JPS6319659A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS6319659A
JPS6319659A JP16522986A JP16522986A JPS6319659A JP S6319659 A JPS6319659 A JP S6319659A JP 16522986 A JP16522986 A JP 16522986A JP 16522986 A JP16522986 A JP 16522986A JP S6319659 A JPS6319659 A JP S6319659A
Authority
JP
Japan
Prior art keywords
layer
carrier
substance
electron transfer
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16522986A
Other languages
Japanese (ja)
Inventor
Yoshikazu Sato
嘉一 佐藤
Yujiro Watanuki
勇次郎 綿貫
Noboru Kosho
古庄 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP16522986A priority Critical patent/JPS6319659A/en
Publication of JPS6319659A publication Critical patent/JPS6319659A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/047Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain the titled body having improved cycle stability and anti-environment property by constituting a carrier generating substance which is used to the carrier generating layer, from an azopigment or a phthalocyanine pigment, and an electron transfer substance which is used to the electron transfer layer from a Lewis acid, respectively. CONSTITUTION:The titled body is formed by laminating the positive hole transfer layer 12, the carrier generating layer 13 and the electron transfer layer 14 on a conductive substrate 11, in this order. The carrier generating substance and the electron transfer substance are composed of a combination of the specific substances respectively. Namely, the electron transfer substance is composed of the Lewis acid in the case that the carrier generating substance is made of the azopigment or the phthalocyanine pigment. The electron transfer substance is composed of a pyrazoline derivative or a hydrazone derivative in the case that the carrier generating substance is made of a polymethine coloring matter or an aquarinic acid coloring matter. As the trapping of the carrier does not occur at interfaces between each layers, the titled body has the excellent cycle stability in case of continuously using said body. And, as the carrier generated layer does not appear to the surface of the titled body, the titled body having the excellent anti-environment and less tendency for generating a change of the characteristics and a good durability is obtd. even in case that the surface of the titled body wears out.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は電子写真用感光体、さらに詳しくはサイクル安
定性に優れ、かつ、機械的強度に浸れ、正帯電で使用で
きる電子写真用感光体に関するものである。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to an electrophotographic photoreceptor, and more specifically, an electrophotographic photoreceptor that has excellent cycle stability, has high mechanical strength, and can be used with positive charging. It is related to.

〔従来技術とその問題点〕[Prior art and its problems]

電子写真用感光体(以下、単に感光体ともいう)として
は、暗所においてコロナ放電などにより所要電位に帯電
できるとともに電荷の漏れが少なく、光を照射すること
によって速やかに放電する性能を有することが求められ
る。そのため、感光体の感光層に使用される光導電性材
料としては、暗所に右いて大きな帯電能を存しかつ漏れ
電流が少ないこと、光照射により多量のキャリア発生能
を有すること、発生したキャリアを速やかに運ぶ優れた
輸送能を有することが要望される。
As a photoreceptor for electrophotography (hereinafter also simply referred to as a photoreceptor), it must be able to be charged to the required potential by corona discharge in a dark place, have little charge leakage, and have the ability to quickly discharge when irradiated with light. is required. Therefore, the photoconductive material used for the photosensitive layer of the photoreceptor must have a large charging ability in the dark and a low leakage current, and must have the ability to generate a large amount of carriers when irradiated with light. It is desired to have excellent transportation ability to quickly transport carriers.

このような性能を有する光導電性材料として、従来、ア
モルファスセレン合金、酸化亜鉛、硫化カドミウムなど
の無代光導電性物質が用いられてきたが、近年、可撓性
、耐(析撃性、熱安定性、支膜形成性などの点で、また
、長波長光に高感度で低コストであるなどの点で有機光
導電性物質が注目されてきて1ハる。
As photoconductive materials with such performance, non-chemical photoconductive substances such as amorphous selenium alloys, zinc oxide, and cadmium sulfide have been used in the past, but in recent years, flexibility, resistance (impact resistance, Organic photoconductive materials have been attracting attention because of their thermal stability, film-forming properties, high sensitivity to long wavelength light, and low cost.

また、最近では、前述のキャリア発生機能とキャリア輸
送機能とを異なる物質に分担させることにより感光体の
性能を向上させる機能分離型感光体の研究が盛んである
。このような機能分離型感光体において、有機染料や有
@顔料をキャリア発生物質として用いるものが数多く提
案されており、アゾ顔料、フタロシアニン顔料、インジ
ゴ系顔料。
Furthermore, recently, there has been active research into functionally separated photoreceptors in which the performance of the photoreceptor is improved by assigning the aforementioned carrier generation function and carrier transport function to different substances. In such functionally separated type photoreceptors, many methods have been proposed that use organic dyes or pigments as carrier generating substances, such as azo pigments, phthalocyanine pigments, and indigo pigments.

ポリメチン系色素、スクアリン酸染料などがある。These include polymethine dyes and squaric acid dyes.

