのに好適な水
素化用真空容器の概略構成図である。 ^)電子ビームまたは電磁波 1)シリコンウェハ 1a)活性化表面 1b)パターン 2)試料ホルダー ホルダー受は 水素ガス タングステン製フィラメント イオンポンプ ターボモレキュラーポンプ 弁理士 代理人 西 澤 利 夫
FIG. 1 is a schematic process diagram of the method of the present invention. FIG. 2 is a schematic diagram of a hydrogenation vacuum vessel suitable for hydrogenating a silicon solid surface. ^) Electron beam or electromagnetic wave 1) Silicon wafer 1a) Activated surface 1b) Pattern 2) Sample holder Holder holder made of hydrogen gas Tungsten filament ion pump Turbo molecular pump Patent attorney Agent Toshio Nishizawa

Claims (4)

【特許請求の範囲】[Claims] (1)シリコン固体表面を表面水素化により不活性化し
、電子ビームまたは電磁波を照射して化学的に活性化し
、パターン形成することを特徴とするシリコン固体表面
へのパターン形成法。
(1) A method for forming a pattern on a silicon solid surface, which comprises inactivating the silicon solid surface by surface hydrogenation, chemically activating it by irradiating it with an electron beam or electromagnetic waves, and forming a pattern.
(2)シリコン固体表面を、超高真空中での高温加熱ま
たは超高真空中でのイオンエッチングにより清浄化した
後、気相水素化処理により表面水素化する請求項(1)
記載のシリコン固体表面へのパターン形成法。
(2) Claim (1) in which the silicon solid surface is cleaned by high-temperature heating in an ultra-high vacuum or ion etching in an ultra-high vacuum, and then surface hydrogenated by gas-phase hydrogenation treatment.
The described method for forming patterns on silicon solid surfaces.
(3)シリコン固体表面を、弗化水素酸処理により表面
水素化する請求項(1)記載のシリコン固体表面へのパ
ターン形成法。
(3) The method for forming a pattern on a silicon solid surface according to claim (1), wherein the silicon solid surface is surface hydrogenated by hydrofluoric acid treatment.
(4)波長4000Å以下の電磁波を照射する請求項(
1)記載のシリコン固体表面へのパターン形成法。
(4) A claim that irradiates electromagnetic waves with a wavelength of 4000 Å or less (
1) Method of forming a pattern on a silicon solid surface as described above.
JP63292069A 1988-11-18 1988-11-18 Pattern formation method on silicon solid surface Expired - Lifetime JPH0712015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63292069A JPH0712015B2 (en) 1988-11-18 1988-11-18 Pattern formation method on silicon solid surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63292069A JPH0712015B2 (en) 1988-11-18 1988-11-18 Pattern formation method on silicon solid surface

Publications (2)

Publication Number Publication Date
JPH02137313A true JPH02137313A (en) 1990-05-25
JPH0712015B2 JPH0712015B2 (en) 1995-02-08

Family

ID=17777133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63292069A Expired - Lifetime JPH0712015B2 (en) 1988-11-18 1988-11-18 Pattern formation method on silicon solid surface

Country Status (1)

Country Link
JP (1) JPH0712015B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0567985A2 (en) * 1992-04-28 1993-11-03 Kazuo Tsubouchi Process for thin film formation
US5352330A (en) * 1992-09-30 1994-10-04 Texas Instruments Incorporated Process for producing nanometer-size structures on surfaces using electron beam induced chemistry through electron stimulated desorption
US5543356A (en) * 1993-11-10 1996-08-06 Hitachi, Ltd. Method of impurity doping into semiconductor
EP0783176A3 (en) * 1996-01-05 1997-08-20 Motorola Inc
US5700628A (en) * 1994-05-31 1997-12-23 Texas Instruments Incorporated Dry microlithography process
FR2757881A1 (en) * 1996-12-31 1998-07-03 Univ Paris Curie PROCESS FOR TREATING A SURFACE OF A SEMICONDUCTOR, CORRESPONDING DEVICE AND ASSOCIATED SEMICONDUCTOR

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198327A (en) * 1987-02-13 1988-08-17 Nec Corp Forming method for ultrafine pattern of adsorption layer due to electron beam separation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198327A (en) * 1987-02-13 1988-08-17 Nec Corp Forming method for ultrafine pattern of adsorption layer due to electron beam separation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0567985A2 (en) * 1992-04-28 1993-11-03 Kazuo Tsubouchi Process for thin film formation
EP0567985A3 (en) * 1992-04-28 1994-05-18 Tsubochi Kazuo Process for thin film formation
US5604153A (en) * 1992-04-28 1997-02-18 Tsubouchi; Kazuo Process for thin film formation
US5352330A (en) * 1992-09-30 1994-10-04 Texas Instruments Incorporated Process for producing nanometer-size structures on surfaces using electron beam induced chemistry through electron stimulated desorption
US5543356A (en) * 1993-11-10 1996-08-06 Hitachi, Ltd. Method of impurity doping into semiconductor
US5700628A (en) * 1994-05-31 1997-12-23 Texas Instruments Incorporated Dry microlithography process
EP0783176A3 (en) * 1996-01-05 1997-08-20 Motorola Inc
FR2757881A1 (en) * 1996-12-31 1998-07-03 Univ Paris Curie PROCESS FOR TREATING A SURFACE OF A SEMICONDUCTOR, CORRESPONDING DEVICE AND ASSOCIATED SEMICONDUCTOR
WO1998029901A1 (en) * 1996-12-31 1998-07-09 Universite Pierre Et Marie Curie Method and device for treating a semiconductor surface

Also Published As

Publication number Publication date
JPH0712015B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
Licciardello et al. Effect of organic contaminants on the oxidation kinetics of silicon at room temperature
US5490896A (en) Photomask or a light shielding member having a light transmitting portion and a light shielding portion
JPH02137313A (en) Method for forming pattern on silicon solid surface
Kaneko et al. Low Temperature Silicon Surface Cleaning by HF Etching/Ultraviolet Ozone Cleaning (HF/UVOC) Method (II)–in situ UVOC
JPH0496226A (en) Manufacture of semiconductor device
JP4124675B2 (en) Method and apparatus for low-temperature oxidation of silicon wafer
JPH0883786A (en) Manufacture of semiconductor device
JPH03116727A (en) Manufacture of semiconductor device
JPH067591B2 (en) Method of implanting organic molecules on silicon solid surface
JP2694625B2 (en) Method for etching compound semiconductor substrate and method for manufacturing the same
JPH033328A (en) Modification of surface of solid sample
Yasuda et al. Controlled bond formation between chemical vapor deposition Si and ultrathin SiO 2 layers
JP2001052979A (en) Formation method for resist, working method for substrate, and filter structure
JPH06333917A (en) Preprocessing method for semiconductor wafer before oxidization
JPH01146330A (en) Surface cleaning method for silicon solid
JPS61203642A (en) Dry etching method
JP3240305B2 (en) Solid growth method
JPS63266835A (en) Vapor-phase reactor
JP2006032992A (en) Manufacturing method of semiconductor device, and substrate treating apparatus
JPH04307734A (en) Ashing apparatus
JP3132963B2 (en) Method of forming silicon oxide film
JPS63160324A (en) Molecular beam epitaxial crystal growth
JP3520312B2 (en) Pattern formation method
JPH06291095A (en) Pattern forming method
JPS63266834A (en) Vapor-phase reactor