JPS63195959A - Manufacture of lead acid battery - Google Patents

Manufacture of lead acid battery

Info

Publication number
JPS63195959A
JPS63195959A JP62026974A JP2697487A JPS63195959A JP S63195959 A JPS63195959 A JP S63195959A JP 62026974 A JP62026974 A JP 62026974A JP 2697487 A JP2697487 A JP 2697487A JP S63195959 A JPS63195959 A JP S63195959A
Authority
JP
Japan
Prior art keywords
lead
grid
sulfuric acid
antimony
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62026974A
Other languages
Japanese (ja)
Inventor
Akio Tokunaga
徳永 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP62026974A priority Critical patent/JPS63195959A/en
Publication of JPS63195959A publication Critical patent/JPS63195959A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/22Forming of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the discharge capacity by making adhere slurry prepared by mixing lead oxide or lead powder with ethyl alcohol or water in which KOH or NaOH is dissolved and glycerin or ethylene glycol on an antimony-free alloy grid, and drying to form a film on the grid. CONSTITUTION:Slurry prepared by mixing lead oxide or lead powder with ethyl alcohol or water in which KOH or NaOH is dissolved and glycerin or ethylene glycol is made to adhere on an antimony-free alloy grid, then dried to form a film. The active material paste is filled in the grid to form a positive plate. Low specific gravity sulfuric acid is poured in a lead-acid battery using the positive plate and the in-container formation is conducted, then the sulfuric acid is replaced with high specific gravity sulfuric acid. Thereby, the cycle performance of the lead-acid battery in which an antimony free alloy grid is used can be increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアンチモンを含まない(以下アンチモンフリー
という)鉛合金格子を用いた鉛蓄電池の製造法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a lead-acid battery using a lead alloy grid that does not contain antimony (hereinafter referred to as antimony-free).

従来の技術とその問題点 現在、鉛?B電池に用いられている格子の鉛合金は鉛−
アンチモン系とアンチモンフリー系に大別でき、鉛蓄電
池の特性はこれらの格子合金によって著しく異なる。す
なわち、鉛−アンチモン系合金の格子を用いると、深い
充放電サイクルに優れた特性を示すが、自己放電が大き
い欠点がある。
Traditional technology and its problems currently lead? The lead alloy of the grid used in B batteries is lead-
Lead-acid batteries can be broadly divided into antimony-based and antimony-free types, and the characteristics of lead-acid batteries vary significantly depending on these lattice alloys. That is, when a lead-antimony alloy lattice is used, it exhibits excellent characteristics in deep charge/discharge cycles, but has the disadvantage of large self-discharge.

一方、アンチモンフリー系合金の格子を用いた鉛蓄電池
では、自己放電が少ないため、使用中に電解液の減少も
少なく、補水の必要がないなどの長所を右している半面
、深い充放電をくり返すと早期に電池容量が低下するの
でサイクル性能に劣るという致命的な欠点がある。これ
は正極板に原因があり、早期容量低下した電池を解体し
て正極板を観察すると、見掛は上は何ら異常は認められ
ないが、詳細に調べると格子と活物質の界面に不導体層
が生成していることがわかる。この不導体層は放電の初
期に生成するので、正極板の分極が大きくなって充分な
放電容量が10られない。
On the other hand, lead-acid batteries that use antimony-free alloy lattices have advantages such as less self-discharge, less loss of electrolyte during use, and no need for water replenishment, but they do not require deep charging and discharging. If this is repeated, the battery capacity will decrease prematurely, resulting in poor cycle performance, which is a fatal drawback. This is caused by the positive electrode plate, and when a battery whose capacity has decreased prematurely is disassembled and the positive electrode plate is observed, there is no apparent abnormality, but upon closer inspection, a nonconductor is found at the interface between the lattice and the active material. It can be seen that layers are formed. Since this nonconductor layer is generated at the beginning of discharge, the polarization of the positive electrode plate becomes large and sufficient discharge capacity cannot be obtained.

問題点を解決するための手段 本発明はアンチモンフリー合金格子表面に、酸化鉛また
は鉛粉とKOHまたは鴎OHを溶解させたエチルアルコ
ールもしくは水と、グリセリンまたはエチレングリコー
ルとから調製したスラリーを付着させ、乾燥処理して該
格子表面に被vAを形成させることを特徴とするもので
、これによって上記欠点を解消することがでさた。
Means for Solving the Problems The present invention applies a slurry prepared from lead oxide or lead powder, ethyl alcohol or water in which KOH or OOH is dissolved, and glycerin or ethylene glycol to the surface of an antimony-free alloy lattice. , which is characterized by forming a coating vA on the surface of the grating through drying treatment, thereby making it possible to eliminate the above-mentioned drawbacks.