有機系の感光体は、通常負コロナ帯電方式によって画像
形成が行われる。しかし、負コロナ帯電ではオゾンが多
量に発生するので、帯電時に感光体表面はオゾン酸化さ
れる状態となる。したがって、オゾン劣化防止対策や複
写機自体でのオゾン対策などの処置が必要である。
Image formation on organic photoreceptors is usually performed using a negative corona charging method. However, since a large amount of ozone is generated in negative corona charging, the surface of the photoreceptor becomes oxidized by ozone during charging. Therefore, it is necessary to take measures to prevent ozone deterioration and to take measures against ozone in the copying machine itself.

一方、正コロナ帯電は負コロナ帯電に比べてコロナ放電
が安定しており、また、オゾンの発生が少なく、さらに
、適合する現像剤の製造が容易であるなどの利点が多く
、正帯電方式の方が好都合である。そのため、正帯電で
使用可能な感光体の開発が進められており、例えば感光
層中に結着剤。
On the other hand, positive corona charging has many advantages over negative corona charging, such as more stable corona discharge, less ozone generation, and easier production of compatible developers. It is more convenient. Therefore, the development of photoreceptors that can be used with positive charging is progressing, for example, using a binder in the photosensitive layer.

キャリア発生物質を含有し、さらに電子供与性物質を添
加された単層型の感光体は正帯電可能で実用化されてい
るが、光感度、特性の安定性および耐久性において必ず
しも満足できるものではない。
A single-layer photoreceptor containing a carrier-generating substance and further adding an electron-donating substance can be positively charged and has been put into practical use, but it is not always satisfactory in terms of photosensitivity, stability of characteristics, and durability. do not have.

また、機能分離型の積層型感光体で正帯電での使用を実
現しようとする試みは数多くなされているが実用の段階
には至っていない。
Furthermore, many attempts have been made to realize the use of functionally separated laminated photoreceptors with positive charging, but none have reached the stage of practical use.

機能分離型で、第2図に示すように、導電性基体1上に
キャリア輸送層2を設け、その上にキャリア発生層3を
積層した構成の感光体で、キャリア輸送層2を正孔輸送
能の大きい物質で形成し正帯電を可能にしようという試
みがなされている。
As shown in FIG. 2, this is a functionally separated type photoreceptor with a structure in which a carrier transport layer 2 is provided on a conductive substrate 1 and a carrier generation layer 3 is laminated thereon.The carrier transport layer 2 is used for hole transport. Attempts have been made to make positive charging possible by forming the battery with a material with a high capacity.

例えば、スチリル化合物やアミン誘導体をキャリア輸送
物質としてバインダ樹脂に混合して形成したキャリア輸
送層上にビスアゾ化合物を主成分とするキャリア発生物
質をバインダ樹脂に混合して形成したキャリア発生層を
設けた感光体が開示されている(特開昭60−2503
46 号公報)。このような層構成で正帯電で使用可能
とする感光体は数多く提案されている(特公昭47−2
1760号公報、特公昭49−13344号公報など)
。ところが、画像形成時感光体表面は磁気ブラシ、転写
紙、トナークリーニング用ブレードと接触し摩[察され
る。そのとき感光体表面が有機物であると耐磨耗性が弱
く、表面が削られるという問題が生じる。特に上述の層
構成の場合には、表面のキャリア発生層が削られること
になるので、光感度など特性が大きく変化してしまう。
For example, a carrier generation layer formed by mixing a carrier generation substance containing a bisazo compound as a main component with a binder resin is provided on a carrier transport layer formed by mixing a styryl compound or an amine derivative as a carrier transport substance with a binder resin. A photoreceptor is disclosed (Japanese Patent Application Laid-Open No. 60-2503
Publication No. 46). Many photoreceptors have been proposed that have such a layer structure and can be used with positive charging (Japanese Patent Publication No. 47-2
1760, Special Publication No. 13344, etc.)
. However, during image formation, the surface of the photoreceptor comes into contact with a magnetic brush, transfer paper, and a toner cleaning blade and is subject to abrasion. At this time, if the surface of the photoreceptor is made of organic matter, the abrasion resistance will be weak, causing a problem that the surface will be scraped. Particularly in the case of the above-mentioned layer structure, the carrier generation layer on the surface is scraped off, resulting in a large change in characteristics such as photosensitivity.

また、キャリア発生層が直接オゾンに曝されるために劣
化してキャリア発生能が変化し、繰り返し使用による特
性の変化が著しいという欠点を有している。
Further, since the carrier generation layer is directly exposed to ozone, it deteriorates and the carrier generation ability changes, and the characteristics change significantly with repeated use.

