JPS63196355A - Numerically controlled machining system - Google Patents

Numerically controlled machining system

Info

Publication number
JPS63196355A
JPS63196355A JP2815587A JP2815587A JPS63196355A JP S63196355 A JPS63196355 A JP S63196355A JP 2815587 A JP2815587 A JP 2815587A JP 2815587 A JP2815587 A JP 2815587A JP S63196355 A JPS63196355 A JP S63196355A
Authority
JP
Japan
Prior art keywords
workpiece
signal
flaw
probe device
ultrasonic probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2815587A
Other languages
Japanese (ja)
Other versions
JPH0569658B2 (en
Inventor
Toshio Harada
敏夫 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2815587A priority Critical patent/JPS63196355A/en
Publication of JPS63196355A publication Critical patent/JPS63196355A/en
Publication of JPH0569658B2 publication Critical patent/JPH0569658B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To automatically detect the existence and position of a base flaw in a workpiece and prevent the occurrence of an inferior product due to said base flaw by providing an ultrasonic probe device on a tool holder to detect a flaw and selecting a workpiece. CONSTITUTION:A reference signal is generated by an exciting part 15 according to an excitation start command from a numerical control part 2a and applied to an ultrasonic probe device 14, by which the signal is converted into a sound wave and radiated within a workpiece 10, and the reflected echo signal groups are gathered and inputted into a wave detecting part 16. In this case, if there is a base flaw on the workpiece 10, the reference signal is reflected even by this base flow and gathered as an echo signal by the ultrasonic probe device 14 and detected by the wave detecting part 16. And, a judging circuit 17 calculates the position of the base flaw form the time difference between the reference signal and the detected signal and, by referring to a workpiece dimension information in the numerical control part 2a, when the base flaw is judged to be rejected, it commands suspension of machining and replace the workpiece. Accordingly, the existence and position of a base flaw in a workpiece 10 can be detected automatically and accurately, preventing the occurrence of an inferior product due to the base flaw.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、旋削や切削等の機械加工を行う数値制御加
工システム、特に素材不良に起因する製品不良を事前に
発見するため素材の内部欠陥を検査する装置に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a numerically controlled machining system that performs machining such as turning and cutting. The present invention relates to a device for inspecting.

[従来の技術] 第5図は従来の数値制御による制御の構成を示す図であ
り、図において(1)は数値制御装置であり、数値制御
部(2)、表示制御部(3) 、CRT(4)及び駆動
部(5)から構成される。(6)は工作機械であり、工
具(7)を固定した工具ホルダ(8)、主軸頭(9)、
ワーク(10)を把握するチャック(11)及び心押し
台(12)と工具ヒルダ(8)をX軸方向、Z軸方向に
駆動する駆動モータ(図示せず)から構成される。
[Prior Art] Fig. 5 is a diagram showing the configuration of conventional numerical control. In the figure, (1) is a numerical control device, which includes a numerical control section (2), a display control section (3), and a CRT. (4) and a drive section (5). (6) is a machine tool, which includes a tool holder (8) to which a tool (7) is fixed, a spindle head (9),
It is composed of a chuck (11) that grips the workpiece (10), a tailstock (12), and a drive motor (not shown) that drives the tool hilder (8) in the X-axis direction and the Z-axis direction.

次に動作について説明する。数値制御部(2)は加ニブ
ログラムテープ(13)から加ニブログラムを読み取っ
て解析を行い、加ニブログラム内容やオペレータに対す
る各種メツセージを表示制御部(3)介してCRT (
4)に表示する。
Next, the operation will be explained. The numerical control unit (2) reads the cannibal program from the cannibal program tape (13), analyzes it, and displays the contents of the cannibal program and various messages to the operator via the display control unit (3) on the CRT (
4).

一方、制御軸を駆動制御するための加ニブログラムは同
じ(数値制御部(2)で処理され、駆動部(5)に位置
指令情報を入力する。駆動部(5)は数値制御部(2)
から入力された位置指令情報に基づいて駆動モータの印
加電圧を発生し、工作機械(6)に付設された駆動モー
タを駆動して送りネジによって結合された工具ホルダ(
8)のX軸及びZ軸方向の位置を制御する。また、主軸
頭(9)は数値制御部(2)から指令された主軸回転数
に基づき、チャック(11)と心押し台(12)により
把握されたワーク(10)を所定の回転数で回転駆動す
る。
On the other hand, the machine program for driving and controlling the control axes is processed by the same numerical control section (2), and position command information is input to the driving section (5).
The voltage applied to the drive motor is generated based on the position command information input from the machine tool (6), and the drive motor attached to the machine tool (6) is driven to drive the tool holder (
8) to control the position in the X-axis and Z-axis directions. In addition, the spindle head (9) rotates the workpiece (10) gripped by the chuck (11) and tailstock (12) at a predetermined rotation speed based on the spindle rotation speed commanded from the numerical control unit (2). drive