実施例 以下本発明の一実施例を説明する。Example An embodiment of the present invention will be described below.

本実施例ではアンチモンフリー合金格子としてR+−C
a−Sn合金からなるエキスバンド格子を用いた。この
格子はPb−Ca−Sn合金の鋳造格子に比べると早期
容量低下が起りやすいので、効果の有無を早く知ること
ができる。格子の表面被摸の形成は次のようにして行な
った。まずエチルアルコール100cc当り鴎0)−1
またはKOI−1を59溶解させ、この溶液1部とグリ
セリン1部との混合溶液を作り、ついで酸化鉛1gに上
記混合溶液500ccを撹拌しながら加えてスラリーを
調製した。このようにして調製したスラリーはやや粘性
があり、空気中に放置すると短時間に硬化する特性があ
る。そこで上記エキスバンド格子を該スラリーに短時間
浸漬して取り出したのち、空気中に数時間放置した。
In this example, R+-C is used as the antimony-free alloy lattice.
An extended band lattice made of an a-Sn alloy was used. Since this lattice is more prone to early capacity reduction than a cast lattice made of Pb--Ca--Sn alloy, it is possible to quickly determine whether or not it is effective. The surface pattern of the grid was formed as follows. First, 0)-1 seaweed per 100cc of ethyl alcohol.
Alternatively, 59% of KOI-1 was dissolved, a mixed solution of 1 part of this solution and 1 part of glycerin was prepared, and then 500 cc of the above mixed solution was added to 1 g of lead oxide with stirring to prepare a slurry. The slurry thus prepared is somewhat viscous and has the property of hardening in a short time when left in the air. Therefore, the above-mentioned expanded grid was immersed in the slurry for a short time, taken out, and then left in the air for several hours.

これによって格子の表面は厚みが0.2〜0.5+nm
の硬い被膜で覆われ、蓄電池ペーストを充填しても被膜
が剥がれることはなかった。充填後の極板は常法により
熟成してから、Pb−Ca −Sn合金格子の負極板と
組合わせて公称容ff128△h(5hR)の自動車用
電池を作製し、電解液比重1.28  (20℃)に調
製したのち次の充放電試験を行った。
As a result, the surface of the grating has a thickness of 0.2~0.5+nm.
The battery was covered with a hard film, and the film did not peel off even after filling with storage battery paste. The filled electrode plate was aged by a conventional method, and then combined with a negative electrode plate of a Pb-Ca-Sn alloy lattice to produce an automobile battery with a nominal capacity of ff128Δh (5hR), and the electrolyte specific gravity was 1.28. (20° C.), and then the following charge/discharge test was conducted.

放電: 5hR電流(5,6△)で1.75 V/セル
まで放電 充電:放電量の130%を3.6Aで充電温度:25℃ 試験に供した電池の内容を第1表に、また、試験の結果
を第1図に示す。
Discharge: Discharge to 1.75 V/cell at 5 hR current (5,6△) Charge: Charge 130% of the discharge amount at 3.6 A Temperature: 25°C The contents of the batteries used in the test are shown in Table 1, and The results of the test are shown in Figure 1.

供試電池A−Dは本発明により、Na0l−iまたはK
OHのエチルアルコール溶液とグリセリンの混合溶液で
vA製した酸化鉛スラリーで格子を処理し、その表面に
被膜を形成させた正極格子を用いた電池である。また、
EとFはff1ol−1もK OHも添加しないスラリ
ーで格子の表面に被膜を形成させた対照品であり、Gと
Hは従来品である。ここで、A、C,EおよびGの各電
池は比重1.05のamを注液し、正極理論容量に対し
て200%の電気量で20hの電槽化成を行ったのち、
電解液を排出して高比重の硫酸と後肢して電解液比重を
1.28に調整した。一方、B、D、FおよびHは比重
1.22の硫酸を注液して正極理論容■の300%の電
気量で20hの電槽化成を行った。ここでは化成が終了
した時点で電解液比重が1.28に1胃するので後肢の
必要はない。
According to the present invention, the test batteries A-D are Na0l-i or K
This battery uses a positive electrode grid in which the grid is treated with a lead oxide slurry prepared by vA with a mixed solution of OH in ethyl alcohol and glycerin, and a film is formed on the surface of the grid. Also,
E and F are control products in which a film was formed on the surface of the lattice using a slurry containing neither ff1ol-1 nor KOH, and G and H are conventional products. Here, each of the batteries A, C, E, and G was injected with am with a specific gravity of 1.05, and after 20 hours of battery cell formation with an amount of electricity of 200% of the theoretical capacity of the positive electrode,
The electrolyte was drained and mixed with high-density sulfuric acid to adjust the specific gravity of the electrolyte to 1.28. On the other hand, for B, D, F, and H, sulfuric acid having a specific gravity of 1.22 was injected, and battery cell formation was performed for 20 hours with an electricity amount of 300% of the theoretical capacity of the positive electrode. In this case, the specific gravity of the electrolyte becomes 1.28 when the chemical formation is completed, so there is no need for hind limbs.