また、第3図に示すように、導電性基板1上にキャリア
発生層3を設け、その上にキャリア輸送層2を設ける構
成でキャリア輸送層2を電子輸送能の大きい物質で形成
し正帯電で使用可能な感光体とする試みもある。例えば
、スクアリン酸メチン染料をキャリア発生物質とするキ
ャリア発生層3の上に、ピラゾリン誘導体をキャリア輸
送物質とし、これをバインダに混合してキャリア輸送、
lを形成した感光体が開示されており(特開昭58−4
3460号公報)、他にも多く見られる(特開昭49−
48334号公報、特開昭49−1231 号公報、特
開昭52−77730号公報など)。しかしながら、こ
のようなl構成の感光体は、コロナ帯電時の帯電速度が
遅いために、通常複写機に使用した場合には画像上に表
面電位低下による地汚れがおきるばかりか、多数枚複写
を行った場合には特性が変動する。すなわちサイクル安
定性に劣り、メモリー現象が発生するという欠点を有す
る。
In addition, as shown in FIG. 3, a carrier generation layer 3 is provided on a conductive substrate 1, and a carrier transport layer 2 is provided thereon, and the carrier transport layer 2 is formed of a material with a high electron transport ability and is positively charged. There are also attempts to make photoreceptors that can be used in For example, a pyrazoline derivative is used as a carrier transport material on the carrier generation layer 3 in which methine squarate dye is used as a carrier generation material, and this is mixed with a binder to transport carriers.
A photoreceptor in which a
3460), and many others (Japanese Unexamined Patent Application Publication No. 1973-
48334, JP-A-49-1231, JP-A-52-77730, etc.). However, since such a photoreceptor with the L configuration has a slow charging speed during corona charging, when used in a normal copying machine, not only does background smear occur on the image due to a decrease in surface potential, but it also makes it difficult to make multiple copies. If you do so, the characteristics will change. That is, it has disadvantages of poor cycle stability and memory phenomenon.

ところで、キャリア発生層とキャリア輸送lとを積層し
て感光体とする場合、その界面でのキャリアの挙動が重
要であって、用いられるキャリア発生物質とキャリア輸
送物質との間に互いに最適な組み合わせがあることがわ
かっている(例えば、森下泰定、角田教「有機光導電性
材料」化学と工業34巻85−88頁(1981年))
。あるキャリア発生物質に対して有効なキャリア輸送物
質が、他のキャリア発生物質に対しても有効であるとは
限らず、また、あるキャリア輸送物質と組み合わせて有
効なキャリア発生物質が他のキャリア輸送物質と組み合
わせても有効であるとは限らない。これら両物質の組み
合わせが不適当な場合にはキャリア発生層からキャリア
輸送層へのキャリアの注入効率が悪く、感光体の感度が
低くなり、さらに、両層の境界にキャリアがトラップさ
れて残留電位が増大し、サイクル安定性が悪くなる。上
記二つの層構成の感光体においても、それぞれ特定のキ
ャリア発生物質とキャリア輸送物質との組み合わせたも
のが種々考えられ工いるのであるが、現在まだ、正帯電
で実用化された有機材料系の感光体はない。
By the way, when a photoconductor is produced by laminating a carrier generation layer and a carrier transport layer, the behavior of carriers at the interface is important, and the optimal combination of the carrier generation material and carrier transport material to be used is important. It is known that there is a
. A carrier transporting substance that is effective for one carrier-generating substance is not necessarily effective for other carrier-generating substances, and a carrier-generating substance that is effective in combination with a certain carrier-generating substance may not be effective for other carrier-generating substances. Combinations with other substances may not necessarily be effective. If the combination of these two substances is inappropriate, the injection efficiency of carriers from the carrier generation layer to the carrier transport layer will be poor, and the sensitivity of the photoreceptor will be reduced. Furthermore, carriers will be trapped at the boundary between the two layers, resulting in a residual potential. increases, and cycle stability worsens. Various combinations of specific carrier-generating substances and carrier-transporting substances have been considered for photoreceptors with the above two layer configurations, but at present there are still organic material-based materials that have been put into practical use with positive charging. There is no photoreceptor.

特開昭60−49342号公報に、バイポーラ形電子写
真用感光体の提案があり、導電性基体上に正孔輸送層を
設け、さらに、キャリア発生層、電子輸送層と順次積層
するタイプの感光体が正帯電用積層感光体として開示さ
れている。この感光体においては、キャリア発生層は光
を受容して電子および正孔をほぼ同等の濃度で発生し、
電子は電子輸送層との界面へ、正孔は正孔輸送層との界
面へとそれぞれ移動しそれぞれの層へ注入される。この
ように電子、正孔の両キャリアがそれぞれ速やかに移動
することが必要なので、キャリア発生層の膜厚は薄いこ
とが要望され、0,05μm〜1μmの範囲とされる。
JP-A-60-49342 proposes a bipolar electrophotographic photoreceptor, in which a hole transport layer is provided on a conductive substrate, and a carrier generation layer and an electron transport layer are further laminated in sequence. The body is disclosed as a positively charging laminated photoreceptor. In this photoreceptor, the carrier generation layer receives light and generates electrons and holes at approximately equal concentrations.
Electrons move to the interface with the electron transport layer, and holes move to the interface with the hole transport layer, and are injected into the respective layers. Since it is necessary for both electron and hole carriers to move rapidly in this way, the carrier generation layer is required to have a thin film thickness, and is in the range of 0.05 μm to 1 μm.