[発明が解決しようとする問題点1 以上の制御によりワーク(lO)は所望の形状に加工さ
れるが、内部欠陥(以下地傷という)等の素材不良に起
因する加工製品の品質不良を未然に防止しようとした場
合、一般に数値制御装置による加工形状は複雑であり、
加工後の製品に対して素材中の地傷の有無を探知するこ
とは殆どの場合において不可能である。
[Problem to be solved by the invention 1 Although the workpiece (lO) is processed into the desired shape by the above control, it is necessary to prevent quality defects in the processed product due to material defects such as internal defects (hereinafter referred to as scratches). In general, the shapes machined by numerical control devices are complex, and
In most cases, it is impossible to detect the presence or absence of scratches in the material of a processed product.

この問題点を解決する一方法として、第6図に示すよう
な「鋼材地傷の検査方法」 (特開昭61−30359
号公報)が提案されている。図において、(21)は被
検体、(22)は切削用バイト、(23)は探傷用セン
サー、(24)は発振器、(25)はブリッジ、(2B
)は増幅器、(27)は信号処理器、(28)は記録表
示器である。発振器(24)からの高周波電圧が探傷用
センサー(23)に印加され、傷の有無によりインピー
ダンスが変化するのでそれをブリッジ(25)を介して
検出し、ブリッジ(25)の出力を増幅器(26)によ
り増幅して信号処理器(27)により信号処理して傷の
有無を求めて記録表示器(28)に記録する。ところが
、この方法は渦流探傷法に基づいたもので、原理上、特
に素材表層における地傷の検出を目的としている。従っ
て、素材深層部に地傷が存在する場合には、地傷の存在
は検出しても正確な位置までは検出し得ないという問題
点がある。
As a method to solve this problem, a method for inspecting steel material scratches (Japanese Patent Laid-Open No. 61-30359) as shown in Fig. 6 is proposed.
No. 2) has been proposed. In the figure, (21) is the object to be inspected, (22) is the cutting tool, (23) is the flaw detection sensor, (24) is the oscillator, (25) is the bridge, (2B
) is an amplifier, (27) is a signal processor, and (28) is a recording display. The high frequency voltage from the oscillator (24) is applied to the flaw detection sensor (23), and since the impedance changes depending on the presence or absence of flaws, it is detected via the bridge (25), and the output of the bridge (25) is sent to the amplifier (26). ), the signal is amplified by a signal processor (27), the signal is processed by a signal processor (27), and the presence or absence of scratches is determined and recorded on a recording display (28). However, this method is based on the eddy current flaw detection method and, in principle, is aimed at specifically detecting ground flaws in the surface layer of the material. Therefore, when a ground flaw exists in the deep part of the material, there is a problem that even if the presence of the ground flaw is detected, the accurate position cannot be detected.

この発明は上記問題点を解決すると共に、更に検査結果
を拡張利用できる数値制御加工システムを提供すること
を目的としている。
It is an object of the present invention to solve the above-mentioned problems and to provide a numerically controlled machining system that can further utilize inspection results in an expanded manner.

[問題点を解決するための手段] この発明に係る数値制御加工システムは、超音波探傷の
手法を用いて上記問題点を解決したものであり、工具ホ
ルダに工具の一種として配設された超音波探触子装置と
、該超音波探触子装置を励振する励振部と、上記超音波
探触子装置の放射する基準信号がワーク中の地傷等に反
射して生成されるエコー信号を上記探触子装置を介して
検波する検波部と、入力されるワーク寸法情報と該検波
部の出力信号とから地傷の有無を自動的に判定する判定
手段と、励振部に励振開始指令を出力すると共に、前記
超音波探触子装置の移動制御、及び判定手段の判定出力
に基づいてワーク着脱制御を指令数値制御部と、を有す
るものである。
[Means for Solving the Problems] The numerically controlled machining system according to the present invention solves the above problems by using an ultrasonic flaw detection method, and uses an ultrasonic flaw installed as a type of tool in a tool holder. A sonic probe device, an excitation unit that excites the ultrasonic probe device, and an echo signal generated when a reference signal emitted by the ultrasonic probe device is reflected on a ground scratch or the like in a workpiece. A detection unit that detects waves through the probe device, a determination means that automatically determines the presence or absence of ground flaws based on the input workpiece size information and the output signal of the detection unit, and a determination unit that issues an excitation start command to the excitation unit. The apparatus also includes a numerical control section that outputs commands for controlling the movement of the ultrasonic probe device and controlling the attachment and detachment of the workpiece based on the determination output of the determination means.