第1表 第1図の試験結果から次のことがわかる。まず、10サ
イクルの充放電試験で容(至)低下が少ないものは本発
明によるAとCである。これは格子表面にnOHまたは
KOHを添加したスラリーで処理し、かつ低比重の硫酸
を注液して電槽化成したものである。この条件で電槽化
成した従来品Gと比べると明らかに容量低下が少ない。
The following can be seen from the test results shown in Table 1 and Figure 1. First, in a 10-cycle charge/discharge test, samples A and C according to the present invention showed the least decrease in capacity. In this case, the grating surface was treated with a slurry containing nOH or KOH, and low-density sulfuric acid was poured into the cell to form a cell. Compared to conventional product G, which was formed into a container under these conditions, the capacity drop is clearly smaller.

すなわち、本発明品△とCの10サイクル目の5hR容
量が4h前侵であったのに対して従来品Gは211であ
った。
That is, the 5hR capacity of the products Δ and C of the present invention at the 10th cycle was 4 h prior, while that of the conventional product G was 211.

一方、Na01−1もKOHも添加しないスラリーで格
子を処El シた対照品Eは従来品Gと変らない容量推
移を示した。このことから充放電サイクルでの容量低下
を防止するためには、スラリーを調製する際にnot−
1やKO)(のようなアルカリを添加することが重要で
あることがわかる。
On the other hand, control product E, in which the lattice was treated with a slurry to which neither Na01-1 nor KOH was added, showed the same capacity change as conventional product G. Therefore, in order to prevent capacity reduction during charge/discharge cycles, it is necessary to take precautions when preparing slurry.
It can be seen that it is important to add an alkali such as 1 or KO).

しかしながら、このように優れたサイクル性能を示した
試験電池AとCもTi電槽化成高比重(1,22)の硫
酸を注液して行うとBとDのようにサイクル性能が劣っ
たものになる。BとDのサイクル性能は対照品Fや従来
品l」に比べるとやや良かつだが、AとCにははるかに
及ばなかった。従って、本発明により鉛−カルシウム系
合金格子を用いた鉛蓄電池のサイクル性能を向上させる
には、上述したように格子をNao)−1またはKOH
のようなアルカリを添加したスラリーで処理して表面に
被膜を形成させるとともに、低比重の硫酸を注液して電
槽化成することが必要である。
However, test batteries A and C, which showed such excellent cycle performance, showed poor cycle performance like batteries B and D when the test batteries A and C were injected with sulfuric acid with a high specific gravity (1,22) in a Ti battery. become. The cycle performance of B and D was slightly better than that of control product F and conventional product L, but it was far inferior to A and C. Therefore, in order to improve the cycle performance of a lead-acid battery using a lead-calcium alloy lattice according to the present invention, the lattice can be made of Nao)-1 or KOH as described above.
It is necessary to form a film on the surface by treating it with a slurry containing an alkali such as the above slurry, and to form a battery case by injecting low specific gravity sulfuric acid.

なお、本実施例では酸化鉛のスラリーをnOHまたはK
OHのエチルアルコールとグリセリンの混合溶液で81
製したが、酸化鉛のかわりに通常の鉛粉(Pb070〜
80%、残部Pb)を、エチルアルコールのかわりに水
を、グリセリンのかわりにエチレングリコールを用いて
も同様のght!が得られた。
In this example, the lead oxide slurry was mixed with nOH or K.
81 with a mixed solution of OH ethyl alcohol and glycerin
However, instead of lead oxide, ordinary lead powder (Pb070 ~
The same ght! was gotten.