しかしながらこのような薄膜を例えば塗布法で量産的に
均一に形成することは難しく、また例えば蒸着などで形
成することになると、その蒸着のための大型の装置を必
要とし技術的にも難しくなり、工業的な生産性に劣ると
いう問題点がある。
However, it is difficult to uniformly form such a thin film in mass production using, for example, a coating method, and if it is formed by, for example, vapor deposition, it requires a large device for the vapor deposition, which is technically difficult. There is a problem that industrial productivity is inferior.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の点に鑑みてなされたものであって、正
帯電使用に好適であり、サイクル安定性1耐環境性に優
れ、表面が機械的に磨耗しても特性変動が少なく、かつ
、量産に適した電子写真用感光体を提供することを目的
とする。
The present invention has been made in view of the above points, and is suitable for use with positive charging, has excellent cycle stability and environmental resistance, has little characteristic fluctuation even when the surface is mechanically abraded, and The purpose of the present invention is to provide an electrophotographic photoreceptor suitable for mass production.

〔発明の要点〕[Key points of the invention]

本発明の目的は、導電性基体上に正孔輸送層。 The object of the present invention is to provide a hole transport layer on a conductive substrate.

キャリア発生層、電子輸送層を順次積層した構成の感實
体とし、そのとき用いるキャリア発生物質。
A carrier-generating material used in a sensitive body having a structure in which a carrier-generating layer and an electron-transporting layer are sequentially laminated.

電子輸送物質をそれぞれ特定の物質の組み合わせとする
、すなわち、キャリア発生物質がアゾ顔料またはフタロ
シアニン顔料の場合には、電子輸送物質としてルイス酸
を用い、キャリア発生物質としてポリメチン系色素また
はスクアリン酸色素を用いた場合には、ピラゾリン誘導
体またはヒドラゾン誘導体を電子輸送物質として用いる
ことによって達成される。
When the electron-transporting substance is a combination of specific substances, that is, when the carrier-generating substance is an azo pigment or a phthalocyanine pigment, a Lewis acid is used as the electron-transporting substance, and a polymethine dye or a squaric acid dye is used as the carrier-generating substance. When used, this is achieved by using a pyrazoline derivative or a hydrazone derivative as an electron transport material.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第X図は本発明による感光体の一実施例の層構成を示す
概念的断面図であって、11は導電性基体。
FIG.

12は正孔輸送層、13はキャリア発生層、14は電子
輸送層である。
12 is a hole transport layer, 13 is a carrier generation layer, and 14 is an electron transport layer.

導電性基体11は感光体の電極としての役目と同時に他
の各層の支持体となっており、形状はフィルム状、板状
あるいは円筒状のいずれでもよく、材質的にはアルミニ
ウム、ステンレス鋼などの金属、またはガラス、セラミ
ック、樹脂などの表面に導電処理を施したものでもよい
The conductive substrate 11 serves as an electrode for the photoreceptor and at the same time serves as a support for the other layers, and may be in the form of a film, plate, or cylinder, and may be made of aluminum, stainless steel, or the like. It may also be made of metal, glass, ceramic, resin, or the like, whose surface is subjected to conductive treatment.

正孔輸送層12は有機電荷輸送物質を結着剤樹脂中に分
散させてなる層であり、暗所では絶縁体層として感光体
の表面電荷の保持に寄与し、光受容時にはキャリア発生
層13より注入される正孔を輸送する機能を発揮する。
The hole transport layer 12 is a layer formed by dispersing an organic charge transport substance in a binder resin, and serves as an insulating layer in the dark to maintain the surface charge of the photoreceptor, and when receiving light, the carrier generation layer 13 It functions to transport more injected holes.