「作用」 この発明においては、通常の工具により一度素材表面を
切削又は旋削加工後、工具ホルダに配設された超音波探
触子装置を工具と同様に制御し、ワーク素材表面に接触
及び移動させながら超音波探傷を行い、潜在する地傷の
有無及び位置を3次元的に検出する。そして、判定手段
の判定結果に応じてワークを取捨選択する。
"Operation" In this invention, after cutting or turning the surface of the workpiece with a normal tool, the ultrasonic probe device installed in the tool holder is controlled in the same way as the tool to contact and move the surface of the workpiece. While performing ultrasonic flaw detection, the presence and location of potential ground flaws is detected three-dimensionally. Then, the workpieces are selected depending on the judgment result of the judgment means.

[実施例] 第1図はこの発明の一実施例として旋盤に適用した数値
制御加工システムの構成を示す図で、第2図はその動作
を示すフローチャートである。第1図において、(2a
)は第5図の数値制御部(2)に励振開始指令を出力す
る機能及びワーク着脱制御を指令する機能を付加した数
値制御部、(14)は超音波探触子装置であり励振部(
15)によって励振される。(16)は超音波探触子装
置(14)で集音されたエコー信号を検波する検波部で
あり、判定回路(17)は検波部(16)の出力に基づ
いて地傷の有無の抽定を行う。(3)〜(13)は第5
図と同様であるので説明は省略する。
[Embodiment] FIG. 1 is a diagram showing the configuration of a numerically controlled machining system applied to a lathe as an embodiment of the present invention, and FIG. 2 is a flowchart showing its operation. In Figure 1, (2a
) is a numerical control unit which has a function to output an excitation start command and a function to command workpiece attachment/detachment control to the numerical control unit (2) in Fig. 5, and (14) is an ultrasonic probe device, and an excitation unit (
15). (16) is a detection unit that detects the echo signal collected by the ultrasonic probe device (14), and a determination circuit (17) identifies the presence or absence of ground damage based on the output of the detection unit (16). Make a decision. (3) to (13) are the fifth
Since it is the same as the figure, the explanation will be omitted.

まず、工具ホルダ(8)の超音波探触子装置(14)を
所定の初期位置に設定するために、数値制御部(2a)
は例えばi−1を設定し、更にワーク(10)を主軸頭
(9)によって回転させ(Sl)、励振部(15)に励
振開始指令を与える(S2)。次に、工具ホルダ(8)
を上記の設定i−1に対応するZ軸上の位置に移動させ
る(S3)。
First, in order to set the ultrasonic probe device (14) of the tool holder (8) to a predetermined initial position, the numerical control unit (2a)
For example, i-1 is set, the workpiece (10) is further rotated by the spindle head (9) (Sl), and an excitation start command is given to the excitation section (15) (S2). Next, the tool holder (8)
is moved to a position on the Z axis corresponding to the above setting i-1 (S3).