なお、これらの配合割合によって表面被膜の厚みや強度
が変動するが、酸化鉛1kgに対してエチルアルコール
200〜400cc 、グリセリン100〜400CC
,アルカリ濃度1〜10g /100ccエチルアルコ
ールの節回であれば良い。
The thickness and strength of the surface coating will vary depending on the blending ratio of these, but 200 to 400 cc of ethyl alcohol and 100 to 400 cc of glycerin per 1 kg of lead oxide.
, alkaline concentration of 1 to 10 g/100 cc of ethyl alcohol is sufficient.

発明の効果 以上詳述したように、本発明によってアンチモンフリー
合金格子を用いた鉛蓄電池のサイクル性能を向上させる
ことができ、工業的価値は大きい。
Effects of the Invention As detailed above, the present invention makes it possible to improve the cycle performance of a lead-acid battery using an antimony-free alloy lattice, and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づく試験電池と従来品の充放電サイ
クル特性を比較したものである。
FIG. 1 compares the charge/discharge cycle characteristics of a test battery based on the present invention and a conventional product.

Claims (1)

【特許請求の範囲】[Claims] 1、酸化鉛または鉛粉をNaOHまたはKOHのエチル
アルコール溶液もしくはそのいずれかの水溶液とグリセ
リンまたはエチレングリコールとの混合溶液で混練して
調製したスラリーをアンチモンを含まない鉛合金格子表
面に付着させて乾燥処理を施した格子体に蓄電池ペース
トを充填した極板を正極とする鉛蓄電池を低比重の硫酸
を注液して電槽化成し、ついで高比重の硫酸と換液する
ことを特徴とする鉛蓄電池の製造法。
1. A slurry prepared by kneading lead oxide or lead powder with an ethyl alcohol solution of NaOH or KOH or a mixed solution of either of them and a mixed solution of glycerin or ethylene glycol is attached to the surface of a lead alloy grid that does not contain antimony. A lead-acid battery whose positive electrode is an electrode plate filled with storage battery paste in a lattice body subjected to drying treatment is formed into a battery by injecting sulfuric acid of low specific gravity, and then the liquid is replaced with sulfuric acid of high specific gravity. Manufacturing method for lead-acid batteries.
JP62026974A 1987-02-06 1987-02-06 Manufacture of lead acid battery Pending JPS63195959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62026974A JPS63195959A (en) 1987-02-06 1987-02-06 Manufacture of lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62026974A JPS63195959A (en) 1987-02-06 1987-02-06 Manufacture of lead acid battery

Publications (1)

Publication Number Publication Date
JPS63195959A true JPS63195959A (en) 1988-08-15

Family

ID=12208131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62026974A Pending JPS63195959A (en) 1987-02-06 1987-02-06 Manufacture of lead acid battery

Country Status (1)

Country Link
JP (1) JPS63195959A (en)

Similar Documents

Publication Publication Date Title
TWI539644B (en) Flooded lead-acid battery and method of making the same
JPS59167959A (en) Electrode paste and method of producing lead acid battery
US3899349A (en) Carbon dioxide curing of plates for lead-acid batteries
US2159226A (en) Electric storage battery plate and a method of treating such plate
US2759037A (en) Dry charged batteries
US3173810A (en) Manufacture of lead-acid storage battery plates
JPS63195959A (en) Manufacture of lead acid battery
JP4441934B2 (en) Method for producing lead-acid battery
US3259522A (en) Manufacture of active mass for leadacid storage battery plates, active masses so produced, and plates with such masses
US4382883A (en) Method for producing a storage battery plate
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JP2004207003A (en) Liquid type lead acid storage battery
JPS5932867B2 (en) Paste mixing method for lead-acid battery electrode plates
JPS63187559A (en) Lead acid battery
JPH03145056A (en) Manufacture of positive plate for lead-acid battery
JPS63152860A (en) Manufacture of lead-acid battery
JPS63164162A (en) Cadmium negative electrode for alkaline storage battery
JPS62246255A (en) Manufacture of positive electrode plate for clad type lead battery
JPH10302785A (en) Lead-acid battery
JPH05166504A (en) Manufacture of lead-acid battery positive electrode plate
JPH01117270A (en) Manufacture of anode plate of lead-acid battery
JPH0837002A (en) Manufacture of positive electrode plate for lead-acid battery
JPS601739B2 (en) Manufacturing method for lead-acid battery plates
JPS5945187B2 (en) Manufacturing method for cathode plates for lead-acid batteries
JPH0311553A (en) Manufacture of lead battery