正孔輸送層12の形成は、正孔輸送物質、結着剤樹脂、
溶剤などよりなる均質混合物を塗布し乾燥することによ
り行われる。正孔輸送物質としては周知のもの、例えば
、芳香族第三アミノおよび第三ジアミノ化合物、ポリビ
ニルカルバゾール化合物、ピラゾリン誘導体、キナゾリ
ン透導体、トリアジン1秀導体、ベンゾフラン誘導体、
オキサジアゾール誘導体、トリフェニルメタン誘導体、
ヒドラゾン誘導体などを使用できる。また、結着剤樹脂
としては、公知の電気絶縁性で皮膜形成性を有する熱可
塑性あるいは熱硬化性樹脂など一般のすべての結着剤樹
脂が使用できる。適当な結着剤樹脂の例は、これに限定
されるものではないが、飽和ポリエステル樹脂、ポリア
ミド樹脂、アクリル樹脂、ポリカーボネート樹脂、エチ
レン−酢酸ビニル!合体、]化ビニール、セルロースエ
ステルなどの熱可塑性結着剤樹脂、エボキン樹脂、ウレ
タン樹脂、ンリコン附脂、フェノール樹脂、熱硬化性ア
クリル樹脂などの熱硬化性結着剤at詣である。また溶
剤としては、例えば、テトラヒドロフランのようなエー
テル系溶剤、トルエン、キシレンなどのような芳香族炭
化水素などが用いられる。
Formation of the hole transport layer 12 includes a hole transport material, a binder resin,
This is done by applying a homogeneous mixture of solvents and the like and drying it. Well-known hole transport substances include aromatic tertiary amino and tertiary diamino compounds, polyvinylcarbazole compounds, pyrazoline derivatives, quinazoline conductors, triazine monoconductors, benzofuran derivatives,
Oxadiazole derivatives, triphenylmethane derivatives,
Hydrazone derivatives and the like can be used. Further, as the binder resin, all general binder resins such as known electrically insulating and film-forming thermoplastic or thermosetting resins can be used. Examples of suitable binder resins include, but are not limited to, saturated polyester resins, polyamide resins, acrylic resins, polycarbonate resins, ethylene-vinyl acetate! Thermoplastic binder resins such as polyvinyl chloride and cellulose esters, thermosetting binders such as Evokin resin, urethane resins, phenol resins, and thermosetting acrylic resins. Further, as the solvent, for example, ether solvents such as tetrahydrofuran, aromatic hydrocarbons such as toluene, xylene, etc. are used.

次いで、上記のように形成された正孔輸送層12の上に
、キャリア発生物質、上記のような結着剤樹脂および溶
剤などよりなる均質混合物を塗布し乾燥することにより
キャリア発生層13が形成される。
Next, a carrier generating layer 13 is formed by applying a homogeneous mixture consisting of a carrier generating substance, a binder resin as described above, a solvent, etc. onto the hole transport layer 12 formed as described above and drying it. be done.

次いで上記のように形成されたキャリア発生層13の上
に、電子輸送物質ならびに上記のような結着剤樹脂およ
び溶剤などよりなる均質混合物を塗布し乾燥することに
より電子輸送層14が形成される。この電子輸送層14
は、暗所では絶縁層として帯電正電荷を保持し、露光時
にはキャリア発生層の感応する波長光を透過させてキャ
リア発生層内に正孔・電子対を発生せしめ、さらにこの
層から電子の注入を受けてそれを感光体表面へ輸送し、
その表面に保持されている正電荷を消失せしめる殿能を
有する。従って、電子輸送層14はキャリア発生層中に
含まれる電荷発生物質の光の吸収極大の波長領域ででき
るだけ透明であることが望ましい。
Next, on the carrier generation layer 13 formed as described above, a homogeneous mixture consisting of an electron transport substance, the binder resin as described above, a solvent, etc. is applied and dried to form an electron transport layer 14. . This electron transport layer 14
holds a positive charge as an insulating layer in the dark, and when exposed to light, transmits light with a wavelength to which the carrier generation layer is sensitive, generating hole-electron pairs within the carrier generation layer, and further injecting electrons from this layer. and transports it to the photoreceptor surface,
It has the ability to eliminate positive charges held on its surface. Therefore, it is desirable that the electron transport layer 14 be as transparent as possible in the wavelength range where the light absorption of the charge generating substance contained in the carrier generating layer is maximum.

キャリア発生物質と電子輸送物質は、上ヤリア発生物質
としてアゾi++もしくはフタロンアニン@料を用いた
場合には電子輸送物質は電子受容性物質すなわちルイス
酸1例えば特に2,4.7)IJニトロ−9−フルオレ
ノンとの組み合わせが好ましい。また、キャリア発生物
質としてポリメチン色素あるいはスクアリン酸色素を用
いた場合には電子輸送物質はヒドラゾン誘導体もしくは
ピラゾリン誘導体との組み合わせが好ましい。
The carrier-generating substance and the electron-transporting substance can be an electron-accepting substance, i.e., a Lewis acid (e.g., especially 2,4.7) IJ nitro-9, when azo i++ or phthalonanine@ material is used as the carrier-generating substance. - Combinations with fluorenone are preferred. Further, when a polymethine dye or a squaric acid dye is used as a carrier generating substance, the electron transporting substance is preferably combined with a hydrazone derivative or a pyrazoline derivative.

一般にキャリア発生層13の膜厚は0.005μlT1
〜10μm1正孔輸送層12および電子輸送層14の膜
厚は1μlT1〜100μmであってよい。
Generally, the film thickness of the carrier generation layer 13 is 0.005μlT1
~10 μm 1 The film thickness of the hole transport layer 12 and the electron transport layer 14 may be 1 μlT1 to 100 μm.

以下、本発明の好適な実施例を例示的に詳しく説明する
Hereinafter, preferred embodiments of the present invention will be described in detail by way of example.