励振部(15)は、数値制御部(2a)から出力された
励振開始指令によって、第3図(A)に示すように基準
信号(a)を発生し、超音波探触子装置(14)に印加
する。超音波探触子装置(14)はこの基準信号(a)
を音波に変換してワーク(10)内に放射し、ワーク内
で反射されたエコー信号群を集音して検波部(1B)に
入力する(S4)。検波部(1B)は上記エコー信号群
を検波してワーク端で反射されたエコー信号(b)を検
出するが、このとき、ワーク中に地傷(el)があれば
基準信号(a)はこの地傷(el)ででも反射され、エ
コー信号(cl)となって超音波探触子装置(14)で
集音され、検波部(16)で検出される(S5)。判定
回路(17)は、上記励振部(15)から検出された基
準信号(a)と上記検波部(16)から出力された検出
信号とを入力として基準信号(a)と検出信号の時間差
を計測し、該ワークにおける音波の伝播速度からエコー
信号を発生した点の位置を算出する。また、判定回路(
17)は数値制御部(2a)内のワーク寸法情報を参照
して上記エコー信号がワーク端によるものか、地傷によ
るものかを判定しくS6)、その地傷が排除すべきもの
であると判定すれば(S7)、加工中断信号を数値制御
部(2a)に入力して加工を中断させると共にワーク交
換を指令する(S8)。
The excitation unit (15) generates a reference signal (a) as shown in FIG. 3(A) in response to the excitation start command output from the numerical control unit (2a), and the ultrasonic probe device (14) to be applied. The ultrasonic probe device (14) uses this reference signal (a)
is converted into a sound wave and radiated into the workpiece (10), and a group of echo signals reflected within the workpiece are collected and input to the detection section (1B) (S4). The detection section (1B) detects the echo signal group and detects the echo signal (b) reflected at the end of the workpiece. At this time, if there is a ground flaw (el) in the workpiece, the reference signal (a) is The sound is reflected even from this ground flaw (el), becomes an echo signal (cl), is collected by the ultrasonic probe device (14), and is detected by the detection unit (16) (S5). The determination circuit (17) inputs the reference signal (a) detected from the excitation section (15) and the detection signal output from the detection section (16) and calculates the time difference between the reference signal (a) and the detection signal. The position of the point where the echo signal was generated is calculated from the propagation velocity of the sound wave in the workpiece. In addition, the judgment circuit (
17) refers to the workpiece size information in the numerical control unit (2a) to determine whether the echo signal is due to the edge of the workpiece or a ground flaw (S6), and determines that the ground flaw should be eliminated. Then (S7), a machining interruption signal is input to the numerical control unit (2a) to interrupt the machining and to instruct workpiece replacement (S8).

ステップ(S6)において、ワーク直径をd11ワーク
(lO)における音の伝播速度を■とすると、基準信号
(a)とワーク端のエコー信号の時間差toは、to 
−di /vとなり、この時間内に検出されたエコー信
号(cl)は地傷によるものと判定される。そして、エ
コー信号の時間差により地傷の位置が求められる。また
、ステップ(S7)において、例えば中ぐり加工の場合
には第1図の数値制御部(2a)に予め、加工により削
除される加工域を除いた検査範囲情報を記憶させておく
。そして、上記検査範囲情報と上記検波部(1B)から
の検出信号による地傷の位置とを判定回路(17)で比
較することにより、第4図(A)(B)に示す如く、地
傷(e2)が中ぐり加工範囲(d2)に存在する場合に
はその地傷を無視して次の探傷に移る。この例では地傷
は中ぐり加工範囲(d2)であって中心からICだけず
れた位置にあり、そのエコー信号の時間はt2で示され
ている 地傷がない場合(S6)又はその地傷が交換するに値し
ないものである場合(S7)には、探傷が全域で行われ
たかどうかをチェックしくS9)、まだ全域で行われて
いない場合には工具ホルダ(8)のZ軸上の位置を移動
すべくi−i+1の演算をしく5IO)、ステップ(S
3)に戻ってそこで前記iに対応したZ軸上の位置に工
具ホルダ(8)を移動して同様な動作を繰返す。なお、
この時のX軸、Z軸の位置決め及び倣い制御は、検査用
プログラム又は先に実行した切削プログラムに基づいて
行う。
In step (S6), assuming that the workpiece diameter is d11 and the sound propagation speed in the workpiece (lO) is ■, the time difference to between the reference signal (a) and the echo signal at the end of the workpiece is to
-di/v, and the echo signal (cl) detected within this time is determined to be due to ground damage. The location of the ground flaw is then determined based on the time difference between the echo signals. In addition, in step (S7), for example, in the case of boring, the numerical control section (2a) in FIG. 1 stores in advance inspection range information excluding the machining area to be deleted by the machining. Then, by comparing the inspection range information and the position of the ground flaw based on the detection signal from the detection section (1B) in the judgment circuit (17), the ground flaw is detected as shown in FIGS. 4(A) and (B). If (e2) exists in the boring range (d2), the ground flaw is ignored and the process moves to the next flaw detection. In this example, the ground flaw is in the boring range (d2) and is located at a position offset from the center by IC, and the time of the echo signal is the same as when there is no ground flaw indicated by t2 (S6) or that ground flaw. If the flaw detection is not worth replacing (S7), check whether flaw detection has been performed in the entire area (S9), and if it has not been detected in the entire area yet, check the flaw detection on the Z axis of the tool holder (8). In order to move the position, calculate i-i+1 (5IO), step (S
Returning to step 3), the tool holder (8) is moved to the position on the Z axis corresponding to the above i, and the same operation is repeated. In addition,
The X-axis and Z-axis positioning and tracing control at this time are performed based on the inspection program or the previously executed cutting program.