実施例1 正孔輸送物質1−フェニル−3−(P−ジエチルアミノ
スチリル)−5−(パラジエチルアミンフェニル)−2
−ピラゾリン(ASPP:亜南呑+=+!り  100
重量部をテトラヒドロフラン(TI−1F)700重量
部に溶かした液とポリメタクリル酸メチルポリマー(P
MMΔ:東京化成製)100重量部をトルエン700重
量部に溶かした液とを混合してできた塗液をシリンダー
状の容器に満たし、外径60mmの表面を鏡面加工した
アルミニウム製のドラムの外周上に浸漬塗布法により塗
布し、乾燥後の膜厚が10μmになるように正孔輸送層
を形成した。
Example 1 Hole transport material 1-phenyl-3-(P-diethylaminostyryl)-5-(paradiethylamine phenyl)-2
-Pyrazoline (ASPP: Anan +=+!ri 100
Part by weight dissolved in 700 parts by weight of tetrahydrofuran (TI-1F) and polymethyl methacrylate polymer (P
A cylindrical container is filled with a coating liquid made by mixing 100 parts by weight of MMΔ (manufactured by Tokyo Kasei) with 700 parts by weight of toluene, and the outer periphery of an aluminum drum with an outer diameter of 60 mm and a mirror-finished surface. A hole transport layer was formed by coating on top by a dip coating method so that the film thickness after drying was 10 μm.

このようにして得られた正孔輸送層上にボールミルで1
50時間粉砕した無金属フタロンアニン(東京化成製)
50重量部とASPP100重量部をポリエステル樹脂
(商品名バイロン200:東洋紡製)100重攪BaT
HF溶剤とともに3時間ボールミルにより混練して調整
した塗布液を上記と同様の浸漬塗布法により塗布し、乾
燥後の膜厚が2μmになるようにキv’)ア発生1層を
形成した。さらにこのキャリア発生層上に電子輸送物質
2,4゜7トリニトロー9−フルオレノン(TNF:東
京化成製)100重量部とバイロン200 100重量
部とをTHF500重量部に溶かした塗液を浸漬塗布法
により塗布し、乾燥後の膜厚が5μmとなるように電子
輸送、璽を形成し感光体とした。
On the hole transport layer obtained in this way, 1
Metal-free phthalonanine crushed for 50 hours (manufactured by Tokyo Kasei)
50 parts by weight and 100 parts by weight of ASPP were mixed with 100 parts of polyester resin (trade name Byron 200: manufactured by Toyobo) by BaT.
A coating solution prepared by kneading with an HF solvent in a ball mill for 3 hours was applied by the same dip coating method as described above to form one layer of scratch generation so that the film thickness after drying was 2 μm. Further, on this carrier generation layer, a coating solution prepared by dissolving 100 parts by weight of an electron transport substance 2,4°7 trinitro-9-fluorenone (TNF: manufactured by Tokyo Kasei) and 100 parts by weight of Vylon 200 in 500 parts by weight of THF was applied by dip coating. A photoreceptor was prepared by coating and forming a seal for electron transport so that the film thickness after drying was 5 μm.

実与缶例2 下記構造式 を有するビスアゾ化合物をボールミルを用いて1μm以
下の粒子に粉砕した。この粉砕されたビスアゾ化合物の
微粒子1重量部、極性有機溶媒であるN、N−ジメチル
ホルムアミド(D M F ) 30重量部を超音波ホ
モジナイザーで2時間超音波分散処理を行い、ビスアゾ
化合物の微粒子が極性有機溶媒中に均一に分散した)懸
濁液を作った。この懸濁液にポリメタクリル酸メチル(
PMMΔ)1重置部、トルエン6重量部を加え、マグネ
チック・スターラーで良く混合し、均一な塗布液を作製
しこの塗布液を、実施例1に準じて作製した正孔輸送層
の上に浸漬塗布法により塗布し、乾燥後の膜厚が1.5
μmになるキャリア発生層を形成し、さらにその上に実
施例1に準じて電子輸送層を積層形成して感光体とした
Practical Can Example 2 A bisazo compound having the following structural formula was ground into particles of 1 μm or less using a ball mill. 1 part by weight of the pulverized fine particles of the bisazo compound and 30 parts by weight of N,N-dimethylformamide (DMF), which is a polar organic solvent, were subjected to ultrasonic dispersion treatment for 2 hours using an ultrasonic homogenizer, so that the fine particles of the bisazo compound A homogeneously dispersed) suspension was made in a polar organic solvent. Add polymethyl methacrylate (
Add 1 part of PMMΔ) and 6 parts by weight of toluene, mix well with a magnetic stirrer to prepare a uniform coating solution, and apply this coating solution on the hole transport layer prepared according to Example 1. Applied by dip coating method, film thickness after drying is 1.5
A carrier generation layer having a diameter of .mu.m was formed, and an electron transport layer was further laminated thereon in accordance with Example 1 to obtain a photoreceptor.

実施例3 ポリメチン色素(IR−820:日本化薬製)10重量
部をテトラヒドロフラン(THF)500重量部に溶か
した液と、ポリメタクリル酸メチル(P M M A 
) 10重量部をトルエン60重量部に溶かした液とを
混合し均一な塗布液を作製した。
Example 3 A solution prepared by dissolving 10 parts by weight of polymethine dye (IR-820: manufactured by Nippon Kayaku Co., Ltd.) in 500 parts by weight of tetrahydrofuran (THF) and polymethyl methacrylate (PMMA)
) A uniform coating solution was prepared by mixing 10 parts by weight with a solution obtained by dissolving 10 parts by weight in 60 parts by weight of toluene.

この塗布液を、実施例1に準じて作製した正孔輸送層の
上に浸漬塗布法により塗布し、乾燥後の膜厚が1.5μ
mになるキャリア発生層を形成した。
This coating solution was applied by dip coating onto the hole transport layer prepared according to Example 1, and the film thickness after drying was 1.5 μm.
A carrier generation layer having a thickness of m was formed.

次に、その上に、実施例1で正孔輸送層を形成したのと
同じ塗布液を浸漬塗布法により塗布し、乾燥後の膜厚が
5μmとなる電子輸送層を設けて感光体とした。
Next, the same coating solution as that used to form the hole transport layer in Example 1 was applied thereon by dip coating to form an electron transport layer with a film thickness of 5 μm after drying, thereby forming a photoreceptor. .

比較例1.2.3 電子輸送層を設けないこと以外;まそれぞれ実施例1.
2.3に準じて感光体を作製し、比較例1゜2.3とし
た。
Comparative Example 1.2.3 Except for not providing an electron transport layer; respectively Example 1.
A photoreceptor was prepared according to 2.3, and a comparative example 1°2.3 was prepared.

これらの感光体について、電子写真特性を評価するため
に、市販の普通紙複写機を用いて複写試験を行い得られ
た画質を評価した。実施例の感光体についてはいずれも
良好な画質の像が得られ、1000回連続複写を行って
も画像濃度の変化はなくメモリー現象も発生せず、サイ
クル安定性に優れており、また、画像の乱れも生じなか
った。これら実施例の感光体は正帯電で充分実用可能で
ある。
In order to evaluate the electrophotographic characteristics of these photoreceptors, a copying test was conducted using a commercially available plain paper copying machine, and the resulting image quality was evaluated. All of the photoreceptors of the examples obtained images of good quality, and even after 1000 continuous copies, there was no change in image density, no memory phenomenon occurred, and the cycle stability was excellent. No disturbance occurred. The photoreceptors of these examples are positively charged and are fully usable for practical use.

これに対して、比較例の感光体については初期的には良
好な画像が得られたが、1000回の複写で画像に乱れ
が認められた。これは表面のキャリア発生層が摩擦によ
り削られたためであり、耐久性。
On the other hand, with respect to the photoreceptor of the comparative example, a good image was initially obtained, but disturbances were observed in the image after 1000 copies. This is due to the carrier generation layer on the surface being abraded by friction, resulting in poor durability.

サイクル安定性に問題がある。There is a problem with cycle stability.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、導電性基体上に正孔輸送層。 According to the invention, a hole transport layer on a conductive substrate.

キャリア発生層、電子輸送層を順次接層した構成の感光
体において、使用するキャリア発生物質。
A carrier-generating substance used in a photoreceptor having a structure in which a carrier-generating layer and an electron-transporting layer are sequentially attached.

電子輸送物質を選定して特定の物質の組み合わせとする
。この物質の組み合わせを最適なものとすることにより
、各層の界面でキャリアがトラップされることな(良好
な注入が行われ、キャリア輸送がスムーズに行われて、
正帯電で充分実用可能な感光体が得られる。また、キャ
リアの輸送性が良いので、キャリア発生層の膜厚を1μ
m〜3μmとある程度厚くすることができ、例えば塗布
法などでキャリア発生層を形成することが可能で、低コ
ストで量産することができる。各層界面でのキャリアの
トラップがないので感光体を連続使用したときのサイク
ル安定性に優れ、また、キャリア発生層が表面にでてい
ないため、耐環境性に優れ、表面が機械的に摩耗しても
特性変動が少なく耐久性が良好である。
Select electron transport materials and create a specific combination of materials. By optimizing this combination of materials, carriers are not trapped at the interfaces of each layer (good injection is performed, carrier transport is performed smoothly,
A photoreceptor that is positively charged and is fully usable for practical use can be obtained. In addition, since carrier transportability is good, the thickness of the carrier generation layer is 1 μm.
It is possible to increase the thickness to a certain extent, from m to 3 μm, and it is possible to form a carrier generation layer by, for example, a coating method, and it is possible to mass-produce at low cost. Since there are no carrier traps at the interfaces of each layer, cycle stability is excellent when the photoreceptor is used continuously. Also, since the carrier generation layer is not exposed on the surface, it has excellent environmental resistance and the surface is not mechanically abraded. It has good durability with little variation in characteristics.