なお、上記実施例ではワーク寸法を予め記憶しておく場
合について述べたが、予め記憶せずに、判定回路(17
)に数値制御部(2a)内に保存している、工具位置を
示す指令位置情報と上記検波部(16)からの検出信号
を入力し、そこで上記位置情報からワーク寸法(例えば
旋盤であれば半径×2−直径)を自動的に算出し、エコ
ー信号がワーク端によるものか地傷によるものかを判定
するようにしてもよい。また、ワーク(10)の全体に
わたって探傷する必要がないときには、予め所望の領域
を数値制御部(2a)に指定し、その領域だけ探傷する
ようにしてもよいことはいうまでもない。
In the above embodiment, a case was described in which the workpiece dimensions were stored in advance, but the determination circuit (17
), input the command position information indicating the tool position stored in the numerical control unit (2a) and the detection signal from the detection unit (16), and then calculate the workpiece dimensions (for example, if it is a lathe) from the position information. (radius x 2 - diameter) may be automatically calculated to determine whether the echo signal is due to the edge of the workpiece or a ground flaw. Furthermore, when it is not necessary to perform flaw detection over the entire workpiece (10), it goes without saying that a desired area may be specified in advance to the numerical control unit (2a) and only that area may be flaw detected.

[発明の効果コ この発明によれば超音波探触子装置を工具ホルダに付設
して探傷し、ワークを取捨選択するようにしたので、ワ
ークの地傷の有無と位置が自動的に正確に検出でき、地
傷による製品不良が未然に防止でき、このため製品品質
が向上すると共に不良ワークの加工による時間の損失を
も防ぐことができる。
[Effects of the invention] According to this invention, an ultrasonic probe device is attached to the tool holder to detect flaws and select workpieces, so the existence and location of ground flaws on the workpiece can be automatically and accurately determined. It is possible to detect and prevent product defects due to ground scratches, thereby improving product quality and preventing time loss due to machining of defective workpieces.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を旋盤に適用した場合の数値制御加工
システムを示す構成図、第2図はその動作を示すフロー
チャート、第3図(A)(B)はワークを探傷した場合
のワークとエコー信号の関連図、第4図(A)(B)は
中ぐり加工を行うワークを探傷した場合のワークとエコ
ー信号の関連図、第5図は従来の数値制御加工システム
を示す構成図、第6図は既に開示されている検査方法の
構成図である。 図において、(1)は数値制御装置、(2a)は数値制
御部、(14)は超音波探触子装置、(15)は励振部
、(16)は検波部、(17)は判定回路である。 なお、図中同一符号は同−又は相当部分を示す。
Figure 1 is a block diagram showing the numerical control machining system when this invention is applied to a lathe, Figure 2 is a flowchart showing its operation, and Figures 3 (A) and (B) are diagrams showing the workpiece when flaws are detected. A diagram showing the relationship between echo signals, Figures 4 (A) and (B) are diagrams showing the relationship between the workpiece and echo signals when a workpiece to be bored is detected, and Figure 5 is a configuration diagram showing a conventional numerical control machining system. FIG. 6 is a block diagram of an already disclosed inspection method. In the figure, (1) is a numerical control device, (2a) is a numerical control unit, (14) is an ultrasonic probe device, (15) is an excitation unit, (16) is a detection unit, and (17) is a determination circuit. It is. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)旋削や切削等の機械加工を行う数値制御加工シス
テムにおいて、工具ホルダに付設された超音波探触子装
置と、該超音波探触子装置を励振する励振部と、上記超
音波探触子装置の放射する基準信号がワーク中の地傷等
に反射して生成されるエコー信号を上記探触子装置を介
して検波する検波部と、ワーク寸法情報と該検波部の出
力信号とから地傷の有無を自動的に判定する判定手段と
、励振部に励振開始指令を出力すると共に、前記超音波
探触子装置の移動制御及び判定手段の判定出力に基づい
てワーク着脱制御を指令する数値制御部と、を有するこ
とを特徴とする数値制御加工システム。
(1) In a numerically controlled machining system that performs machining such as turning and cutting, an ultrasonic probe device attached to a tool holder, an excitation section that excites the ultrasonic probe device, and the ultrasonic probe A detection unit that detects an echo signal generated by the reference signal emitted by the probe device reflecting on a ground flaw or the like in the workpiece through the probe device, and workpiece size information and an output signal of the detection unit. a determination means for automatically determining the presence or absence of ground flaws, and outputting an excitation start command to an excitation unit, and commanding movement control of the ultrasonic probe device and workpiece attachment/detachment control based on a determination output of the determination means. A numerical control machining system characterized by having a numerical control section that performs the following steps.
(2)判定手段は、検査範囲情報と検波部出力信号とが
入力し、検波部出力信号と検査範囲情報とを比較して加
工により除去される地傷のエコー信号は無視するように
判定するものである特許請求の範囲第1項記載の数値制
御加工システム。
(2) The determination means receives the inspection range information and the detection unit output signal, compares the detection unit output signal and the inspection range information, and determines to ignore the echo signal of the ground flaw removed by processing. A numerically controlled machining system according to claim 1.
(3)判定手段は、数値制御部の指令位置情報と検波部
出力信号とが入力し、指令位置情報からワーク寸法を自
動的に算出し、検波部出力信号がワーク端による信号か
地傷による信号かを判定するものである特許請求の範囲
第1項記載の数値制御加工システム。
(3) The determination means inputs the command position information of the numerical control unit and the detection unit output signal, automatically calculates the workpiece dimensions from the command position information, and determines whether the detection unit output signal is a signal due to the workpiece edge or due to ground damage. The numerically controlled machining system according to claim 1, which determines whether the signal is a signal or not.
JP2815587A 1987-02-12 1987-02-12 Numerically controlled machining system Granted JPS63196355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2815587A JPS63196355A (en) 1987-02-12 1987-02-12 Numerically controlled machining system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2815587A JPS63196355A (en) 1987-02-12 1987-02-12 Numerically controlled machining system