さらに、本発明におけるキャリア発生物質は、赤外線領
域の光によってもキャリア発生能力があるため、本発明
の感光体は半導体レーザービームプリンタ用の感光体と
しても期待できる。
Furthermore, since the carrier-generating substance of the present invention has the ability to generate carriers even with light in the infrared region, the photoreceptor of the present invention can be expected to be used as a photoreceptor for semiconductor laser beam printers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、本発明の感光体の一実施例の層構成を示す模式
的断面図、第2図、第3図は従来の感光体のそれぞれ異
なった例の層構成を示す模式的断面図である。 11  導電性基体、12  正孔輸送層、13  キ
ャリア発生層、14  電子輸送層。
FIG. 1 is a schematic sectional view showing the layer structure of one embodiment of the photoreceptor of the present invention, and FIGS. 2 and 3 are schematic sectional views showing the layer structure of different examples of conventional photoreceptors. be. 11 conductive substrate, 12 hole transport layer, 13 carrier generation layer, 14 electron transport layer.

Claims (1)

【特許請求の範囲】 1)導電性基体上に正孔輸送層とキャリア発生層と電子
輸送層とを順次積層してなる電子写真用感光体において
、前記キャリア発生層に用いられるキャリア発生物質が
アゾ顔料またはフタロシアニン顔料であり、前記電子輸
送層に用いられる電子輸送物質がルイス酸であることを
特徴とする電子写真用感光体。 2)導電性基体上に正孔輸送層とキャリア発生層と電子
輸送層とを順次積層してなる電子写真用感光体において
、前記キャリア発生層に用いられるキャリア発生物質が
ポリメチン系色素またはスクアリン酸色素であり、前記
電子輸送層に用いられる電子輸送物質がピラゾリン誘導
体またはヒドラゾン誘導体であることを特徴とする電子
写真用感光体。
[Claims] 1) An electrophotographic photoreceptor in which a hole transport layer, a carrier generation layer, and an electron transport layer are sequentially laminated on a conductive substrate, in which a carrier generation substance used in the carrier generation layer is 1. An electrophotographic photoreceptor, wherein the electron transport material used in the electron transport layer is an azo pigment or a phthalocyanine pigment, and a Lewis acid. 2) In an electrophotographic photoreceptor in which a hole transport layer, a carrier generation layer, and an electron transport layer are sequentially laminated on a conductive substrate, the carrier generation substance used in the carrier generation layer is a polymethine dye or squaric acid. 1. An electrophotographic photoreceptor, which is a dye, and the electron transport material used in the electron transport layer is a pyrazoline derivative or a hydrazone derivative.
JP16522986A 1986-07-14 1986-07-14 Electrophotographic sensitive body Pending JPS6319659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16522986A JPS6319659A (en) 1986-07-14 1986-07-14 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16522986A JPS6319659A (en) 1986-07-14 1986-07-14 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS6319659A true JPS6319659A (en) 1988-01-27

Family

ID=15808311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16522986A Pending JPS6319659A (en) 1986-07-14 1986-07-14 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS6319659A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0655654A1 (en) * 1993-11-24 1995-05-31 Fuji Electric Co., Ltd. Photosensitive body for electrophotography
JP2000330315A (en) * 1999-03-18 2000-11-30 Nec Niigata Ltd Positively charged type electrophotographic photoreceptor and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0655654A1 (en) * 1993-11-24 1995-05-31 Fuji Electric Co., Ltd. Photosensitive body for electrophotography
US5456989A (en) * 1993-11-24 1995-10-10 Fuji Electric Co., Ltd. Photosensitive body for electrophotography
JP2000330315A (en) * 1999-03-18 2000-11-30 Nec Niigata Ltd Positively charged type electrophotographic photoreceptor and its production

Similar Documents

Publication Publication Date Title
US4555463A (en) Photoresponsive imaging members with chloroindium phthalocyanine compositions
JPH0524507B2 (en)
JPS6319659A (en) Electrophotographic sensitive body
US4370398A (en) Electrostatic copying process
JPH032760A (en) Electrophotographic sensitive body
JPH0194349A (en) Electrophotographic sensitive body
JPH0758400B2 (en) Electrophotographic photoreceptor
JPH0248669A (en) Electrophotographic sensitive body
JP2729616B2 (en) Electrophotographic photoreceptor
JPH01273049A (en) Electrophotographic sensitive body
JP2643216B2 (en) Electrophotographic photoreceptor
JPS63157159A (en) Electrophotographic sensitive body
JP2833192B2 (en) Electrophotographic photoreceptor
JPS62121460A (en) Electrophotographic sensitive body
JP2605938B2 (en) Electrophotographic photoreceptor
JPH0756364A (en) Electrophotographic photoreceptor
JPS63158555A (en) Electrophotographic sensitive body
JPH1090926A (en) Electrophotographic organic photoreceptor
JP2643214B2 (en) Electrophotographic photoreceptor
JPS6348555A (en) Laminated type electrophotographic sensitive body
JPH06230592A (en) Electrophotogtaphic sensitive body
JPH027056B2 (en)
JPH0524505B2 (en)
JPS63157161A (en) Electrophotographic sensitive body
JPH01152463A (en) Electrophotographic sensitive body