Publications (2)

Publication Number Publication Date
JPS63196355A true JPS63196355A (en) 1988-08-15
JPH0569658B2 JPH0569658B2 (en) 1993-10-01

Family

ID=12240863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2815587A Granted JPS63196355A (en) 1987-02-12 1987-02-12 Numerically controlled machining system

Country Status (1)

Country Link
JP (1) JPS63196355A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017354A (en) * 1983-07-11 1985-01-29 Canon Inc Ultrasonic flaw detector
JPS6130359A (en) * 1984-07-18 1986-02-12 Kawasaki Steel Corp Inspection for flaw on basic material of steel member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017354A (en) * 1983-07-11 1985-01-29 Canon Inc Ultrasonic flaw detector
JPS6130359A (en) * 1984-07-18 1986-02-12 Kawasaki Steel Corp Inspection for flaw on basic material of steel member

Also Published As

Publication number Publication date
JPH0569658B2 (en) 1993-10-01

Similar Documents

Publication Publication Date Title
CA2571275A1 (en) Determining cutting tool dimensions and run-out using acoustic emissions
US6400114B2 (en) Numerical control apparatus for roll grinding machine
JPS5847253A (en) Method and device for automatically monitoring product of long-sized workpiece
JPS63196355A (en) Numerically controlled machining system
JPH11138391A (en) Surface roughness testing method and its device
JPS63288647A (en) Tool breakage detecting method
JPH08206862A (en) Method and device for laser beam machining
JP3077263B2 (en) Cutting tool edge position detection device
JPH05285792A (en) Controlling method for numerical control machining utilizing supersonic wave
CN113649361B (en) Laser cleaning quality online detection system and method based on heat flux
JPH0952187A (en) Laser beam machine system
JPH02179375A (en) Laser beam machining method
JPH04267106A (en) Dicing device and method
JPH0584642A (en) Cutting work device
JPH06645A (en) Profile welding equipment for rotating welding
JPH0158020B2 (en)
JPH04283661A (en) Ultrasonic flaw detection
JPH05253800A (en) Machining center provided with inspecting function for working accuracy of work
JP2023182125A (en) Swing stop position determination method and device in machine tool
JPH0475854A (en) Perceiving sensor for tool life
JP2003126962A (en) Controller for welding robot
JPH01218784A (en) Laser beam processing method
JPH08309648A (en) Polishing system
JPH02145241A (en) Centering device
JPH0687081A (en) Method and device for controlling seam welding quality